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Preface

This is a book about doing model theory without a concrete underlying logical system.
It teaches us how to live without concrete models, sentences, satisfaction and so on. Our
approach is based on the theory of institutions, which has witnessed a vigorous and sys-
tematic development over the past few decades and which provides an ideal framework
for true abstract model theory. The concept of institution formalises the intuitive notion
of a logical system into a mathematical object. Thus our model theory without concrete
underlying logical systems and based upon institution theory may be called ‘institution-
independent model theory’ because it does not depend on any concrete institution.

Institution-independent model theory has several advantages. One is its generality
since it can be easily applied to a multitude of logical systems, conventional or less con-
ventional, many of the latter kind getting a proper model theory for the first time through
this approach. This is important, especially in the context of the high proliferation of
logics in computing science, and especially in the area of formal specification but not
only. Then there is the advantage of illuminating the model-theoretic phenomena and its
subtle network of causality relationships, thus leading to a deeper understanding which
produces new fundamental insights and results even in well-worked traditional areas of
model theory.

In this way, we study well-established topics in model theory but also some newly
emerged important topics. The former category includes methods (much of model theory
can be regarded as a collection of sometimes overlapping methods) such as diagrams,
ultraproducts, saturated models and studies about preservation, axiomatizability, interpo-
lation, definability, and possible worlds semantics. The latter category includes also meth-
ods of doing model theory ‘by translation’. A part of the book is devoted to extensions
of ordinary institution theory oriented towards non-classical model-theoretic phenomena
(models ‘with states’ and many-valued truth). The last part of the book digresses from the
main topic of the book in that it presents some applications of the institution-independent
model theory to specification and programming.

This book is far from being a complete encyclopedia of institution-independent
model theory. While several important concepts and results have not been treated here, we
believe they can be approached successfully by institutions in the style promoted by our
work. Most of all, this book shows how to do things rather than provides an exhaustive
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account of all model theory that can be done institution-independently. It can be used by
any working user of model theory but also as a resource for learning model theory.

From a philosophical viewpoint, the institution-independent approach to model the-
ory is based upon a non-substantialist, groundless, perspective on logic and model theory,
directly influenced by the doctrine of śūnyatā of the Madhyamaka Prāsaṅgika school
within Mahāyanā Buddhism. The interested reader may find more about this connection
in the essay [69]. This philosophical viewpoint has been developed mainly at Nālandā
monastic university many centuries ago by Arya Nāgārjuna and its successors and has
been continued to our days by all traditions of Tibetan Buddhism. The relationship be-
tween Madhyamaka Prāsaṅgika ’s thinking and various branches of modern science are
surveyed in [235].

I am grateful to several people who supported the institution-independent model
theory project in various ways in general and the writing of this book in particular. I
was extremely fortunate to be first the student and later a close friend and collaborator
of late Professor Joseph Goguen who together with Rod Burstall introduced institutions.
He strongly influenced this work in many ways and at many levels, from philosophical
to technical aspects, and was one of the greatest promoters of the non-essentialist ap-
proach to science. Andrzej Tarlecki was the true pioneer of model theory in an abstract
institutional setting. Till Mossakowski made a lot of useful comments on several prelimi-
nary drafts of this book and supported this activity in many other ways too. Grigore Roşu
and Marc Aiguier made valuable contributions to this area. Lutz Schröder made several
comments and gave some useful suggestions. Achim Blumensath read very carefully a
preliminary draft of this book and helped to correct a series of errors. Some of the cor-
rections implemented in the second edition of the book owe to Ionuţ Ţuţu and Andrzej
Tarlecki. I am indebted to the late Professor Hans-Jürgen Hoehnke for encouragement and
managerial support. Special thanks go to the former students of the Informatics Depart-
ment of “Şcoala Normală Superioară” of Bucharest, namely Marius Petria, Daniel Găină,
Andrei Popescu, Ionuţ Ţuţu, Mihai Codescu, Traian Şerbănuţă and Cristian Cucu. They
started as patient students of the institution-independent model theory only to become
important contributors to this area. Finally, Jean-Yves Béziau greatly supported the pub-
lication and dissemination of this book. I acknowledge the financial support for writing
this book from various grants of the Romanian National Council for Scientific Research
(CNCS).

Sinaia,
April 2024 Răzvan Diaconescu
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Chapter 1

Introduction

Model theory is in essence the mathematical study of semantics, or meaning, of logic
systems. As it has a multitude of applications in various areas of classical mathematics,
and logic, but also to many areas of informatics and computing science, there are var-
ious perspectives on model theory which differ slightly. A rather classical viewpoint is
formulated in [42]:

Model theory = logic + universal algebra.

From a formal specification viewpoint, in a similar tone, one may say that

Model theory = logical semantics – specification.

Each such viewpoint implies a specific way of developing the key concepts and the main
model theory methods; it also puts different emphasis on results. For example, while
forcing is a very important method for the applications of model theory to conventional
logic, it plays very little role in computing science. On the other hand, formal specification
theory requires a much more abstract view on model theory than the conventional one.
The institution theory of Goguen and Burstall [37, 124] arose out of this necessity.

Institutions. The theory of institutions is a categorical abstract model theory which
formalises the intuitive notion of a logical system, including syntax, semantics, and the
satisfaction relation between them. Institutions constitute a model-oriented meta-theory
on logics similarly to how the theory of rings and modules constitutes a meta-theory
for classical linear algebra. Another analogy can be made with universal algebra versus
particular algebraic structures such as groups, rings, modules, etc., or with mathematical
analysis over Banach spaces versus real analysis.

The notion of the institution was introduced by Goguen and Burstall in the late
1970s [37] (with the seminal journal paper [124] being printed rather late) in response to
the population explosion of specification logics with the original intention of providing
a proper abstract framework for specification of, and reasoning about, software systems.
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Since then institutions have become a major tool in development of the theory of spec-
ification, mainly because they provide a language-independent framework applicable to
a wide variety of particular specification logics. It became standard in the field to have a
logic system captured as the institution underlying a particular language or system, such
that all language / system constructs and features can be rigorously explained as math-
ematical entities and to separate all aspects that depend on the details of the particular
logic system from those that are general and independent of this logic system by basing
the latter on an arbitrary institution. All well-designed specification formalisms follow
this path, including for example CASL [14] and CafeOBJ [95].

Recently institutions have also been applied to computing science fields other than
formal specification; these include ontologies and cognitive semantics [122], concurrency
[192], and quantum computing [39], computational creativity [84].

Institution-independent model theory. This means the development of model theory
in the very abstract setting of arbitrary institutions, free of any commitment to a partic-
ular logic system, and in a fully axiomatic way. We can safely say that the institution-
independent model theory is an axiomatic (approach to) model theory which is based on
the formalisation of logical systems as institutions. In this way, we gain another level of
abstraction and generality and a deeper understanding of model-theoretic phenomena, not
hindered by the largely irrelevant details of a particular logic system, but guided by struc-
turally clean causality. The latter aspect is based on the fact that concepts come naturally
as presumed features that “a logic” might exhibit or not and are defined at the most appro-
priate level of abstraction; hypotheses are kept as general as possible and introduced on a
by-need basis, and thus results and proofs are modular and easy to track down regardless
of their depth. Access to highly non-trivial results is also considerably facilitated, which is
contrary to the impression of some people that such general abstract approaches produce
trivial results. As Béziau explains in [23]:

“This impression is generally because these people have a concrete-
oriented mind and that something which is not specified [n.a. concretely] has
no meaning for them, and therefore universal logic [n.a. institution-independent
model theory in our case] appears as logical abstract nonsense. They are like
someone who understands perfectly what is Felix, his cat, but for whom the
concept of a cat is a meaningless abstraction. This psychological limitation is
a strong defect because, ... [n.a. as this book also shows], what is trivial is gen-
erally the specific part, not the universal one [n.a. the institution-independent
one] which requires what is the fundamental capacity of human thought: ab-
straction.”

The continuous interplay between the specific and the general in institution-independent
model theory brings a large array of new results for particular non-conventional logics,
unifies several known results, produces new results in well-studied conventional areas,
reveals previously unknown causality relations, and dismantles some which are usually
assumed as natural.
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The institution-independent model theory also provides a clear and an efficient
framework for doing logic and model theory ‘by translation (or borrowing)’ via a gen-
eral theory of mappings (homomorphisms) between institutions. For example, a certain
property P which holds in an institution I ′ can be also established in another institution I
provided that we can define a mapping I → I ′ which ‘respects’ P.

Institution-independent model theory can be regarded as a form of ‘universal model
theory’, part of the so-called ‘universal logic’, a recent trend in logic promoted by Béziau
and others [24].

Other abstract model theories. Few major abstract approaches to logic have a model-
theoretic nature and are therefore comparable to the institution-independent model theory.

The so-called “abstract model theory” developed by Barwise and others [16, 17]
however keeps a strong commitment to conventional concrete systems of logic by ex-
plicitly extending them and retaining many of their features, hence one may call this
framework “half-abstract model theory”. In this context even the remarkable Lindström
characterization of first-order logic by some of its properties should be rather considered
a first-order logic result rather than a true abstract model-theoretic one.

Another framework is given by the so-called “categorical model theory” best rep-
resented by the works on sketches [103, 141, 244] or on satisfaction as cone injectivity
[8, 9, 10, 171, 168, 166]. The former just develops another language for expressing (pos-
sibly infinitary) first-order logic realities. While the latter considers models as objects of
abstract categories, it lacks the multi-signature aspect of institutions given by the signa-
ture morphism and the model reducts, which leads to severe methodological limitations.
Moreover in these categorical model theory frameworks, the satisfaction of sentences by
the models is usually defined rather than being axiomatized.

The “general logics” of [12] represents another abstract approach which has a pro-
nounced model-theoretic side. This is strongly motivated by the algebraic logic in the
tradition of Traski / Blok / Pigozzi, etc. It also lacks a proper multi-signature aspect and
is not fully abstract, especially because of the syntax level.

In contrast to the abstract approaches mentioned above, institutions capture directly
the essence of logic systems by axiomatizing fully abstractly the satisfaction relationship
between models and sentences without any initial commitment to a particular logic system
and by emphasizing properly the multi-signature aspect of logics.

Book content. The book consists of four parts.

1. In the first part, we introduce the basic institution theory including the concept of in-
stitution and institution morphisms, and several model-theoretic fundamental concepts
such as model amalgamation, diagrams, inclusion systems, and free models. We de-
velop an ‘internal logic’ for abstract institutions, which includes a semantic treatment
for Boolean connectives, quantifiers, atomic sentences, substitutions, and elementary
homomorphisms, all of them in an institution-independent setting.
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2. The second part is the core of our institution-independent model theoretic study be-
cause it develops the main model theory methods and results in an institution-independent
setting.

• The first method considered in this part is that of ultraproducts. Based upon the
well-established concept of categorical filtered products, we develop an ultraprod-
uct fundamental theorem in an institution-independent setting and explore some of
its immediate consequences, such as ultrapower embeddings and compactness.

• The chapter on saturated models starts by developing sufficient conditions for di-
rected co-limits of homomorphisms to retain the elementariness. This rather general
version of Tarski’s elementary chain theorem is a prerequisite for a general result
about the existence of saturated models, later used for developing other important
results. We also develop the complementary result on the uniqueness of saturated
models. Here, the necessary concept of the cardinality of a model is handled cat-
egorically with the help of elementary extensions, a concept given by the method
of diagrams. We develop an important application for the uniqueness of saturated
models, namely a generalized version of the remarkable Keisler-Shelah result in
first-order model theory, “two models are elementarily equivalent if and only if
they have isomorphic ultrapowers”.

• A good application of the existence result for saturated models is seen in the preser-
vation results, such as “a theory has a set of universal axioms if and only if its
class of models is closed under ‘sub-models”’. We develop a generic preservation-
by-saturation theorem. Such preservation results might lead us straight to their ax-
iomatizability versions. One way is to assume the Keisler-Shelah property for the
institution and to use a direct consequence of the fundamental ultraproducts theo-
rem which may concisely read as “a class of models is elementary if and only if it
is closed under elementary equivalence and ultraproducts”.
Another method to reach an important class of axiomatizability results is by ex-
pressing the satisfaction of Horn sentences as categorical injectivity. This leads to
general quasi-variety theorems such as “a class of models is closed under products
and ‘sub-models’ if and only if it is axiomatizable by a set of (universal) Horn sen-
tences” and variety theorems such as “a class of models is closed under products
and ‘sub-models’ and ‘homomorphic images’ if and only if it is axiomatizable by a
set of (universal) ‘atoms”’. All axiomatizability results presented here are collected
under the abstract concept of ‘Birkhoff institution’.

• The next topic is interpolation. The institution-independent approach brings several
significant upgrades to the conventional formulation. We develop here three main
methods for obtaining the interpolation property, the first two having rather com-
plementary application domains. The first one is based on a semantic approach to
interpolation and exploits the Birkhoff-style axiomatizability properties of the insti-
tution (captured by the above-mentioned concept of Birkhoff institution), while the
second, inspired by the conventional methods of first-order logic, is via Robinson
consistency. The third one is a borrowing method across institutions.
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• We next treat definability, again with rather two complementary methods, via Birk-
hoff-style axiomatizability and interpolation. While the latter represents a gener-
alization of Beth’s theorem of conventional first-order model theory, the former
reveals a causality relationship between axiomatizability and definability.

This ends the treatment of somewhat ‘classical’ topics of model theory in our book. Im-
portant institution-independent developments of other ‘classical’ topics not included
in this book are Löwenheim-Skolem theorems, Gödel-Henkin completeness method,
forcing, Lindström theorem. We still wanted to keep the material of this book within a
reasonable size and it was a matter of personal orientation on what to include and what
to omit from the rather vast spectrum of institution-independent model theory works.
We hope our choices do satisfy the taste of most of our readers.

3. The third part of the book is devoted to some extensions of the standard institution
theory. The chapter on proof theory for institutions introduces the concept of proof in
a simple way that suits the model theory, explores proof theoretic versions of com-
pactness, and presents general soundness results for institutions with proofs. The final
part of this chapter develops a general sound and complete Birkhoff-style proof sys-
tem with applications significantly wider than that of the Horn institutions. The other
two chapters of this part explore ‘models with states’ (which applies to various forms
of Kripke semantics, but goes much beyond that) and many-valued truth, respectively,
in an institution-independent model-theoretic setting. In both cases, it is possible to
have a standard institution-theoretic treatment by ‘flattening’ the non-classical con-
texts; the high level of abstraction of the concept of institution allows this. In this way,
many developments from the previous parts of the book can be applied directly to non-
classical contexts. But there are also limitations to that, regarding some finer-grained
non-classical aspects. Hence the need for proper non-classical extensions of the con-
cept of institution. The ‘stratified institutions’ deal with ‘models with states’, while the
‘L-institutions’ generalise the ordinary institutions by allowing a many-valued satis-
faction relation. In both frameworks, we recover some of the themes from the previ-
ous parts of the book, including the semantics of logical connectives, ultraproducts,
preservation, compactness, interpolation, definability, translation structures, etc. How-
ever, some of these do not enjoy yet the same level of development as their ordinary
institution-theoretic counterparts, and this is due to inherent increased technical diffi-
culties.

4. The last part of the book presents a few from the multitude of applications of institution-
independent model theory to computing science, especially in the areas of formal spec-
ification and logic programming. This includes heterogeneous multi-logic frameworks
through a Grothendieck construction on institutions, a systematic study of lifting of
important properties such as theory co-limits, model amalgamation, and interpolation,
from the level of the ‘local’ institutions to the ‘global’ Grothendieck institution, struc-
tured specifications over arbitrary institutions, the lifting of a complete calculus from
the base institution to structured specifications, Herbrand theorems and modulariza-
tion for logic programming, and the semantics of logic programming with pre-defined
types. The fact that the relationship between model theory and computing science is
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a two-way street, is illustrated by an unlikely application of Grothendieck institutions
to interpolation in the Horn fragment of first-order logic, a surprising interpolation
property is obtained through Grothendieck institutions.

The concepts introduced and the results obtained are systematically illustrated in the main
text by their applications to the model theory of conventional logic (which includes first-
order logic but also fragments and extensions of it). There are only two reasons for doing
this. The first is to build a bridge between our approach and the conventional model
theory culture. Logicians have great familiarity with first-order logic and model theory, so
examples from first-order model theory may support an easier understanding of abstract
developments. The second reason has to do with keeping the material within reasonable
size. Otherwise, while the conventional (first-order) model theory has been historically
the framework for the development of the main concepts and methods of model theory,
one of the main messages of this book is that these do not depend on that framework.
Any other concrete logic or model theory could be used as a benchmark example in this
book, and we do this systematically in the exercise sections with several less conventional
logics.

How to use this book. The material of this book can be used in various ways by vari-
ous audiences both from logic and computing science. Students and researchers of logic
can use the material from the first two parts as an institution-independent introduction to
model theory. Working logicians and model theorists will find in this monograph a novel
view and a new methodological approach to model theory. Computer scientists may use
the material of the first part as an introduction to institution theory, and material from the
third and the fourth parts for an advanced approach to topics from the semantics of for-
mal specification and logic programming. Also, the institution-independent model theory
constitutes a powerful tool for workers in formal specification to perform a systematic
model-theoretic analysis of the logic underlying the particular system they employ.

Each section comes with some exercises. While some of them are meant to help the
reader accommodate the concepts introduced, others contain quite important results and
applications. To keep the book within a reasonable size, much of the knowledge had to be
exiled to the exercise sections.

Regarding dependencies between various parts of the material in this book, in gen-
eral this is more or less quite linear, especially in the first parts of the book. When relevant,
we will state explicitly what is specifically needed for studying a certain chapter or sec-
tion.

Remarks on the style. In the second edition, we have introduced some novelties in the
style of presentation. Two of the most important are as follows. The first one concerns
the use of parentheses. Here we adopt a minimalist style, using them strictly to avoid
ambiguities even if this violates the common notational habits. For instance, we may
denote the application of a function f to an element x by f x rather than f (x). However,
this is hardly a novelty, for instance, people in type theory or in category theory often
do this. The aim of this is to reduce the complexity of formulas in terms of number
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of symbols used. The second novelty, which we consider more important than the first
one, concerns the style of presenting proofs of results. The aim of this is to enhance
the readability of the proofs, as we are very well aware that in general model theory is
a mathematically difficult area, and in particular the institution theoretic approach adds
another layer of sophistication to that. To support the understanding of proofs we adopt
a structured style of presenting them such that milestones and main ideas are clearly
outlined. Also, we abandon the common ‘always forward’ reasoning in favour of a more
realistic style in which we first formulate a statement to be proved and then present the
arguments. However, this is balanced and integrated with the common style of presenting
proofs.



8 Chapter 1. Introduction



Part I

Basics





Chapter 2

Categories

Institution-independent model theory as a categorical model theory relies heavily on cat-
egory theory. This preliminary chapter gives a brief overview of the categorical concepts
and results used in this book also allows us to fix some notations and terminology. The
reader without enough familiarity with category theory is advised to use one of the text-
books on category theory available in the literature. The references [165] and [31] are
among the standard references for category theory. A reference for indexed categories dis-
cussing many examples from the model theory of algebraic specification is [232], while
[152] contains a rather compact presentation of fibred category theory.

2.1 Basic concepts

Categories

A category C consists of

• a class |C| of objects,

• a class of arrows (sometimes also called ‘morphisms’ or ‘homomorphisms’), de-
noted just as C,

• two maps dom,cod : C→ |C| giving the domain and codomain of each arrow such
that for each pair of objects A and B, C(A,B) = { f ∈C | dom( f ) = A,cod( f ) = B}
is a set,

• for all objects A,B,C, a composition map ; : C(A,B)×C(B,C)→ C(A,C),

• an identity arrow map 1 : |C| → C such that 1A ∈ C(A,A) for each A ∈ |C|,
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such that the (arrow) composition ; is associative and with identity arrows as left and
right identities.

A
f
//

f ;g
��

B

g
��

g;h

��

A

f
��

1A
// A

f
��

C
h
// D B

1B

// B

Notice that we prefer to use the diagrammatic notation f ;g for composition of ar-
rows in categories, rather than the alternative set theoretic one g◦ f used in many category
theory works.

Categories arise everywhere in mathematics. A most typical example is that of sets
(as objects) and functions (as arrows) with the usual (functional) composition. We denote
this category by Set. Notice that |Set|, the collection of all sets, is not a set, it is a proper
class.

The arrows of a category in general reflect the structure of objects in the sense of
preserving that structure. However, this should not always be the case. One can go further
by saying that, in reality, a particular category is determined only by its arrows, the objects
being a derived rather than a primary concept.

A category C is small when its class of objects |C| is a set. Note that this implies
that C, the class of arrows, is also a set.

C is connected when it is empty or there exists at most one equivalence class for the
equivalence generated by the relation on objects given by “there exists an arrow A→ B”.

Isomorphisms. An arrow f : A→ B is an isomorphism when there exists an arrow
g : B→ A such that f ;g = 1A and g; f = 1B. The inverse g is denoted as f−1. Two objects
A and B are isomorphic, and we denote this by A∼= B, when there exists an isomorphism
f : A→ B. Isomorphisms in Set are precisely the bijective (injective and surjective) func-
tions. However, this is not true in general; structure-preserving mappings that are bijective
are not necessarily isomorphisms. A simple counterexample is given by the category of
partial orders (objects) with order-preserving functions as arrows.

Monoids are exactly the categories with only one object. Then groups are exactly
the monoids for which all elements (arrows) are isomorphisms.

Being isomorphic is an equivalence relation on objects; the equivalence classes of
∼= are called isomorphism classes.

Epis and monos. A family of arrows ( fi : A→ B)i∈I is epimorphic when for each pair
of parallel arrows g1,g2 : B→ C, fi;g1 = fi;g2 for all i ∈ I implies g1 = g2, and it is
monomorphic when for each pair of parallel arrows g1,g2 : C → A, g1; fi = g2; fi for
all i ∈ I implies g1 = g2. An arrow f : A→ B is epi / mono when it is epimorphic /
monomorphic as a (singleton) family, i.e., ( f ) is epimorphic / monomorphic.

In Set epis are exactly the surjective functions and the monos are exactly the in-
jective ones. Note that while, in general, whenever arrows appear as functions with addi-
tional structure, the injectivity (respectively surjectivity) of the underlying function is a
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sufficient condition for a function to be mono (respectively epi), the converse is not true.
For example, the inclusion Z→ Q of integers into the rationals is epi in the category of
rings but it is not surjective. This is also an example of an arrow which is both epi and
mono but is not an isomorphism.

An arrow f : A→ B is a retract to g : B→ A when g; f = 1B. Notice that each
retract is an epi. The converse, which is not true in general, is one of the categorical
formulations of the Axiom of Choice. Note that Set has the Axiom of Choice in this
sense.

An object A is injective with respect to an arrow h when for each arrow f :
dom(h)→ A there exists an arrow g such that h;g = f . A is simply injective when it
is injective with respect to all mono arrows.

•

f
��

h
// •

g
��

A

Dually, an object A is projective with respect to an arrow h when for each arrow f : A→
cod(h) there exists an arrow g such that g;h = f . A is simply projective when it is projec-
tive with respect to all epi arrows.

• h
// •

A

g

[[

f

CC

Note that in Set all objects (sets) are both injective and projective except for the empty
set that is only projective.

Functors
A functor U : C→ C′ between categories C and C′ maps

• objects to objects, |U| : |C| → |C′|, and

• arrows to arrows, UA,B : C(A,B)→ C′(UA,UB) for all objects A,B ∈ |C|

such that

– U1A = 1UA for each object A ∈ |C|, and

– U( f ;g) = (U f );(Ug) for all composable arrows f ,g ∈ C.

Most of the time we will denote |U| and UA,B simply by U.
The couple of equations above reveal also our style of using parentheses in formulas.

Whenever there is no danger of ambiguity we will refrain from using them, instead relying
on juxtaposition. For instance instead of U(A) we wrote UA. So we will use parentheses
only to avoid parsing ambiguities. In this way, we will enhance readability by avoiding



14 Chapter 2. Categories

heavily parenthesised expressions. Sometimes it is even convenient to use subscripts or
superscripts for the application of functors to objects or arrows.

A simple example of a functor is the power-set functor P : Set→ Set which maps
each set S to the set of its subsets {X | X ⊆ S} and maps each function f : S→ S′ to the
function P f : P S→ P S′ such that (P f )X = f X = { f x | x ∈ X}.

Another example of a functor is given by ‘cartesian product with A’. For any fixed
set A, let A×− : Set → Set be the functor mapping each set B to A× B = {(a,b) |
a ∈ A,b ∈ B} and each function f : B → C to (A× f ) : A× B → A×C defined by
(A× f )(a,b) = (a, f b).

A×B
(a,b)7→b

//

A× f
��

B

f
��

A×C
(a,c)7→c

// C

A third example is that of ‘hom-functors’. For any category C and any object A ∈ |C|,
the hom-functor C(A,−) : C→ Set maps any object B ∈ |C| to the set of arrows C(A,B)
and each arrow f : B→ B′ to the function C(A, f ) : C(A,B)→ C(A,B′) defined by
C(A, f )g = g; f .

When regarding preorders as categories (that have at most one arrow between any
two given objects), each preorder-preserving (or monotonic) function between two pre-
orders (P,≤)→ (Q,≤) yields another example of a functor. Functors between preorders
are precisely the monotonic functions.

A functor U : C→C′ is full when for each objects A and B, the mapping on arrows
UA,B : C(A,B)→ C′(UA,UB) is surjective and is faithful when UA,B is injective. Note
that both functors of the first and the second examples are faithful but not full.

Functors can be composed in an obvious way and each category has an identity
functor with respect to functor composition. By discarding the foundational issues (for
the interested reader we recommend [147] or [165]), we let Cat be the ‘hyper-category’
of categories (as objects) and functors (as arrows).

C ⊆ C′ is a subcategory (of C′) when |C| ⊆ |C′|, C(A,B)⊆ C′(A,B) for all A,B ∈
|C|, the identities in C are identities in C′ too, and the composition in C is a restriction of
the composition in C′. A subcategory C⊆ C′ is broad when |C|= |C′|.

Concrete categories. A concrete category (A,U) consists of a category A and a faith-
ful functor U : A→ Set. This is the most commonly accepted definition for concrete
categories, although in [1] this is called ‘concrete over Set’ or ‘construct’.

A functor of concrete categories F : (A,U)→ (B,V ) is just a functor F : A→ B
such that U = F ;V . Let CCat denote the category that has the concrete categories as
objects and functors of concrete categories as arrows.

When it is clear from the context we may omit U and simply refer to (A,U) as A.
This implies also that for A ∈ |A| we may write a ∈ A instead of a ∈UA.
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Natural transformations
Fixing categories A and B, Cat(A,B) can be regarded as a category with functors as ob-
jects and natural transformations as arrows. A natural transformation τ : S⇒ T between
functors S ,T : A→ B is a map |A| → B such that τA ∈ B(SA,T A) for each A ∈ |A| and
the following diagram commutes (in B)

SA
τA
//

S f
��

T A

T f
��

SB
τB
// T B

for each arrow f ∈ A(A,B). Although the classical notation for the component τ(A) is
τA, in the literature the diagrammatic notation Aτ is also frequently used. We will also
employ this kind of notation when convenient.

A simple example of a natural transformation is given by considering a function

A
f
//A′ which determines a natural transformation nt( f ) : (A×−)⇒ (A′×−) given

by nt( f )B = f ×1B for each set B, where ( f ×1B)(a,b) = ( f a,b) for each (a,b) ∈ A×B.
An additional example is given by the natural transformation C( f ,−) : C(A,−)⇒

C(B,−) for each arrow B
f
//A in a category C. For each D∈ |C|, C( f ,−)D =C( f ,D) :

C(A,D)→ C(B,D) where C( f ,D)g = f ;g.
The composition of natural transformations is defined component-wise, i.e.,

A(σ;τ) = Aσ;Aτ where σ : R ⇒ S : A→ B and τ : S ⇒ T : A→ B. This is called
the ‘vertical’ composition of natural transformations.

Given the natural transformations τ : S ⇒ T : A→ B and τ′ : S ′⇒ T ′ : B→ C

A
S

''

T

77�� τ B
S ′

''

T ′
77�� τ′ C

we may define their ‘horizontal’ composition ττ′ : S ;S ′⇒ T ;T ′ by

A(ττ
′) = (AS)τ′;(Aτ)T ′ = (Aτ)S ′;(AT )τ′.

When τ, respectively τ′, is an identity natural transformation we may replace it in notation
by S , respectively S ′. Note also that in the formula above instead of writing T (Aτ) and
T A we rather wrote (Aτ)T ′ and AT , respectively. We did it like that to align the notations
to the diagrammatic style which is more convenient in some situations, especially when
‘compositions’ between natural transformation and functors are involved.

Given two categories A and B, the functor category Cat(A,B) (also denoted BA) has
the functors A→ B are objects and the natural transformation between those as arrows.

Other basic categorical constructions
The opposite (or dual) Cop of a category C is obtained just by reversing the arrows and
the arrow composition. This means |Cop| = |C|, Cop(A,B) = C(B,A). Identities in |Cop|
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are the same as in C.
Given a functor U : C′ → C, for any object A ∈ |C|, the comma category A/U

has as objects the pairs ( f ,B) with f : A → UB and as arrows ( f ,B) → ( f ′,B′) the
h ∈ C′(B,B′) with f ;Uh = f ′ .

A
f
//

f ′ !!

UB

Uh
��

UB′

When C=C′ and U is the identity functor, the category A/U is denoted by A/C. C/A is
just (A/Cop)op.

Given a class D ⊆ C of arrows of a category C we say that C is D-well-powered
when for each object A ∈ |C| the isomorphism classes of {(B, f ) ∈ |C/A| | f ∈D} form
a set (rather than a proper class). Dually, C is D-co-well-powered when for each A ∈ |C|
the isomorphism classes of {( f ,B) ∈ |A/C| | f ∈D} form a set.

2.2 Limits and co-limits

An object 0 is initial in a category C when for each object A ∈ |C| there exists a unique
arrow in C(0,A). Dually, an object 1 is final in C when it is initial in Cop, which means
that for each object A ∈ |C| there exists a unique arrow in C(A,1).

In Set, the empty set /0 is initial and each singleton set {∗} is final. In Grp, the
category of groups, the trivial groups (with only one element) are both initial and final.

Given a functor U : A→X, for each X ∈ |X|, a universal arrow from X to U is just
an initial object in the comma category X/U. Notice that universal arrows are unique up
to isomorphism.

For any categories J and C, the diagonal functor ∆ : C→ Cat(J,C) maps any
A ∈ |C| to the functor A∆ : J → C such that (A∆) j = A for each object j ∈ |J| and
(A∆)u = 1A for each arrow u ∈ J, and maps any f ∈C(A,B) to the natural transformation
f ∆ : A∆⇒ B∆ with ( f ∆) j = f for each j ∈ |J|.

Co-limits. For any functor D : J→ C, a co-cone to D is just an object of the comma
category D/∆, while a co-limit of D is a universal arrow from D to the diagonal functor
∆. As universal arrows, co-limits of functors are unique up to isomorphism. A co-limit
µ : D⇒ A∆ of D may be therefore denoted as µ : D⇒ A (by omitting the diagonal
functor from the notation). More explicitly, a co-limit of D consists of an object A and a
family of arrows (µi)i∈|J| to A such that µi = (Du);µ j for each u ∈ J(i, j) which behaves
like a lowest upper bound for D, i.e., for any family (νi)i∈|J| such that νi = (Du);ν j for
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each u ∈ J(i, j), there exists a unique arrow f such that µi; f = νi for each i ∈ |J|.

Di Du
//

µi

��

νi

��

D j
µ j

~~

ν j

��

A

f
��

B

We may denote the vertex A by Colim(D).

Limits. Limits are dual to co-limits. For any functor D : J→C, a limit µ : A⇒D of D
is the ‘greatest lower bound’ of the cones over D, i.e. µ = (µi)i∈|J| such that µi;(Du) = µ j
for each u ∈ J(i, j) and for any family (νi)i∈|J| with the same property, there exists a
unique arrow f such that f ;µi = νi for each i ∈ |J|.

Di Du
// D j

A

µi
__

µ j
>>

B

f

OOνi

RR

ν j

KK

We may denote the vertex A by Lim(D).

Diagrams as functors. The functors D : J→ C for which we have considered limits
and co-limits are often called categorical diagrams (in C), or just diagrams for short.

Such a diagram D may be denoted (Di Du
//D j )

(i u→ j)∈J . Note that the meaning of the
functoriality of D, that D(u;u′) = (Du);(Du′), is the commutativity of D regarded as a
diagram in C.

Products and co-products. When J is discrete (has no arrows except the identities),
J-limits are called products and J-co-limits are called co-products; when J is a finite set
then the corresponding products or co-products are referred to as finite. Notice that when
J = /0, then the products are the final objects and the co-products are initial objects.

In Set the cartesian products are categorical products, while the disjoint unions A⊎B
(defined as {(a,1) | a ∈ A}∪{(b,2) | b ∈ B}) are co-products.

Pullbacks. When J is the category • //• •oo with three objects and two non-
identity arrows, J-limits are called pullbacks.
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In Set, the pullback square

D h
//

k
��

C

f
��

B g
// A

of C
f
//A B

g
oo can be defined by D = {(b,c) ∈ B×C | gb = f c}, k(b,c) = b, and

h(b,c) = c.

For any arrow f , the pullback of a span •
f
//• •

f
oo is called a kernel of f .

For a function f : A→ B, {(a,a′) ∈ A×A | f a = f a′} is a kernel.

Pushouts. When J is the category • •oo //• with three objects and two non-
identity arrows, J-co-limits are called pushouts.

In Set, pushouts of any span of functions B A
f

oo
g
//C always exist. Such

pushouts may be given by the quotient of the disjoint union B⊎C which identifies all the
elements f a and ga for each a ∈ A.

Equalizers and co-equalizers. When J is the category with two objects and a pair of
parallel arrows between these objects, then J-limits are called equalizers and J-co-limits
are called co-equalizers.

•
eq
// •

f
//

g
// •

coeq
//

k ��

•
k′
��

•
h′
OO

h

??

•

In Set, an equalizer of any pair of parallel arrows f ,g : A→ B is just the subset inclusion
{a | f a = ga} ⊆ A. A co-equalizer k is the quotient of B by the equivalence generated by
{( f a,ga) | a ∈ A}.

Directed co-limits. When J is a directed partially ordered set (i.e., for each i, i′ ∈ |J|
there exists j ∈ |J| such that i ≤ j and i′ ≤ j), then J-co-limits are called directed co-
limits. For the special case when J is a total order, the J-co-limits are called inductive
co-limits.

In Set, directed co-limits can be thought of as a generalized kind of union. For any

directed diagram of sets (Ai
fi, j
//A j )(i≤ j)∈(J,≤) a co-limit is given by the quotient of the

disjoint union ⊎{Ai | i ∈ |J|} which identifies the elements ai and fi, jai.
A category that has all J-(co-)limits is called J-(co-)complete. Also, by small (co-)-

limits we mean all J-(co-)limits for all J that are small categories.

Theorem 2.1. In any category the following conditions are equivalent:
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1. the category has finite (co-)limits,

2. the category has finite (co-)products and (co-)equalizers, and

3. the category has a final (initial) object and pullbacks (pushouts).

Limits and co-limits in functor categories. Limits and co-limits can be lifted ‘point-
wise’ from the base categories to the functor categories.

Proposition 2.2. If the category B has J-(co-)limits, then for any category A, the category
Cat(A,B) of functors A→ B has small J-(co-)limits (which can be calculated separately
in B for each object A ∈ |A|).

Lifting, creation, preservation, reflection of (co-)limits
Let D : J→ C and U : C→ C′ be functors. Then

• U preserves a (co-)limit µ of D when µU is a (co-)limit of D;U. For instance in Set
the ‘product with A’, A×−, preserves all co-limits.

• U lifts (uniquely) a (co-)limit µ′ of D;U, if there exists a (unique) (co-)limit µ of D
such that µU = µ′. Notice that if U lifts J-(co-)limits and C′ has J-(co-)limits, then
C has J-(co-)limits which are preserved by U.

• Slightly stronger than lifting is the following notion. The functor U creates a (co-
)limit µ′ of D;U, when there exists a unique (co-)cone µ of D such that that µU = µ′

and, furthermore, µ is a (co-)limit. For instance the forgetful functor Grp→ Set
creates all limits.

• U reflects (co-)limits of D when µ is a (co-)limit of D whenever µU is a (co-)limit
of D;U.

Proposition 2.3. If the functor U : C′→ C preserves J-limits, then for each object A ∈
|C|, the forgetful functor A/U→ C′ creates J-limits.

The dual of Prop. 2.3, for co-limits and with U/A→ C′, also holds.

Co-limits of final functors
A functor L : J′ → J is called final if for each object j ∈ |J| the comma category j/L
is non-empty and connected. Consequently, a subcategory J′ ⊆ J is final when the corre-
sponding inclusion functor is final.

For example, for each natural number n, (n→ n+1→ n+2→ . . .) is a final sub-
category of ω = (0→ 1→ 2→ . . .). More generally, for each directed poset (P,≤) and
each p ∈ P, {p′ ∈ P | p≤ p′} is final in (P,≤).
Theorem 2.4. For each final functor L : J′ → J and each functor D : J → C when a
co-limit µ′ : L;D⇒ Colim(L;D) exists, there exists a co-limit µ : D⇒ Colim(D) and
the canonical arrow h : Colim(L;D)→Colim(D) (given by the universal property of the
co-limit of L;D) is an isomorphism.
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Finitely presented objects
An object A in a category C is finitely presented if and only if the hom-functor C(A,−) :
C→ Set preserves directed co-limits. This is equivalent to the following condition:

• for any arrow f : A→ C to the vertex of a co-limiting co-cone µ : D⇒ C of a
directed diagram D : (J,≤)→ C, there exists i ∈ J and an arrow fi : A→ Di such
that f = fi;µi, and

• for any two arrows fi and f j as above, there exists k≥ i, j such that fi;Di,k = f j;D j,k.

D j

D j,k}}

µ j

��

Dk

µk

��

A
fi
//

fk

22

f j

66

f

,,

Di
Di,k

==

µi

!!

C

In Set the finitely presented objects are precisely the finite sets. In the category of groups
Grp, the finitely presented groups are exactly the quotients of finitely generated groups
by finitely generated congruences.

A category is locally presentable when each object is a directed co-limit of finitely
presented objects. Set is locally presentable because each set is the (directed) co-limit of
its finite subsets. The concept of a finitely presented object can be considered relative to
a particular class F of directed posets; we call these F -finitely presented objects.

Stability under pushouts / pullbacks
A class of arrows S ⊆C in a category C is stable under pushouts if for any pushout square
in C

• u
//

��

•

��

•
u′
// •

u′ ∈ S whenever u ∈ S . Stability under pullbacks in C is stability under pushouts in Cop.
When in the definition we replace ‘for any’ with ‘there exists a’ we call that weak stability.

In general, the epis are stable under pushouts and the monos under pullbacks. In
Set, the monos (injective functions) are stable under pushouts too. Injective functions
f : A→ B such that B\ f A is finite are also stable under pushouts. On the other hand, the
set inclusions are only weakly stable under pushouts and pullbacks.
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We also say that S is (weakly) stable under isomorphisms when it is (weakly) stable
under those pushouts of a span consisting of an arrow from S and an isomorphism.

Weak limits and co-limits
These are weaker variants of the concepts of limits and co-limits, respectively, obtained
by dropping the uniqueness requirement from the universal property of the limits and co-
limits, respectively. For example, in Set for any two nonempty sets A and B, any super-set
C of their disjoint union, i.e., A⊎B ⊆C, is a weak co-product for A and B. Weak limits
and co-limits, respectively, are no longer unique up to isomorphism.

2.3 Adjunctions
Adjoint functors are a core concept of category theory. Mathematical practice abounds
with examples of adjoint functors.

Proposition 2.5. For any functor U : A→ X the following conditions are equivalent:

1. For each object X ∈ X there exists a universal arrow from X to U.

2. There exists a functor F : X → A and a bijection ϕX ,A : A(F X ,A) → X(X ,
UA) indexed by |X|× |A| and natural in X and A.

3. There exists a functor F : X→ A and natural transformations η : 1X ⇒ F ;U
(called the unit) and ε : U;F ⇒ 1A (called the co-unit) such that the following
triangular equations hold: ηF ;F ε = 1F and Uη;εU = 1U .

If the conditions above hold, then U is called a right adjoint, and the functor F
is called a left adjoint to U. The tuple (U,F ,η,ε) is called an adjunction from (the
category) X to (the category) A.

Very often the notion of adjunction is used in the following “freeness” form. Given
an adjunction (U,F ,η,ε), for any object X ∈ |X| there exists an object F X , called U-
free over A and an arrow ηX : X →U(F X) such that for each object A ∈ |A| and arrow
h : X →UA, there exists a unique arrow h′ : F X → A such that h = ηX ;Uh′.

X
ηX
//

h
��

U(F X)

Uh′
~~

F X

h′
��

UA A

When a category C has J-(co-)limits, then these are adjoints to the diagonal functor
∆ : C→ Cat(J,C). More precisely, Lim is a right adjoint to ∆, while Colim is a left
adjoint to ∆.

The forgetful functor Grp→ Set is right adjoint, its left adjoint constructing the
groups freely generated by sets.
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Galois connections. Let (P,≤) and (Q,≤) be preorders. Two preorder preserving func-
tions L : (P,≤)→ (Q,≤)op and R : (Q,≤)op → (P,≤) constitute an adjunction when
Lp ≥ q if and only if p ≤ Rq for all p ∈ P and q ∈ Q. Notice that triangular equations
mean Lp ≥ L(R(Lp)) ≥ Lp and Rq ≤ R(L(Rq)) ≤ Rq. The pair (L,R) is called a Galois
connection between (P,≤) and (Q,≤).

Persistent adjunctions. Given an adjunction (U,F ,η,ε), the object F X is called per-
sistently U-free when the unit component ηX is an isomorphism, and is called strongly
persistently U-free when ηX is identity. We can easily see that an object of A is per-
sistently free if and only if it is strongly persistently free. An adjunction such that for
each object X of X, F X is [strongly] persistently U-free, is called a [strongly] persistent
adjunction .

Composition of adjunctions. Given two adjunctions (U,F ,η,ε) from X to A, and
(U′,F ′,η′,ε′) from A to A′, note that (U′;U, F ;F ′, η;F η′U, U′εF ′;ε′) is an adjunc-
tion from X to A′. This is called the composition of the two adjunctions. Adjunctions thus
form a ‘hyper-category’ Ad j with categories as objects and adjunctions as arrows.

The following is one of the most useful properties of adjoint functors.

Proposition 2.6. Right adjoints preserve all limits and, dually, left adjoints preserve all
co-limits.

Special adjunctions
Categorical equivalences. The following equivalent conditions define a functor
U : X→ X′ as an equivalence of categories:

Proposition 2.7. For any functor U : X→ X′ the following conditions are equivalent:

– U belongs to an adjunction with unit and co-unit being natural isomorphisms, and

– U is full and faithful and each object A′ ∈ |X′| is isomorphic to UA for some object
A ∈ |X|.

Cartesian closed categories. A category C is cartesian closed when it has all finite
products, by designation denoted × , and for each object A the product functor ×
A : C→ C has a right adjoint [A, ]. If we denote the co-unit of this adjunction by evA,
it means that for each pair of objects A and B, and for each arrow f : C×A→ B, there
exists a unique arrow f ′ : C→ [A,B] such that f = ( f ′×1A);evA

B,

[A,B]×A
evA

B
// B

C×A
f ′×1A

cc

f

@@
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In the examples the co-unit components evA
B play the role of ‘evaluation maps’. We have

that Set is cartesian closed with [A,B] being the set of all functions A→B, and evA
B( f ,a) =

f a. Cat is also cartesian closed with [A,B] being the category Cat(A,B) of the functors
A→ B and with the natural transformations between them as arrows.

2.4 2-categories
A 2-category C is an ordinary category whose objects are called 0-cells, whose arrows
are called 1-cells, and in addition to ordinary objects and arrows, for each pair of 1-cells
S ,T there is a set C(S ,T ) of 2-cells (denoted by S ⇒ T ) together with two compositions
for the 2-cells that are associative and have identities:

• a ‘vertical’ one σ;τ : S ⇒ T

A

S

���� σ
AA

T
�� τ
// B

and

• a ‘horizontal’ one (denoted by simple juxtaposition) ττ′ : S ;S ′⇒ T ;T ′

A
S

''

T

77�� τ B
S ′

''

T ′
77�� τ′ C

such that every identity arrow for the first composition is also an identity for the second
composition, 1S ;T = 1S 1T for all composable 1-cells S and T , and such that the following
Interchange Law holds: given three 0-cells and four 2-cells

A
���� σ
AA

�� τ
// B

���� σ′

AA

�� τ′
// C

the ‘vertical’ compositions and the ‘horizontal’ compositions are related by

(σ;τ)(σ′;τ
′) = (σσ

′);(ττ
′).

Any category is trivially a 2-category without proper 2-cells. The typical non-trivial
example of a 2-category is Cat with categories as 0-cells, functors as 1-cells, and natural
transformations as 2-cells.
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Adjunctions, natural transformations, (co-)limits
The concept of adjunction can be defined abstractly in any 2-category: (U,F ,η,ε) is an
adjunction if U : A→ X and F : X→ A are 1-cells, η : 1X ⇒F ;U and ε : U;F ⇒ 1A
are 2-cells such that the triangular equations are satisfied:

ηF ;F ε = 1F and Uη;εU = 1U .

The proper mappings between 2-categories are 2-functors. A 2-functor F : C→C′
between 2-categories C and C′ maps 0-cells to 0-cells, 1-cells to 1-cells, and 2-cells to
2-cells, such that FS : FA→ FB for any 1-cell S : A→ B, and Fσ : FS ⇒ FT for
any 2-cell σ : S ⇒ T , and such that it preserves both the ‘vertical’ and the ‘horizontal’
compositions as well as the identity cells.

A 2-natural transformation τ : F⇒G between 2-functors F,G : A→ B maps any
object A of |A| to a 1-cell Aτ : FA→GA such that (Aτ)(Gσ) = (Fσ)(Bτ) for each 2-cell
σ : f ⇒ f ′ : A→ B.

FA Aτ
//

F f ′

		

F( f ) Fσ⇒
��

GA

G f ′

		

G f Gσ⇒
��

FB
Bτ

// GB

Lax natural transformations relax the commutativity of the natural transformation
square above to the existence of 2-cells. Therefore a lax natural transformation τ between
2-functors F and G maps any object A ∈ |A| to Aτ : FA→ GA and any 1-cell u : A→ B
to uτ : Aτ;(Gu)⇒ (Fu);Bτ such that ((Fσ)(Bτ)); f ′τ = f τ;((Aτ)(Gσ)) for each 2-cell
σ : f ⇒ f ′ : A→ B and

FA

''
��

Fu
//

Aτ

��

FB

''
��

Bτ

��

Fv
// FC

Cτ

��

GA
Gu

// GB

7Kuτ

Gv
// GC

7Kvτ

(u;v)τ = (uτ)(Gv);(Fu)(vτ) for each u : A→ B and v : B→C.
2-categorical limits and co-limits can be defined similarly to the conventional limits

and co-limits as universal arrows from/to a diagonal functor. However, in the 2-categorical
framework, different concepts of natural transformations determine different concepts of
(co-)limits. Therefore, when we employ 2-natural transformations we get the concepts of
2-(co-)limit as a final (initial) 2-(co-)cone, and when we employ lax natural transforma-
tions we get the concepts of lax (co-)limit as a final/initial lax cone / co-cone.

2.5 Indexed categories and fibrations
An indexed category is a functor B : Iop → Cat; sometimes we denote B(i) as Bi (or
Bi) for an index i ∈ |I| and B(u) as Bu for an index morphism u ∈ I. Given an indexed
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category B : Iop → Cat, let the category d B♯ – called the Grothendieck construction
– have ⟨i, Σ⟩, with i ∈ |I| and Σ ∈ |Bi|, as objects and ⟨u, ϕ⟩ : ⟨i, Σ⟩ → ⟨i′, Σ′⟩, with
u ∈ I(i, i′) and ϕ : Σ→ BuΣ′, as arrows. The composition of arrows in B♯ is defined by
⟨u, ϕ⟩;⟨u′, ϕ′⟩= ⟨u;u′, ϕ;(Buϕ′)⟩.

Proposition 2.8. The Grothendieck construction B♯ of an indexed category B : Iop→Cat
is the vertex of the lax co-limit µ : B ; B♯ of B in Cat, where

• for each index i ∈ |I|, µi : Bi→ B♯ is the canonical inclusion of categories, and

• for each index morphism u ∈ I(i, j), µu : Bu;µi⇒ µ j is defined by µu
b = ⟨u, 1Bub⟩ for

each object b ∈ |B j|.

Bi

µi
%%

B jBu
oo

µ j
vv
��

B♯

�,
µu

Grothendieck constructions in 2-categories. Prop. 2.8 allows us to internalize the
concept of Grothendieck construction to any 2-category. Given a (1-)functor B : Iop→V ,
where V is an arbitrary 2-category, a Grothendieck construction for B is a lax co-limit
µ : B ; B♯. Then the vertex B♯ is called the Grothendieck object associated to B. We say
that a 2-category V admits Grothendieck constructions when each (1-)functor B : Iop→V
has a lax co-limit.

Notice also that any 2-functor B : I∗→Cat, where I∗ is the 2-dimensional opposite
changing the direction of 2-cells both horizontally and vertically, induces a canonical 2-
category structure on the Grothendieck construction B♯ of the (1)-functor B : Iop→ Cat.

Fibrations
Given a functor p : B→ I, an object / arrow f ∈ B is said to be above an object/arrow
u ∈ I when p f = u. An arrow above an identity is called vertical. Every object i ∈ |I|
determines a fibre category Bi consisting of objects above i and vertical morphisms above
1i. An arrow f ∈ B(A,C) is called cartesian over an arrow u ∈ I when f is above u and
every f ′ ∈ B(A′,C) with p f ′ = v;u uniquely determines a g ∈ B(A′,A) above v such that
f ′ = g; f . p is called a fibred category or fibration when for every A ∈ |B| and u ∈ I(i, pA)
there is a cartesian arrow (called cartesian lifting or critical lifts in [1]) with codomain A
above u.

Each indexed category B : Iop → Cat naturally determines a fibration p : B♯ → I
as the index projection, i.e., p⟨i, Σ⟩ = i, such that for each index i, the fibre B♯

i is Bi

and ⟨u, ϕ⟩ ∈ B♯ is cartesian over u when ϕ is isomorphism. Notice that for each index
morphism u : i→ i′ and ⟨i′, Σ′⟩ ∈ B♯, ⟨u, 1BuΣ′⟩ : ⟨i, BuΣ′⟩→ ⟨i′, Σ′⟩ is a cartesian lifting
of u with codomain ⟨i′, Σ′⟩.

Conversely, if p : B→ I is a fibration, for each u ∈ I(i, i′) and A ∈ Bi′ , we chose a
cartesian lifting u : u∗A→ A (called the distinguished cartesian morphism corresponding
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to u and A). Such choice determines a functor u∗ : Bi′ → Bi called an inverse image
functor. Notice that two inverse image functors corresponding to the same u are naturally
isomorphic, (u;v)∗ ∼= v∗;u∗ for each u,v ∈ I, and (1i)

∗ ∼= 1Bi for each i ∈ |I|. When these
natural isomorphisms are identities we say that the fibration is split.

Proposition 2.9. The fibred category given by the forgetful functor from a Grothendieck
construction to its category of indices is split. Conversely, each split fibration is a Grothen-
dieck construction and each fibration is equivalent to a Grothendieck construction.

Cartesian functors are ‘morphisms of fibrations’. Given fibrations p : B→ I and
p′ : B′→ I, a cartesian functor U : B→ B′ commutes with the fibrations, i.e., U ; p′ = p,
and preserves the cartesian arrows, i.e., maps any cartesian arrow for p to a cartesian
arrow for p′.

Limits / co-limits in Grothendieck constructions / fibred categories can be obtained
from (co-)limits in the ‘local’ categories or fibres.

Theorem 2.10. Given an indexed category B : Iop→ Cat, then for each category J the
Grothendieck construction B♯ has

• J-limits when I has J-limits, Bi has J-limits for each index i, and Bu preserves J-
limits for each index morphism u, and

• J-co-limits when I has J-co-limits, Bi has J-co-limits for each index i, and Bu has a
left adjoint for each index morphism u.



Chapter 3

Institutions

In this chapter, we first give a model-theoretic presentation of classical first-order logic
with equality considered in an extended form and develop some of its structural properties
that make it an institution. We then introduce the abstract concept of institution and illus-
trate it by a list of other examples from logic and computing science. The next section in-
troduces morphisms and comorphisms of institutions, which are mappings preserving the
structure of an institution with rather complementary meaning in actual situations. The
final section of this chapter, which is intended for the more category-theoretic-minded
readers, provides a more advanced categorical definition for the concept of institution,
which eases considerably our access to the structural properties of categories of institu-
tions. As an application, we prove the existence of limits of institutions.

3.1 From concrete logic to institutions
Perhaps the most representative concrete logic system is the first-order logic. This is the
area in which many of the broader ideas of model theory were first worked out. Here we
present it in its many-sorted variant and in a particularly structured way which will serve
our goal of capturing it as an institution.

Many-sorted first order logic with equality (FOL)
Signatures. In many logic or model theory texts these are called ‘languages’. In this
book, we use the algebraic specification terminology. For any set S let S∗ denote the set of
the strings formed with elements of S. The empty string is denoted by []. A (many-sorted)
signature in FOL is a tuple (S,F,P) where

• S is the set of sort symbols,

• F = (Fw→s)w∈S∗,s∈S is a family of sets of (S-sorted) operation symbols such that Fw→s
denotes the set of operations with arity w and sort s (in particular, when the arity w is
empty, F[]→s (also denoted F→s) represents the set of constants of sort s), and
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• P = (Pw)w∈S∗ is a family of sets of (S-sorted) relation symbols where Pw denotes the
set of relations with arity w.

We may sometimes omit the word ‘symbol’ and simply refer to sort symbols as sorts, to
operation symbols as operations, and to relation symbols as relations. That a symbol of
operation σ belongs to some Fw→s for some arity w and some sort s may be imprecisely
but compactly denoted by ‘σ ∈ F’. The same may be of course applied to the relation
symbols. When P is empty, then we may write (S,F) rather than (S,F, /0) and we call this
an algebraic signature.

The fact that the sets Fw→s (or Pw) are not required to be disjoint reflect the possibil-
ity of the so-called overloading of symbols. A simple example is given by the following
choice for a signature (S,F,P) for specifying natural and integer numbers:

• S = {N,Z} (with N denoting the natural numbers and Z the integers),

• FNN→N = {+}, FZZ→Z = {+,−}, FZ→Z = FNN→Z = {−}, and Fw→s = /0 otherwise,

• PNN = PZZ = {≤} and Pw = /0 otherwise.

This example owes much to the algebraic specification tradition and style. A notorious
example from mainstream mathematics is that of the two-sorted signature of the vector
spaces, with one sort for the scalars and another one for the vectors. This involves also
overloading of operation symbols, for instance + may be used both for the scalars and
for the vectors. But unlike in the previous example, these two additions do not overlap.

Models. Given a FOL signature (S,F,P), a model M interprets:

• each sort symbol s as a set Ms, called the carrier set of sort s,

• each operation symbol σ ∈ Fw→s as a function Mσ:w→s : Mw→Ms, where Mw stands
for Ms1 ×·· ·×Msn for w = s1 . . .sn with s1, . . . ,sn ∈ S, and

• each relation symbol π ∈ Pw as a subset Mπ:w ⊆Mw.

The models of algebraic signatures are called algebras.
To simplify notation we will often write Mσ instead of Mσ:w→s and Mπ instead of

Mπ:w.
An (S,F,P)-model homomorphism h : M→ M′ is an indexed family of functions

(hs : Ms→M′s)s∈S such that

• h is an (S,F)-algebra homomorphism M→ M′, i.e., hs(Mσm) = M′σ(hwm) for each
σ ∈ Fw→s and each m ∈Mw,1

Mw
Mσ
//

hw
��

Ms

hs
��

M′w M′σ
// M′s

1hw : Mw→M′w is the canonical component-wise extension of h, i.e., hw(m1, . . . ,mn) = (hs1 m1, . . . ,hsn mn)
where w = s1 . . .sn and mi ∈Msi .
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and

• hwm ∈M′π if m ∈Mπ (i.e. hwMπ ⊆M′π) for each relation π ∈ Pw and each m ∈Mw.

Fact 3.1. For any signature (S,F,P), the (S,F,P)-model homomorphisms form a category
under the obvious composition (component-wise as many-sorted functions). The category
of (S,F,P)-models is denoted by Mod(S,F,P).

Sentences. An (S,F)-term t of sort s is a syntactic structure σ(t1 . . . tn) where σ ∈
Fs1...sn→s is an operation symbol and t1, . . . , tn are (S,F)-terms of sorts s1, . . . ,sn. By T(S,F)

let us denote the set of (S,F)-terms. This is of course a definition by induction the base
case being when the σ’s are constants.

Given a signature (S,F,P), the set of (S,F,P)-sentences is the least set containing
the (quantifier-free) atoms and which is closed under Boolean / propositional connectives
and quantification as follows:

• An equation is an equality t = t ′ between (S,F)-terms t and t ′ of the same sort. A
relational atom is an expression π(t1, . . . , tn) where π ∈ P and (t1, . . . , tn) ∈ (T(S,F))w
is any list of (S,F)-terms for the arity w of π (i.e., w = s1 . . .sn where sk is the sort of
tk for 1≤ k ≤ n). An atom is either an equation or a relational atom.

• For ρ1 and ρ2 any (S,F,P)-sentences, let ρ1 ∧ρ2 be their conjunction which is also
an (S,F,P)-sentence. Other Boolean / propositional connectives are the disjunction
(ρ1∨ρ2), implication (ρ1⇒ ρ2), negation (¬ρ), and equivalence (ρ1⇔ ρ2).

• Any finite block X of variables for a signature (S,F,P) can be added to the signature
as new constants. The formal definition of a variable for (S,F,P) is that of a triple
(x,s,(S,F,P)) where x is the name of the variable, which is a natural number, and
s ∈ S is the sort of the variable. ‘Block’ here means that X is a set of variables such
that any two different variables in X have different names. Let us denote by (S,F +
X ,P) the extension of (S,F,P) with X as new constants, where a variable of sort s
is a new constant of sort s. Then (∀X)ρ and (∃X)ρ are (S,F,P)-sentences for each
(S,F +X ,P)-sentence ρ.

The FOL concept of variable may seem unnecessarily complex when compared with
how variables are considered in traditional logic. This is a cost of having first-order logic
specified as a mathematical object (i.e., institution). Let us note the following aspects:

– The qualification of the variables by their signature context guarantees automatically,
by a simple set-theoretic argument, that when added as new constants to the signature
they indeed do not clash with the already existing constants.

– As the set of the names of the variables (i.e., ω) is countable, for each signature Σ,
SenΣ is always a set (and never a proper class). Our choice of ω is rather arbitrary,
any infinite set instead of ω would do the job. In order to have a precise definition of
FOL , a specific choice for the set of names of the variables is necessary and perhaps
ω is the most notorious infinite set.
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– The complexity of the FOL variables does not prevent us to write sentences in the
usual simple manner, such as (∀x)x+(−x) = 0, because x denotes a FOL variable
which is different from saying that x is a variable. Let us apply this convention to any
concrete institution that has quantifications.

Signature morphisms. A signature morphism ϕ = (ϕst,ϕop,ϕrl) : (S,F,P)→ (S′,F ′,P′)
consists of

• a function between the sets of sorts ϕst : S→ S′,

• a family of functions between the sets of operation symbols ϕop = (ϕ
op
w→s : Fw→s→

F ′
ϕstw→ϕsts)w∈S∗,s∈S,2 and

• a family of functions between the sets of relation symbols ϕrl = (ϕrl
w : Pw →

P′
ϕstw)w∈S∗ .

Almost always the authors of model theory textbooks prefer to introduce first-order logic
in a single sorted variant. However a more substantial difference between our definition
of first order logic – which owes to the algebraic specification tradition – and the conven-
tional ones occurs at the concept of signature morphism. In conventional model theory,
this is a rather salient concept which corresponds to ϕ being an inclusion (more precisely
all components of ϕ, i.e., ϕst, ϕ

op
w→s, ϕrl

w, are inclusions). But the practice of algebraic spec-
ification requires our extended concept of signature morphism and in this book we will
also see how this conceptual extension brings in many new and interesting perspectives
to first-order logic.

Given signature morphisms ϕ : (S,F,P)→ (S′,F ′,P′) and θ : (S′,F ′,P′)→ (S′′,F ′′,P′′)
their composition ϕ ; θ : (S,F,P)→ (S′′,F ′′,P′′) is defined component-wise as follows:

• (ϕ ; θ)st = ϕst ; θst;

• for each w ∈ S∗, s ∈ S, the definition of (ϕ ; θ)
op
w→s is shown in the following diagram

Fw→s
ϕ

op
w→s

//

(ϕ;θ)op
w→s

33

F ′
ϕstw→ϕsts

θ
op
ϕstw→ϕsts

// F ′′
θst(ϕstw)→θst(ϕsts)

• and likewise for the relation symbols.

Fact 3.2. The signature morphisms considered with the composition defined as above
form a category denoted Sig.

Notations such as ϕsts, ϕ
op
w→sσ or ϕrl

wπ are quite heavy but when there is no danger
of ambiguity we may simplify them to ϕs, ϕσ or ϕπ, respectively.

2Here ( )op should not be confused with the similar notation for the opposite of a category; also for any
string of sorts w = s1 . . .sn, by ϕstw we mean the string of sorts ϕsts1 . . .ϕ

stsn.
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Model reducts. Given a signature morphism ϕ : (S,F,P)→ (S′,F ′,P′), the ϕ-reduct
M′↾ϕ of a (S′,F ′,P′)-model M′ is the (S,F,P)-model defined as follows:

• (M′↾ϕ)s = M′
ϕsts for each sort s ∈ S,

• (M′↾ϕ)σ = M′
ϕ

op
w→sσ

for each operation symbol σ ∈ Fw→s, and

• (M′↾ϕ)π = M′
ϕrl

wπ
for each relation symbol π ∈ Pw.

Conversely, if M is the ϕ-reduct of M′ then M′ is called a ϕ-expansion of M. Moreover,
when ϕ is an inclusion we may also write M′↾(S,F,P) instead of M′↾ϕ.

The reduct h′↾ϕ of a model homomorphism is also defined by (h′↾ϕ)s = h′ϕs for each
sort s ∈ S.

Fact 3.3. For each signature morphism ϕ : (S,F,P)→ (S′,F ′,P′), the model reduct ↾ϕ is
a functor Mod(S′,F ′,P′)→Mod(S,F,P). Moreover, Mod becomes a functor Sigop→Cat
when for each signature morphism ϕ we denote M↾ϕ by (Mod ϕ)M.

Sentence translations. Given a signature morphism ϕ, the sentence translation
Sen ϕ : Sen(S,F,P)→ Sen(S′,F ′,P′) along ϕ is defined inductively on the structure of
the sentences by replacing the symbols from (S,F,P) with symbols from (S′,F ′,P′) as
defined by ϕ. At the level of terms, this defines a function T(S,F)→ T(S′,F ′) which we may
denote by ϕtm, or simply by ϕ. This can be formally defined by

ϕ
tm

σ(t1, . . . , tn) = (ϕop
σ)(ϕtm t1, . . . ,ϕtm tn).

Then

• (Sen ϕ)(t = t ′) = (ϕtm t = ϕtm t ′) for equations,

• (Sen ϕ)π(t1, . . . , tn) = (ϕrl π)(ϕtm t1, . . . ,ϕtm tn) for relational atoms,

• (Sen ϕ)(ρ1∧ρ2) = (Sen ϕ)ρ1∧(Sen ϕ)ρ2 and similarly for all other Boolean connec-
tives, and

• (Sen ϕ) (∀X)ρ = (∀Xϕ)(Sen ϕ′)ρ for each finite block of variables X , each (S,F +
X ,P)-sentence ρ, and where

Xϕ = {(x,ϕsts,(S′,F ′,P′)) | (x,s,(S,F,P)) ∈ X},

and where ϕ′ : (S,F +X ,P)→ (S′,F ′+Xϕ,P′) extends ϕ canonically by mapping
each variable (x,s,(S,F,P)) ∈ X to (x,ϕsts,(S′,F ′,P′)).

Fact 3.4. Sen is a functor Sig→ Set.

The proof of this Fact 3.4 consists of a straightforward check by induction on the
structure of sentences, with the only interesting case being the induction step correspond-
ing to quantifiers. So we may skip this proof.
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Satisfaction. The satisfaction relation between models and sentences represents the
core concept of model theory. In philosophy, it is known as the ‘semantic concept of
truth’. It is denoted by the symbol ‘|=’ which represents a true logo of model theory in the
sense that its occurrence indicates clearly that we are in the presence of a model-theoretic
argument. It is perhaps rather difficult to find another mathematical area that can be iden-
tified so clearly by a single mathematical symbol. Let us recall the satisfaction relation of
first-order logic.

First let us note that each term t = σ(t1, . . . , tn) of sort s gets interpreted by any
(S,F,P) model M as an element Mt ∈Ms defined by

Mt = Mσ(Mt1 , . . . ,Mtn).

The satisfaction between models and sentences is the Tarskian satisfaction defined
inductively on the structure of sentences. Given a fixed arbitrary signature (S,F,P),

• for equations: M |= t = t ′ if Mt = Mt ′ ,

• for relational atoms M |= π(t1, . . . , tn) if (Mt1 , . . . ,Mtn) ∈Mπ,

• M |= ρ1∧ρ2 if and only if M |= ρ1 and M |= ρ2,

• M |=¬ρ if and only if M ̸|= ρ,

• M |= ρ1∨ρ2 if and only if M |= ρ1 or M |= ρ2,

• M |= ρ1⇒ ρ2 if and only if M |= ρ2 whenever M |= ρ1,

• M |= (∀X)ρ if M′ |= ρ for each expansion M′ of M along the signature inclusion
(S,F,P) ↪→ (S,F +X ,P), and

• M |= (∃X)ρ if and only if M |=¬(∀X)¬ρ.

The result below shows that, in first-order logic, satisfaction is an invariant with
respect to changes of signatures.

Proposition 3.5. For any signature morphism ϕ : (S,F,P)→ (S′,F ′,P′), any (S′,F ′,P′)-
model M′, and any (S,F,P)-sentence ρ,

M′↾ϕ |= ρ if and only if M′ |= (Sen ϕ)ρ.

Proof. We prove this by induction on the structure of the sentences. First notice that, by
induction on the structure of terms, we get that for any (S,F)-term t, M′

ϕtm t = (M′↾ϕ)t .
The Satisfaction Condition for atoms follows immediately, while the preservation of the
Satisfaction Condition by Boolean connectives can also be checked very easily.

Now we show that the Satisfaction Condition is preserved by quantification too, and
this is the only interesting part of this proof. Universal quantification would be enough
since the semantics of existential quantification has been defined in terms of the semantics
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of negation and of universal quantification. Consider an (S,F,P)-sentence (∀X)ρ and an
(S′,F ′,P′)-model M′.

(S,F,P)
ϕ

//

⊆
��

(S′,F ′,P′)

⊆
��

(S,F +X ,P)
ϕ′
// (S′,F ′+Xϕ,P′)

Consider the following canonical bijection

Iϕ,X ,M′ : {M′′ ∈ |Mod(S′,F ′+Xϕ,P′)| |M′′↾(S′,F ′,P′) = M′}→
{N ∈ |Mod(S,F +X ,P)| | N↾(S,F,P) = M′↾ϕ}

defined for each variable (x,s,(S,F,P)) in X by

(Iϕ,X ,M′ M′′)(x,s,(S,F,P)) = M′(x,ϕsts,(S′,F ′,P′)).

Then we have the following succession of equivalent relations:

M′ |= (Sen ϕ)(∀X)ρ

M′ |= (∀Xϕ)(Sen ϕ′)ρ definition of Sen ϕ′

M′′ |= (Sen ϕ′)ρ for each expansion M′′ of M′ definition of the satisfaction relation

M′′↾ϕ′ |= ρ for each expansion M′′ of M′ induction hypothesis

N |= ρ for each expansion N of M′↾ϕ by Iϕ,X ,M′

M′↾ϕ |= (∀X)ρ definition of satisfaction relation.

□

Non-empty sorts. Some results rely on models involved not interpreting sorts as empty
sets. The best way to guarantee this is at the level of signatures. If we want that a certain
sort s gets necessarily interpreted as a non-empty set it suffices to have a term of sort s.
Such sorts are called non-empty sorts, otherwise are called empty sorts. Of course, we
should not be misled by this terminology, an empty sort does not necessarily have to be
interpreted as an empty set, but it might be. On the other hand, a non-empty sort is always
necessarily interpreted as a non-empty set. This concept can be extended to other model
theories rather than first order model theory, whenever we have sorts and operations like
in FOL we can talk about empty / non-empty sorts.
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Institutions
We can understand that FOL represents an aggregation of many complex structures and
definitions, also involving complex notations. One of the benefits of the concept of institu-
tion is that we can get rid off all these complexities, we need not live with them even when
investigating properties of FOL . This is achieved by abstracting the concrete structures,
and consequently considering the properties of these structures as axioms. The result of
this abstraction is as follows. An institution I = (SigI ,SenI ,ModI , |=I ) consists of

1. a category SigI , whose objects are called signatures,

2. a functor SenI : SigI → Set, giving for each signature a set whose elements are called
sentences over that signature,

3. a functor ModI : (SigI )op→Cat giving for each signature Σ a category whose objects
are called Σ-models, and whose arrows are called Σ-(model) homomorphisms, and

4. a relation |=Σ⊆ |ModI
Σ|× (SenI

Σ) for each Σ ∈ |SigI |, called Σ-satisfaction,

SigI

(ModI )op

��

SenI

��

Catop |= Set

such that for each morphism ϕ : Σ→ Σ′ in SigI , the Satisfaction Condition

M′ |=Σ′ (SenI
ϕ)e if and only if (ModI

ϕ)M′ |=Σ e

holds for each M′ ∈ |ModI
Σ′| and e ∈ SenI

Σ. The Satisfaction Condition can be graphi-
cally represented by the following commutative diagram:

Σ

ϕ

��

ModI
Σ

|=I
Σ SenI

Σ

SenI ϕ

��

Σ′ ModI
Σ′

ModI
ϕ

OO

|=I
Σ′

SenI
Σ′

The meaning of the Satisfaction Condition of institutions is that

Truth is invariant under change of notation (and under extension of the con-
text).

We may denote the reduct functor ModI
ϕ by ↾ϕ and the sentence translation SenI

ϕ

simply by ϕ(−). When M = M′↾ϕ we say that M is a ϕ-reduct of M and that M′ is an
ϕ-expansion of M. When ϕ is clear (such as an inclusion), we may even write M↾Σ rather
than M↾ϕ. Also, when there is no danger of ambiguity, we may skip the superscripts from
the notations of the entities of the institution; for example SigI may be simply denoted
Sig.

Facts 3.1, 3.3, 3.4 together with Prop. 3.2 can now be formulated as follows.
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Corollary 3.6. FOL is an institution.

Closure under isomorphisms. In this book, we assume that all institutions are closed
under isomorphisms, meaning that the satisfaction relation is invariant with respect to
model isomorphisms, i.e., for any isomorphic Σ-models M ∼= N and for any Σ-sentence ρ,

M |=Σ ρ if and only if N |=Σ ρ.

Although this is a very natural property from a model-theoretic perspective, it evidently
should not be expected in general at the level of abstract institutions.

Semantic consequence. The satisfaction relation between models and sentences deter-
mines a semantic consequence relation between sets of sentences: for E and E ′ sets of
Σ-sentences, E |=Σ E ′ if and only if each Σ-model satisfying all sentences in E also satis-
fies all sentences in E ′. The following list of properties of semantic consequence that hold
in any institution is straightforward to establish but they are important as they represent
the axioms defining the abstract concept of consequence.

Proposition 3.7. Let I be any institution, Σ be any of its signatures, and E,E ′,E ′′ be any
sets of Σ-sentences. Then

E |= E ′ reflexivity

E ′ |= E when E ⊆ E ′ monotonicity

E |= E ′∪E ′′ when E |= E ′ and E |= E ′′ union

E |= E ′′ when E |= E ′ and E ′ |= E ′′ transitivity.

If ϕ : Σ→ Σ′ is signature morphism and ϕE |=Σ′ ϕE ′ then E |=Σ E ′ translation.

If ϕ enjoys the reverse of the ‘translation’ property then we say that ϕ is conserva-
tive. This is not a general property of signature morphisms, like ‘translation’ is, but it is
an important property to have in situations when by translating sentences we should not
be able to deduce more.

Exercises
3.1. Give an example of an institution that is not closed under isomorphisms.

3.2 Examples of institutions
This section is devoted to examples of institutions other than FOL . All of them represent
some concrete logical systems that occur in logic or computing science. The reader is
invited to complete the missing details, including a proof of the Satisfaction Condition
for each of the examples presented (that in general mimics the proof of Prop. ), as these
constitute the first set of relevant exercises in this book. We are also already aware that
the very abstract nature of the concept of institution allows for interesting examples that
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do not have a ‘logical’ nature like the examples presented below. We will see some of that
in the proposed exercises.

Sub-institutions. Many examples of institutions are obtained as ‘sub-institutions’ of
given institutions. A sub-institution I ′ = (Sig′,Sen′,Mod′, |=′) of I = (Sig,Sen,Mod, |=)
is obtained by narrowing either the category of the signatures, the sentences, and / or the
class of models of I . We may express this formally as follows:

• Sig′ is a sub-category of Sig,

• for each signature Σ ∈ |Sig′| we have that

– Sen′Σ⊆ SenΣ, and
– Mod′Σ is a sub-category of ModΣ,

• for each signature morphism ϕ ∈ Sig′ we have that

– Sen′ϕ is the restriction of Senϕ, and
– Mod′ϕ is the restriction of Modϕ,

• for each signature Σ ∈ |Sig′|, the satisfaction relation |=′
Σ

is the restriction of the satis-
faction relation |=Σ.

Below we give several rather well-known examples of ‘sub-institutions’ of FOL .

Single-sorted logic (F OL1). This is the ‘sub-institution’ of FOL determined by the
single-sorted signatures for a fixed sort. The name of this sort does not matter since dif-
ferent choices give rise to ‘isomorphic sub-institutions’.

Note that in F OL1 the arities of the operation and of the relation symbols are essen-
tially natural numbers rather than strings of sort symbols. Also the set of sorts S may be
omitted from the notation of signatures, therefore the F OL1-signatures are pairs (F,P) of
families F of sets of operation symbols and of families P of sets of relation symbols.

F OL1 is the version of first-order logic used mainly in conventional logic, while the
more general many-sorted version FOL is used mainly in computing science.

Propositional logic (PL). This can be seen as the ‘sub-institution’ of FOL obtained
by restricting the signatures to those with an empty set of sort symbols. This means that
PL signatures consist only of sets (of zero arity relation symbols), therefore SigPL is just
Set, for each set P the set of P-sentences consists of the Boolean expressions formed with
variables from P, and the model functor is the contravariant power set functor P : Set→
Catop (the category of P-models is the partial order (P P,⊆) regarded as a category). Note
that for any π ∈ P, a P-model M ⊆ P satisfies π when π ∈M.

Note also that P-models M can alternatively be regarded as valuations M : P→
{01} to the standard Boolean algebra with two elements (where 0 denotes the bottom
element, i.e. ‘false’, and 1 the top element, i.e. ‘true’). Then M |=P ρ if and only if Mρ = 1
where Mρ is the evaluation of ρ in the standard Boolean algebra.

While PL can be seen as a ‘sub-institution’ of FOL , evidently it cannot be seen as
a ‘sub-institution’ of the single-sorted version F OL1.
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Positive first-order logic (FOL+). Sentences are restricted only to those constructed
using ∧,∨,∀,∃, but not negation. Here ∨ and ∃ are no longer reducible to ∧ and ∀ and
vice versa.

Universal sentences in FOL (UNIV ). A universal sentence for a FOL signature
(S,F,P) is a sentence of the form (∀X)ρ where ρ is a sentence formed without quan-
tifiers.

Horn clause logic (HCL). A (universal) Horn sentence for a FOL signature (S,F,P)
is a (universal) sentence of the form (∀X)(H ⇒ C), where H is a finite conjunction of
(relational or equational) atoms and C is a (relational or equational) atom, and H ⇒C is
the implication of C by H. In the tradition of logic programming, universal Horn sentences
are known as Horn clauses. We may often write Horn clauses as (∀X)H⇒C by omitting
the brackets around H ⇒C. Thus HCL has the same signatures and models as FOL but
only the universal Horn clauses as sentences.

Equational logic. The institution FOEQL of first order equational logic is obtained
from FOL by discarding both the relation symbols and their interpretation in models.

The institution EQL of equational logic is obtained by restricting the sentences of
FOEQL only to universally quantified equations.

The institution CEQL of conditional equational logic is obtained as the ‘intersec-
tion’ between FOEQL and HCL .

EQLN is the minimal extension of EQL with negation, allowing sentences ob-
tained from atoms and negations of atoms through only one round of quantification, ei-
ther universal or existential. More precisely, all sentences have the form (QX)t1πt2 where
Q ∈ {∀,∃}, π ∈ {=, ̸=}, and t1 and t2 are terms with variables X .

Relational logic (REL). This is obtained as the sub-institution of FOL determined by
those signatures without non-constant operation symbols. Many older works have devel-
oped conventional classical logic in REL rather than FOL .

(Π∪Σ)0
n. This is the fragment of FOL containing only sentences of the form Qρ where

Q consists of (at most) n alternated quantifiers (universal and existential) and ρ is atomic.

Second order logic (SOL). This is obtained as the extension of FOL which allows
quantification over sorts, operations, and relation symbols. This differs slightly from the
usual presentations of second order logic in the literature which do not consider quantifi-
cations over the sorts (because it is usually considered in a single-sorted form).

Infinitary logic (FOL∞,ω, FOLα,ω, FOLα,β). These are infinitary extensions of FOL .
FOL∞,ω allows conjunctions of arbitrary sets of sentences, while FOLα,ω admits conjunc-
tion of sets of sentences with cardinal smaller than α. Both of them allow only finitary
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quantifications. But we can even go that restriction by considering FOLα,β, which is an
extension of FOL allowing conjunctions of sets of sentences with cardinal smaller than α

and quantifications with blocks of variables with cardinal smaller that β. In this case the
set of variables names should be β. Note that FOL = FOLω,ω.

Infinitary Horn clause logic (HCL∞,ω, HCLα,β). These are infinitary extensions of
HCL obtained in the style of FOL∞,ω / FOLα,β where the conjunctions refer to H being
a conjunction of a set of atoms. Note that HCL = HCLω,ω.

Partial algebra (PA)

A partial algebraic signature is a tuple (S,TF,PF) such that both (S,TF) and (S,PF) are
algebraic signatures. Then TF are the total operations and PF are the partial operations.
A morphism of PA signatures ϕ : (S,TF,PF) → (S′,TF ′,PF ′) is just a morphism of
algebraic signatures (S,TF +PF)→ (S′,TF ′+PF ′) such that ϕ(TF)⊆ TF ′.

A partial algebra A for a PA signature (S,TF,PF) is just like an ordinary algebra but
interpreting the operations of PF as partial rather than total functions, which means that
Aσ might be undefined for some arguments. A partial algebra homomorphism h : A→ B
is a family of (total) functions (hs : As → Bs)s∈S indexed by the set of sorts S of the
signature such that hw(Aσa) = Bσ(hsa) for each operation σ : w→ s and each string of
arguments a ∈ Aw for which Aσa is defined.

The sentences have three kinds of atoms: definedness def( ), strong equality s
=, and

existence equality e
=. The definedness def(t) of a term t holds in a partial algebra A when

the interpretation At of t is defined. The strong equality t s
= t ′ holds when both terms are

undefined or both of them are defined and are equal. The existence equality t e
= t ′ holds

when both terms are defined and equal. The sentences are formed from these atoms using
Boolean connectives and quantification over total (first order) variables.

QE(PA). A (universal) quasi-existence equation is an infinitary Horn sentence of the
form

(∀X)
∧
i∈I

(ti
e
= t ′i)⇒ (t e

= t ′).

in the infinitary extension PA∞,ω of PA .
Let QE(PA) be the sub-institution of the infinitary extension PA∞,ω of PA which

restricts the sentences only to quasi-existence equations, QE1(PA) the institution of the
quasi-existence equations (∀X)

∧
i∈I(ti

e
= t ′i)⇒ (t e

= t ′) that have either t or t ′ ‘already
defined’ (i.e., they occur as subterms of the terms of the equations in the premise or are
formed only from total operation symbols), and QE2(PA) the institution of the quasi-
existence equations that have both t and t ′ ‘already defined’.
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(First-order) Modal Logic (MFOL)
In Chapter 12 we will undertake a deeper institution-independent study of modal logics
institutions, while here we present only the standard extension of FOL with modalities
and Kripke semantics.

The MFOL signatures are tuples (S,S0,F,F0,P,P0) where

• (S,F,P) is a FOL signature, and

• (S0,F0,P0) is a sub-signature of (S,F,P) of rigid symbols.

Signature morphisms ϕ : (S,S0,F,F0,P,P0)→ (S′,S′0,F
′,F ′0,P

′,P′0) are just FOL signa-
ture morphisms ϕ : (S,F,P)→ (S′,F ′,P′) which preserve the rigid symbols, i.e., ϕS0 ⊆
S′0, ϕF0 ⊆ F ′0, ϕP0 ⊆ P′0.

An MFOL Kripke model for a signature (S,S0,F,F0,P,P0) is a pair (W,M) consist-
ing of

• a Kripke frame W = (|W |,Wλ) where |W | is the set of ‘possible worlds’, and Wλ ⊆
|W |× |W | an ‘accessibility’ binary relation; and

• a family M = (Mi)i∈|W | of interpretations of the ‘possible worlds’ as (S,F,P)-models
in FOL , such that for all rigid symbols x, Mi

x = M j
x for all i, j ∈ |W |.

A pointed Kripke model is just a pair ((W,M),w) consisting of a Kripke model (W,M)
and a possible world w ∈ |W |.

The reduct (W ′,M′)↾ϕ of a Kripke model along a signature morphism ϕ is defined
as (W ′,M) where Mi = (M′)i↾ϕ for each i ∈ |W |. This definition extends obviously to
pointed Kripke models.

A Kripke model (W,R) is T when R is reflexive, S4 when it is T and R is transitive,
and is S5 when it is S4 and R is symmetric.

Homomorphisms between Kripke models preserve their mathematical structure.
Thus a Kripke model homomorphism h : (W,M)→ (W ′,M′) consists of

• a Kripke frame homomorphism h0 : W →W ′ which is a homomorphism of binary re-
lations, i.e. h0 : |W | → |W ′| is function such that it preserves the accessibility relation
(⟨i, j⟩ ∈Wλ implies ⟨h0(i), h0( j)⟩ ∈W ′

λ
), and

• for each i∈ |W | a FOL (S,F,P)-model homomorphism hi
1 : Mi→M′h0i such that for

each rigid sort s0 we have that (hi
1)s0 = (h j

1)s0 for all i, j ∈ |W |.

This definition can be extended to a homomorphism of pointed Kripke models h : ((W,M),w)→
((W ′,M′),w′) by imposing that h0w = w′.

The (S,S0,F,F0,P,P0)-sentences are expressions formed from FOL (S,F,P)-atoms
by closing under usual Boolean connectives, universal and existential first-order quantifi-
cations by rigid variables, and unary modal connectives 2 (necessity) and 3 (possibility).

The satisfaction of MFOL sentences by the Kripke models is a ternary relation that
is parameterised by the possible worlds w as follows:

• (W,M) |=w ρ iff Mw |=FOL ρ for each atom ρ and each w ∈ |W |,
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• (W,M) |=w ρ1 ∧ρ2 iff (W,M) |=w ρ1 and (W,M) |=w ρ2; and similarly for the other
Boolean connectives,

• (W,M) |=i 2ρ iff (W,M) |= j ρ for each j such that ⟨i, j⟩ ∈Wλ,

• 3ρ abbreviates ¬2¬ρ,

• (W,M) |=w (∀X)ρ when (W,M′) |=w ρ for each expansion (W,M′) of (W,M) to a
Kripke (S,F+X ,P)-model and (W,M) |=w (∃X)ρ if and only if (W,M) |=w ¬(∀X)¬ρ.

This yields two institutions of first order modal logic:

1. local first order modal logic , denoted MFOL♯, where the models are pointed Kripke
models and satisfaction is defined by

((W,M),w) |= ρ if and only if (W,M) |=w
ρ, and

2. global first order modal logic , denoted MFOL∗, where the models are Kripke models
and satisfaction is defined by

(W,M) |= ρ if and only if (W,M) |=w
ρ for all w ∈ |W |.

Modal propositional logic (MPL). Both the local (MPL♯) and the global (MPL∗)
versions of this institution arise by considering the local and the global sub-institutions
of MFOL determined by the signatures with an empty set of sort symbols (and therefore
empty sets of operation symbols) and empty sets of rigid relation symbols. Much of the
conventional modal logic studies are concerned with these two institutions.

Hybrid logics (HFOL , HPL). These represent an enhancement of ordinary modal logic
with explicit syntax for possible worlds semantics that allows direct access to the possible
worlds. This means that the MFOL or MPL syntax is extended

• with a new kind of atoms, called nominals, that are explicit part of the signatures;
so for example a HFOL signature is a pair (Nom,Σ) where Nom is such a set of
nominals and Σ is an MFOL signature,

• for each i ∈ Nom, a unary connective @i called satisfaction at i, and

• quantifications over finite blocks of nominals are also allowed.

The models of hybrid logics extend the usual Kripke model with interpretations for the
nominals at the level of the Kripke frames, which means that the W part of the Kripke
model contains also an interpretation Wi ∈ |W | for each nominal i∈Nom. The satisfaction
relation is extended for the new syntax as follows:

• ((W,M) |=w i) = (w =Wi) for each i ∈ Nom;

• ((W,M) |=w @iρ) = ((W,M) |=Wi ρ); and

• the satisfaction of quantified sentences is based upon expansions of Kripke models
with interpretations for the nominal variables.
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Intuitionistic logic

Heyting algebras. A Heyting algebra A is a bounded lattice which is cartesian closed
as category. In other words A is a partial order (A,≤) with a greatest element ⊤ and a
least one ⊥ and such that any two elements a,b ∈ A

• have a greatest lower bound (meet) a∧b and a least upper bound (join) a∨b, and

• there exists a greatest element x such that a∧ x≤ b; this element is denoted a⇒ b.

From these axioms, a series of important properties can be derived, such as the
distributivity of the lattice. Also each element a has a pseudo-complement ¬a defined as
a⇒⊥. However, while it is possible to show that a ≤ ¬¬a, in general we do not have
that a =¬¬a. When this equality holds for all elements a, the algebra A is called Boolean
algebra. This means that Heyting algebras are more general than Boolean algebras. A
famous class of examples of Heyting algebras that are not necessarily Boolean algebras
come from general topology; the set of open sets of any topological space ordered by
(sub)set inclusion forms a Heyting algebra.

Heyting algebras can be alternatively defined as a variety of universal algebras by
a set of equations that extend the equational definition of bounded lattices with a new
binary operation ⇒ and axioms (x⇒ y)∧ x ≤ y and y ≤ x⇒ (y∧ x) (corresponding to
the co-unit and the unit of the adjunction defining Heyting algebras as cartesian closed
categories). These are equations indeed if we write a ≤ b as a = a∧ b. It can be shown
that as lattices, the Heyting algebras are distributive. In light of the perspective of Heyting
algebras as universal algebras, a homomorphism h : A → B of Heyting algebras is a
homomorphism of bounded lattices that in addition preserve the interpretation of⇒, i.e.
h(a⇒ b) = ha⇒ hb.

Intuitionistic propositional logic (IPL). The institution of intuitionistic propositional
logic generalizes (classical) propositional logic (PL) by considering models to be valu-
ations of the propositional variables to arbitrary Heyting algebras rather than the binary
Boolean algebra {0,1}. More precisely, IPL has the same signatures as PL , i.e., plain
sets P, and for any set P, a P-model M is just a function M : P→ A where A is any
Heyting algebra. A model homomorphism h : (M : P→ A)→ (N : P→ B) is a Heyting
algebra homomorphism h : A→ B such that M;h ≤ N. The composition of IPL model
homomorphism is defined by the composition of the underlying Heyting algebra homo-
morphisms. If f : P→ P′ is a signature morphism, then the reduct of any P′-model M′ is
just f ;M′. IPL and PL share the same sentences.

The function M can be extended from P to SenP by M(ρ1 ∧ ρ2) = Mρ1 ∧Mρ2,
M(ρ1 ∨ρ2) = Mρ1 ∨Mρ2, M(¬ρ) = ¬Mρ, M(ρ1⇒ ρ2) = Mρ1⇒Mρ2, etc. The satis-
faction relation is defined by

M |=P ρ if and only if Mρ =⊤.
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Preorder algebra (POA)

The POA signatures are just ordinary algebraic signatures. The POA models are pre-
ordered algebras which are interpretations of signatures into the category of preorders
Pre rather than the category of sets Set. This means that each sort gets interpreted as a
preorder and each operation as a preorder functor, which means a preorder-preserving
(i.e., monotone) function. A preordered algebra homomorphism is just a family of pre-
order functors (monotone functions) which is also an algebra homomorphism.

The sentences have two kinds of atoms: equations and preorder atoms. A preorder
atom t ≤ t ′ is satisfied by a preorder algebra M when the interpretations of the terms are
in the preorder relation of the carrier, i.e., Mt ≤Mt ′ . Full sentences are constructed from
equational and preorder atoms by using Boolean connectives and first order quantifica-
tion.

Horn preordered algebra (HPOA). This is the sub-institution of POA whose sen-
tences are the universal Horn sentences (∀X)H⇒C formed over equational and preorder
atoms.

Multialgebras (MA)

The category of the MA signatures is just that of the algebraic signatures. Multialge-
bras generalize algebras by nondeterministic operations returning a set of all possible
outputs for the operation rather than a single value. Hence multialgebra operations are
interpreted as functions from the carrier to the powerset of the carrier. Therefore each
term t = σ(t1 . . . tn) is interpreted in any multialgebra M by Mt =

⋃
{Mσ(m1 . . .mn) |m1 ∈

Mt1 , . . . ,mn ∈Mtn}.
Given a signature (S,F), a multialgebra homomorphism h : M→ N consists of an

S-indexed family of functions {hs : Ms→Ns | s∈ S} such that for each operation symbol
σ ∈ Fs1...sn→s and each mk ∈Msk for 1≤ k ≤ n we have

hsMσ(m1, . . . ,mn)⊆ Nσ(hs1m1, . . . ,hsnmn).

The sentences have two kinds of atoms: set inclusion≺ and (deterministic) element
equality .

=. The set inclusion t ≺ t ′ holds in a multialgebra M if and only if Mt ⊆Mt ′ , i.e.,
the term t is “more deterministic” than t ′. The element equality t .

= t ′ states that the terms
t and t ′ are deterministic and must return the same element. (This means that Mt and Mt ′

are both singleton sets containing the same element.) Full sentences are built from these
atoms by using Boolean connectives and first order quantification in the manner of FOL .

Membership algebra (MBA)

A MBA signature is a tuple (S,K,F,kind) where S is a set of sorts, K is a set of kinds,
(K,F) is an algebraic signature, and kind : S→ K is a function. A morphism of MBA
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signatures ϕ : (S,K,F,kind)→ (S′,K′,F ′,kind′) consists of functions ϕst : S→ S′, ϕk :
K→ K′ such that the following diagram commutes

S kind
//

ϕst

��

K

ϕk

��

S′
kind′
// K′

and a family of functions {ϕop
w→s | w ∈ K∗,s ∈ K} such that (ϕk,ϕop) : (K,F)→ (K′,F ′)

is an algebraic signature morphism.
Given a membership algebraic signature (S,K,F,kind), an (S,K,F,kind)-algebra

A is a (K,F)-algebra together with a set As ⊆ Akind(s) for each sort s ∈ S such that As ⊆
Akind(s) for each sort s. A (S,K,F,kind)-algebra homomorphism A→B is a (K,F)-algebra
homomorphism such that hkind(s)As ⊆ Bs for each sort s.

Sentences for membership algebra have two types of atoms, atomic equations t = t ′

for t, t ′ any terms of the same kind, and atomic membership t : s where s is a sort and t is
an term of kind(s). A membership algebra A satisfies an equation t = t ′ when At = At ′ and
satisfies a membership atom t : s when At ∈ As. Full sentences are formed from atoms by
iteration of Boolean connectives and first order quantification.

Higher Order Logic (HOL)

For any set S of sorts, let
−→
S be the set of S-types defined as the least set such that

S ⊆ −→S and s1 → s2 ∈
−→
S when s1,s2 ∈

−→
S . A HOL signature (S,F) consists of a set

S of sorts and a family of sets of constants F = {Fs | s ∈
−→
S }. A morphism of HOL sig-

natures ϕ : (S,F)→ (S′,F ′) consists of a function ϕst : S→ S′ and a family of functions
{ϕop

s : Fs → F ′
ϕtype(s) | s ∈

−→
S } where ϕtype :

−→
S →

−→
S′ is the canonical extension of ϕst

such that ϕtype(s1→ s2) = ϕtype(s1)→ ϕtype(s2).
Given a signature (S,F), an (S,F)-model interprets each sort s ∈ S as a set Ms

and each operation symbol σ ∈ Fs as an element Mσ ∈ Ms, where for each type s1,s2,
Ms1→s2 = [Ms1 → Ms2 ] = { f function | f : Ms1 → Ms2}. An (S,F)-model homomor-
phism h : M→N interprets each S-type s as a function hs : Ms→Ns such that hMσ = Nσ

for each σ ∈ F and such that the diagram

Ms
f
//

hs

��

Ms′

hs′

��

Ns hs→s′ f
// Ns′

commutes for all types s and s′ and each f ∈Ms→s′ .
For any HOL signature (S,F), each operation symbol σ of type s is a term of type

s, and (tt ′) is a term of type s2 whenever t is a term of type s1→ s2 and t ′ is a term of type
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s1. A HOL (S,F)-equation consists of a pair t1 = t2 of terms of the same type. A HOL
(S,F)-sentence is obtained from equations by iteration of the usual Boolean connectives
and of higher order (universal or existential) quantification which is defined similarly
to the quantification in FOL . Note however that because of the ‘higher order’ types, the
constants in HOL denote higher order rather than first-order entities.

The interpretation of operation symbols by models can be extended to terms by
defining M(tt ′) = Mt(Mt ′) for each term t of type s1 → s2 and each term t ′ of type s1. A
model M satisfies the equation t = t ′ when Mt = Mt ′ . This satisfaction relation can be
extended in an obvious manner from equations to any sentences.

Henkin semantics. The institution of higher order logic with Henkin semantics, de-
noted HN K , extends the HOL models by relaxing the condition Ms→s′ = [Ms→Ms′ ] to
Ms→s′ ⊆ [Ms→Ms′ ].

Many-valued logic (MVL♯)

This institution generalizes ordinary logic based upon the two Boolean truth values, true
and false, to larger sets of truth values that are structured by the concept of residuated
lattices. This approach is different from intuitionistic logic.

Residuated lattices. A residuated lattice L is a bounded lattice (with ≤ denoting the
underlying partial order that has infimum (meets) ∧, supremum (joins) ∨, greatest 1 and
lowest 0 elements) and which comes equipped with an additional commutative and asso-
ciative binary operation ∗ which has 1 as identity and such that for all elements x, y and
z

– (x∗ y)≤ (x∗ z) if y≤ z, and

– there exists an element x⇒ z such that y≤ (x⇒ z) if and only if y∗ x≤ z.

The first condition above just means that x∗− is a functor on the partial order (L,≤), and
the second condition means that it has a left adjoint x⇒−.

The ordinary two-valued situation can be recovered when L is the two values Boolean
algebra with ∗ being the conjunction. Then⇒ is the ordinary Boolean implication. Heyt-
ing algebras come as an example of a residuated lattice in the same way, which shows
that in some sense multiple valued logics cover intuitionistic logic. There is a myriad of
interesting examples of residuated lattices used for multiple valued logics for which ∗
gets an interpretation rather different from the ordinary conjunction. One famous such
example is the so-called Łukasiewicz arithmetic conjunction on the closed interval [0,1]
defined by x∗ y = max{0,x+ y−1}. In this example x⇒ y = min{1,1− x+ y}.

The MVL♯ institution. Let us fix a residuated lattice L that is also complete, i.e. it has
infimum and supremum for any sets of elements.
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MVL♯ has the same signatures as REL , i.e. triples (S,C,P) with S set of sort sym-
bols, C an S-sorted family of constants, and P and S∗-sorted family of relation symbols.

The (S,C,P)-sentences are pairs (ρ,x) where ρ is a pre-sentence and x is any ele-
ment of L. The (S,C,P)-pre-sentences are very much like the REL-sentences, they are
constructed from relational atoms π(c1, . . . ,cn) by the connectives ⊥,⊤,∧, ∨, ∗,⇒ and
by universal (∀X) and existential (∃X) quantifications for finite sets X of variables.

An MVL (S,C,P)-model M interprets each sort s ∈ S as a set Ms and each relation
symbol π ∈ Pw as an L-fuzzy relation, i.e. a function Mπ : Mw→ L. A model homomor-
phism h : M→ N consists of a function hs : Ms → Ns for each sort s ∈ S such that the
interpretations of constants are preserved, i.e., hsMc = Nc for each c ∈Cs, and such that
Mπm≤ Nπ(hwm) for each π ∈ Pw and each m ∈Mw.

For each (S,C,P)-model M and each (S,C,P)-pre-sentence ρ we define a value
M |= ρ in L as follows:

– (M |= π(c1, . . . ,cn)) = Mπ(Mc1 , . . . ,Mcn) for relational atoms,

– (M |= ρ1 ∧ρ2) = (M |= ρ1)∧ (M |= ρ2) and similarly for the other connectives ∨, ∗
and⇒,

– M |=⊥= 0 if and only if M⊥ = 0 and M |=⊤ if and only if M⊤ = 1,

– (M |= (∀X)ρ) =
∧
{M′ |= ρ |M′↾(S,C,P) = M}, and

– (M |= (∃X)ρ) =
∨
{M′ |= ρ |M′↾(S,C,P) = M}.

Then the MVL♯ satisfaction relation is defined by

M |=MVL♯

(S,C,P) (ρ,x) if and only if x≤ (M |= ρ).

Automata (AUT )
Given a set V (of ‘input symbols’), a V -automaton A consists of

– a set Astate of ‘states’ with some ‘initial’ state A0 ∈ Astate and with some ‘final’ states,
and

– a transition function At : V ×Astate→ Astate.

A homomorphism of V -automata h : A→ B consists of a function h : Astate→ Bstate such
that hA0 = B0, ha is final whenever a is final, and

V ×Astate
At

//

1V×h

��

Astate

h

��

V ×Bstate Bt
// Bstate

commutes. The transition function extends canonically by iteration to A∗t : V ∗×Astate→
Astate. A word (or string) w ∈V ∗ is recognized by a V -automaton if and only if A∗t (w,A0)
is a final state.
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The institution AUT of automata has Set as its category of signatures (a signature
being thus a set V of ‘input symbols’), automata as models, and strings of input symbols
as sentences. A string w is satisfied by an automaton A when A recognizes w.

Exercises
3.2. Extend the definition of IPL to an institution of ‘intuitionistic first order logic’.

3.3. [56] Contraction Algebras
A contraction algebraic signature (S,F,q) consists of an algebraic signature (S,F) and a real

number 0 < q < 1. ϕ : (S,F,q)→ (S′,F ′,q′) is a morphism of contraction algebraic signatures if
ϕ : (S,F)→ (S′,F ′) is an algebraic signature morphism and q′ ≤ q.

(A,d) is a (S,F,q)-contraction algebra when A is an (S,F)-algebra, d gives a complete metric
space (As,ds) for each sort s ∈ S such that ds is bounded by 1, and

d(Aσ(a1 . . .an),Aσ(b1 . . .bn))≤ q ·max{d(ak,bk) | k ∈ {1, . . . ,n}}.

A homomorphism of contraction algebras h : (A,d)→ (A′,d′) is just an (S,F)-algebra homomor-
phism A→ A′ such that d′(ha,hb)≤ d(a,b) for all elements a,b ∈ A.

For each algebraic signature (S,F) let T ω

(S,F)
be the S-sorted set of (possibly) infinite (S,F)-

terms. Show that for any contraction algebra (A,d) there exists a unique mapping T ω

(S,F)
→ A map-

ping each (possibly) infinite term t to an element At of A such that Aσ(t1,...,tn) = Aσ(At1 , . . . ,Atn) for
each infinite term σ(t1, . . . , tn).

An (S,F,q)-approximation equation t ≈ε t ′ consists of a pair of (possibly) infinite terms t and
t ′ and a real number 0≤ ε < 1. A contraction algebra A satisfies t ≈ε t ′ if and only if d(At ,At ′)≤ ε.
Full ‘approximation’ sentences are formed from atomic approximation equalities by iteration of
Boolean connectives and quantification. These data define an institution CA of contraction algebras
and approximation sentences.

3.4. Linear Algebra
The institution LA has the category CRng of commutative rings as the category of signatures such
that for each commutative ring R the category of R-models is R-Mod the category of R-modules, an
R-sentence is a linear system of equations with coefficients from R and the satisfaction relation is
defined by the existence of solutions for the system of equations.

3.5. HOL with λ-abstraction
The institution HOLλ has become quite popular for computer-assisted theorem proving. It adds

λ-abstraction and products to HOL . Signatures and signature morphisms are similar to those of
HOL . The only difference is in the definition of the set of higher types: a type Ω of truth values and
products are added. Thus

−→
S is defined to be the least set such that

• S⊎{Ω} ⊆ −→S ,

• s1→ s2 ∈
−→
S and s1× s2 ∈

−→
S when s1,s2 ∈

−→
S .

For each HOLλ-signature (S,F),

• each operation symbol σ of type s is a term of type s,

• (t t ′) is a term of type s2 whenever t is a term of type s1→ s2 and t ′ is a term of type s1,

• ⟨t1, t2⟩ is a term of type s1× s2 when t1 is a term of type s1 and t2 is a term of type s2,
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• for any finite list X = ⟨x1:s1, . . . ,xn:sn⟩ of typed variables and any (S,F +X)-term t of type s,
λX .t is an (S,F)-term of type (((s1× s2)× . . .)× sn)→ s,

• t1 = t2 is a term of type Ω for terms t1, t2 of the same type.

A HOLλ-model (also called standard model) interprets Ω as a two-element set {⊥,⊤}, × as a
cartesian product, and is otherwise like a HOL-model. The interpretation Mt of a term t in a model
M is defined as in HOL for the cases σ and (t t ′). M⟨t1,t2⟩ is just ⟨Mt1 ,Mt2⟩. MλX .t is the function
that, for any (S,F +X)-expansion M′ of M, maps the tuple ⟨⟨⟨M′x1

,M′x2
⟩, . . .⟩,M′xn

⟩ to M′t . Mt1=t2 is
⊤, if Mt1 = Mt2 , and ⊥ otherwise.

A (S,F)-sentence ρ is just a (S,F)-term of type Ω. It holds in a model M if Mρ =⊤.

3.6. HN K with λ-abstraction
HN K λ is a generalization of HOLλ, much in the same way as HN K is a generalization of HOL .
However, there is an additional requirement for models. Let a Σ-frame be like a HOLλ-model of
signature Σ, but with the relaxed condition that Ms1→s2 may be any subset of [Ms1 → Ms2 ]. A Σ-
frame is a Σ-general model, if every Σ-term has an interpretation in it (note that the interpretations
of λ-abstractions require the existence of certain functions in the model). The model functor of
HN K λ uses general models instead of standard models.

3.7. Categorical Equational Logic
For any category A, an (unconditional) A-equation (∀B)l = r is a pair of parallel arrows l,r : C→B
in A. An A-model is simply any object of A, and a homomorphism of A-models is an arrow of A.
An A-model A satisfies the equation (∀B)l = r when l;h = r;h for each arrow h : B→ A.

For each right adjoint U : A′→A with F : A→A′ as left adjoint, the following Satisfaction
Condition holds:

UA′ |= (∀B)l = r if and only if A′ |= (∀F B)F l = F r

for each A′-model A′ and each A-equation (∀B)l = r.
This defines the institution CatEQL of categorical equational logic with categories as sig-

natures and adjunctions as signature morphisms.

3.8. Institution of the signature morphisms
For any institution (Sig,Sen,Mod, |=) we define

• Sig→ to be the category of functors (•→ •)→ Sig,

• Sen→ϕ = SenΣ for each signature morphism ϕ ∈ Sig(Σ,Σ′),

• Mod→ϕ = ModΣ′ for each signature morphism ϕ ∈ Sig(Σ,Σ′), and

• for each signature morphism ϕ : Σ→ Σ′, for each Σ′-model M′, and each Σ-sentence ρ, M′ |=→ϕ
ρ if and only if M′ |=Σ′ ϕρ.

Then (Sig→,Sen→,Mod→, |=→) is an institution.

3.9. [220] Extended models
A pre-institution [217] I consists of the same data as an institution, but without the requirement of
the Satisfaction Condition. An extended model of a signature Σ1 is a pair (ϕ,N), where ϕ : Σ1→ Σ2
is a signature morphism and N is a Σ2-model. The extended model (ϕ,N) satisfies a Σ1-sentence ρ

if and only if N |=I
Σ2

ϕρ. The extended models, together with the I -signatures and I -sentences form
an institution.

3.10. [89] Localisations
For any institution I = (Sig,Sen,Mod, |=) and each Σ-model M we define the M-localisation of I ,
denoted I/M, by
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• SigI/M = Sig/M;

• SenI/M(Ω,ϕ) = SenΩ;

• ModI/M(Ω,ϕ) is the singleton category containing only (Modϕ)M;

• the satisfaction relation of I/M is inherited from I .

Then I/M = (SigI/M ,SenI/M ,ModI/M , |=) is an institution.

3.11. [123] Charters
A charter consists of

• an adjunction (U,F ,η,ε) between a category of signatures Sig and a category Syn of “syntactic
systems”, with U : Syn→ Sig the right adjoint and F the left adjoint,

• a “ground object” G ∈ |Syn| (in which other syntactic systems are interpreted), and

• a “base” functor B : Syn→ Set (extracting the sentence component from the syntactic system)
such that B(G) = {true, false}.

An institution (Sig,Sen,Mod, |=) is chartable when there exists a charter (Sig,Syn,U,F ,B,G) such
that

• |ModΣ|= Syn(Σ,UG) and (Modϕ)M′ = ϕ;M′,

• Sen = F ;B, and

• for each Σ-model M : Σ→UG

M |=Σ e if and only if (BM♯)e = true

where M♯ is the unique arrow F Σ→ G such that M = ηΣ;UM♯.

PL is chartable by taking Syn as the category of (unsorted) (¬,∧,∨,⇒)-algebras (where ¬ is an
unary operation and ∧,∨, and ⇒ are binary operation symbols), U = B is the forgetful functor
Mod(¬,∧,∨,⇒)→ Set, and G is the canonical (¬,∧,∨,⇒)-algebraic structure on {true, false}
interpreting the Boolean connectors as usual. Show that other institutions are chartable too.

3.3 Morphisms and comorphisms

Let us look into the way the institution EQL can be obtained by forgetting the rela-
tional part and discarding all sentences but equations in FOL . This is a three-fold pro-
cess. Firstly, there is a forgetful functor between the categories of signatures “forgetting”
the relations, i.e., mapping each FOL signature (S,F,P) to the algebraic signature (S,F).
On the sentences side, each (S,F)-equation can be regarded as an (S,F,P)-sentence; this
gives a family of (trivial) translation functions between sets of sentences. On the models
side, each (S,F,P)-model can be regarded as an (S,F)-algebra by forgetting the inter-
pretations of the relation symbols; this gives a family of functors between categories of
models. Notice that the satisfaction of sentences by models is invariant with respect to
this mapping FOL → EQL .
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Institution morphisms. Such structure preserving mappings from a more complex to
a simpler institution can be formalized by the general concept of institution morphism
(Φ,α,β) : I ′→ I consisting of

Sig′

vv

Sen′

��

Th
α Φ

��

(Mod′)op

��((

x� β

Set Sig
Sen

oo

Modop
// Catop

1. a functor Φ : Sig′→ Sig, called the signature functor,

2. a natural transformation α : Φ;Sen⇒ Sen′, called the sentence transformation, and

3. a natural transformation β : Mod′⇒Φop;Mod, called the model transformation

such that the following satisfaction condition holds:

M′ |=′
Σ′ αΣ′e if and only if βΣ′M

′ |=ΦΣ′ e

for any signature Σ′ ∈ |Sig′|, for any Σ′-model M′, and any ΦΣ′-sentence e.
Although institution morphisms are suitable to formalize ‘forgetful’ mappings be-

tween more complex institutions to simpler ones, there are also other kinds of examples
of institution morphisms. Some of them can be found in the exercises.

The composition of institution morphisms (Φ′,α′,β′) : I ′′ → I ′ and (Φ,α,β) :
I ′→ I is (Φ′;Φ, Φ′α;α′, β′;Φ′opβ) : I ′′→ I . Under this composition, institutions and
institution morphisms form the category Ins of institution morphisms . This can be estab-
lished by routine calculations which are left as an exercise to the reader.

Institution modifications. The category Ins has a 2-dimension too, given by the institu-
tion modifications. An institution modification between institution morphisms (Φ,α,β)⇒
(Φ′,α′,β′) consists of

1. a natural transformation τ : Φ⇒Φ′, called the signature transformation,

2. a modification ω : β⇒ β′;τMod, called the model transformation, i.e., for each Σ′ ∈
|Sig′|, a natural transformation ωΣ′ : βΣ′ ⇒ β′

Σ′ ;ModτΣ′ .

This makes Ins a 2-category with institutions as 0-cells, institution morphisms as 1-cells,
and their modifications as 2-cells. Routine calculations, left as an exercise to the reader,
show that the horizontal composition of institution morphisms and the vertical composi-
tion of modifications satisfy the 2-category Interchange Laws (see Section 2.4).

Comorphisms. This relationship between FOL and EQL can be also looked at from
the opposite direction, by emphasizing the “embedding” rather than the “forgetful” as-
pect. Each algebraic signature (S,F) can be regarded as a FOL signature (S,F, /0) without
relation symbols. This determines an “embedding” functor from the category of algebraic
signatures to the category of FOL signatures. On the sentence side, each (S,F)-equation



50 Chapter 3. Institutions

is an (S,F, /0)-sentence, and each (S,F, /0)-model is just an (S,F)-algebra. The satisfaction
of sentences by models is invariant with respect to this embedding of EQL into FOL .
Such an embedding relationship between institutions is formalized by the concept of in-
stitution comorphism (Φ,α,β) : I → I ′ consisting of

Sig′

Sen′

��

(Mod′)op

��

Set Sig
Sen

hh

vv EY
α

Φ

OO

**

Modop
55�� β Catop

1. a functor Φ : Sig→ Sig′,

2. a natural transformation α : Sen⇒Φ;Sen′, and

3. a natural transformation β : Φop;Mod′⇒Mod

such that the following satisfaction condition holds:

M′ |=′ΦΣ αΣe if and only if βΣM′ |=Σ e

for any signature Σ ∈ |Sig|, for any Φ(Σ)-model M′, and any Σ-sentence e. The category
of institutions and their comorphisms is denoted by coIns.

Category theoretic thinking promotes the idea that the arrows are the primary con-
cept rather than the objects. It is even possible to define the concept of category only using
arrows, the objects being assimilated to the identity arrows. Institutions serve as a clear
example of this since both Ins and coIns have institutions as objects but have different
classes of arrows, both classes having the same level of preservation of institutional struc-
ture. Therefore in principle, we cannot refer to the ‘category of institutions’, which does
not make sense, instead we should refer to the ‘category of institution morphisms’ or to
the ‘category of institution comorphisms’.

Kolmogorov’s embedding of ‘classical’ logic into intuitionistic logic. This non-trivial
example of “embedding” comorphism has a special importance in logic: it shows that
intuitionistic logic is more expressive than classical logic.

The semantic side of PL can be widened by considering models as valuations into
arbitrary Boolean algebras rather than in the binary Boolean algebra. The resulting insti-
tution, which shares with PL the signatures and the sentences is denoted BPLand called
Boolean propositional logic. It can be shown (proof omitted) that for P any set, and for
E and E ′ any sets of P-sentences, E |=PL E ′ if and only if E |=BPL E ′, meaning that both
the standard and the arbitrary Boolean algebra semantics of propositional logic yield the
same semantic consequence relation.

The “embedding” comorphism (Φ,α,β) : BPL → IPL is defined as follows:

– Φ is the identity, i.e. Φ = 1Set .

– For each set P, αP adds a double negation to each sub-sentence, i.e.
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– αP p = ¬¬p for each p ∈ P,

– αP(¬ρ) = ¬αPρ for each P-sentence ρ, and

– αP(ρ1⊗ρ2)=¬¬(αPρ1⊗αPρ2) for any P-sentences ρ1 and ρ2 and any connective
⊗ ∈ {∧,∨,⇒}.

Note that αP are injective.

– For each set P, βP(M : P→ A) = M;rA for any Heyting algebra A and any function
M : P→ A, where rA : A→ R(A) defined by rAa = ¬¬a is the canonical map from
A to the Boolean algebra R(A) of the regular elements of A. Recall that a ∈ A is
regular if and only if a = ¬¬a. According to the theory of Heyting algebras, R(A) are
Boolean algebras with a∩b= a∧b, a∪b=¬¬(a∨b), (a⇒′ b) = (a⇒ b), ¬′a=¬a,
where∩,∪,⇒′,¬′ and∧,∨,⇒,¬ are the conjunctions, disjunctions, implications, and
negations, in R(A) and A, respectively.

The proof of the Satisfaction Condition for this comorphism relies upon the fact that
M(αPρ) = (M;rA)[ρ] for each P-sentence ρ, where M(αPρ) is the evaluation of αPρ in
A and (M;rA)[ρ] is the evaluation of ρ in the Boolean algebra R(A). Here it is important
to note that in general (M;rA)[ρ] ̸= rA(Mρ). The equality M(αPρ) = (M;rA)[ρ] can be
shown by induction on the structure of ρ (details of the proof left to the reader), by relying
crucially upon another important fact about regular elements in Heyting algebras, namely
that rA is a homomorphism of Heyting algebras.

Conservative comorphisms. Conservative comorphisms are important because in ad-
dition to preserving the semantic consequence between sentences (property valid for any
comorphism), they also reflect the semantic consequence. A comorphism (Φ,α,β) : I →
I ′ is conservative when for any E,E ′ ⊆ SenΣ, E |=Σ E ′ if and only if αΣE |=′

ΦΣ
αΣE ′. Very

often in the applications this property follows from the following property which is much
easier to establish. A comorphism (Φ,α,β) : I → I ′ has the model expansion property
when for each I -signature Σ, βΣ is surjective on the models, i.e., for each Σ-models M
there exists a ΦΣ-model M′ such that M = βΣM′. For example both “embedding” comor-
phisms EQL → FOL and BPL → IPL presented above are conservative. In the former
example βΣ’s are isomorphisms, while in the latter example we have that R(A) = A for
each Boolean algebra A.

Proposition 3.8. Let (Φ,α,β) : I → I ′ be any comorphism. For any I -signature Σ and
any sets of Σ-sentences E and E ′ we have that

1. E |=Σ E ′ implies αΣE |=′
ΦΣ

αΣE ′.

2. If (Φ,α,β) has the model expansion property then it is conservative.

Proof. 1. For any ΦΣ-model M′ such that M′ |=′ αΣE, by the Satisfaction Condition of
the comorphism we have that βΣM′ |=Σ E. By the hypothesis, it follows that βΣM′ |=Σ E ′.
By the Satisfaction Condition of the comorphism again (this time in the other direction)
we obtain that M′ |=′

ΦΣ
E ′.
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2. Let us assume that αΣE |=′
ΦΣ

αΣE ′ and consider any Σ-model M of E. Since
(Φ,α,β) has the model expansion property, there exists a ΦΣ-model M′ such that M =
βΣM′. By the Satisfaction Condition for the comorphism, we have that M′ |=′

ΦΣ
αΣE. By

the hypothesis it follows that M′ |=′
ΦΣ

αΣE ′. By the Satisfaction Condition again we get
that M = βΣM′ |=Σ E ′. □

The adjoint relationship. Often the forgetful nature of many functors can be captured
formally by the concept of right adjoint functor. For example, the embedding of the al-
gebraic signatures into the FOL signatures is a left adjoint to the forgetful functor from
the FOL signatures to the algebraic signatures. The following general theorem shows that
the ‘embedding’ comorphism EQL → FOL and the ‘forgetful’ morphism FOL → EQL
determine each other, their interdependency being caused by the adjunction between their
categories of signatures.

Theorem 3.9. An adjunction (Φ,Φ,ζ,ζ) between the categories of signatures3 of institu-
tions I and I ′ determines a canonical bijection between institution morphisms (Φ,α,β) :
I ′→ I and institution comorphisms (Φ,α,β) : I → I ′ given by the following equalities:

– α = ζSen;Φα and β = Φ
op

β;ζopMod, and

– α = Φα;ζSen′ and β = ζ
op

Mod′;Φopβ.

The proof of this theorem follows by routine calculations, which are left as an exer-
cise for the reader.

An institution morphism or comorphism is called adjoint when this is part of a
morphism-comorphism duality determined by an adjunction between the categories of
signatures. Notice that the composition of institution adjoints is still an adjoint. Let eIns
denote the category of pairs of institution adjoint morphism-comorphism.

Equivalence of institutions. As in the case of categories, the equivalence concept for
institutions captures the fact that the institutions are the ‘same’, while being weaker than
isomorphism. This concept is also an example of an adjoint institution morphism. An
institution morphism (Φ,α,β) is an equivalence of institutions when

• Φ is an equivalence of categories,

• αΣ has an inverse up to semantic equivalence, denoted α′
Σ
, such that α′ is a natural

transformation, and

• βΣ is an equivalence of categories, such that its inverse up to isomorphism and the
corresponding isomorphism natural transformations are natural in Σ.

3Φ : Sig′→ Sig is the right adjoint, Φ is the left adjoint, ζ is the unit, and ζ is the co-unit of the adjunction.
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Institution encodings

There is a class of comorphisms, very useful in applications, which are generally not
adjoints. Rather than giving the flavour of an ‘embedding’, they are in fact ‘encodings’ of
more complex institutions into simpler ones. We give now a couple of examples.

Encoding relations as operations in FOL . This example formalizes the basic intuition
in logic that relations can be simulated by pseudo-Boolean-valued operations. We may
map each FOL signature (S,F,P) to an algebraic signature (S + {b},F +P+ {true})
where b is a (new) sort, true is a (new) constant of sort b, and for each arity w ∈ S∗,
Pw→s = Pw if s = b and Pw→s = /0 otherwise. This determines an institution comorphism
FOL → FOEQL which

– maps each relational atom πt to the equation πt = true, and

– maps each (S+{b},F +P+{true})-algebra A to the (S,F,P)-model βA maintaining
the interpretations of the sorts and F-operations of A but (βA)π = A−1

π (Atrue) for each
relation symbol π.

We leave to the reader the task of developing the details of the definition of this comor-
phism and its Satisfaction Condition.

Encoding modalities in relational logic. Let REL1 be the single-sorted variant of
REL . We may build a comorphism (Φ,α,β) : MPL∗→ REL1 as follows:

• Each MPL-signature, i.e., set P, gets mapped to the single-sorted relational signature
without constants ( /0,P) where

– P1 = P, P2 = {r}, and Pn = /0 for n ̸∈ {1,2},

• each ( /0,P)-model M gets mapped to the Kripke P-model βM =(W,M) with |W | being
the carrier set of M, Wλ = Mr, and Mw

= {π | w ∈Mπ} for each w ∈ |W |, and

• for each P-sentence ρ, αρ = (∀x)αxρ where αx : SenMPL P→ SenREL1
({x},P) is

such that

– αxπ = πx for each π ∈ P,

– αx commutes with the Boolean connectives, i.e., αx(ρ1∧ρ2) = αxρ1∧αxρ2, etc.,
and

– αx(2ρ) = (∀y)(r(x,y)⇒ αyρ).

This example shows that modal propositional logic is a ‘fragment’ of ordinary (single-
sorted) first-order logic.
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Exercises
3.12. Borrowing the Satisfaction Condition along comorphisms
Given the following data:

1. a tuple (Sig,Sen,Mod, |=) that besides the Satisfaction Condition satisfies all the other axioms
of an institution,

2. an institution (Sig′,Sen′,Mod′, |=′), and

3. a triple (Φ,α,β) that satisfies all axioms of a comorphism (Sig,Sen,Mod, |=)→ (Sig′,Sen′,Mod′, |=′
) with the model expansion property.

we have that (Sig,Sen,Mod, |=) is an institution.

3.13. Morphism FOL → REL
Each FOL signature (S,F,P) can be mapped to a FOL signature (S,C(F),F ∪P) without non-
constant operation symbols, where C(F) is the set of constants of F , Fs = /0 for each sort s ∈ S, and
Fws = Fw→s when w is non-empty.
This determines a non-adjoint institution morphism FOL → REL . (Hint: For each (S,F,P)-model
M and each σ ∈ Fws where w is non-empty, (βM)σ = {⟨m, Mσm⟩ | m ∈ Mw} and
α(σ(x,y)) = (σx = y) for each σ ∈ F .)

3.14. Morphism PA → FOL
There exists a forgetful institution morphism PA → FOL which forgets the partial operations. Is
this an adjoint morphism?

3.15. Morphisms FOL → PL
The embedding of PL into FOL that regards each PL signature as a FOL signature without sorts
is an adjoint comorphism. Describe its dual institution morphism FOL → PL .
Another institution morphism FOL→ PL maps any FOL signature to its set of sentences regarded
as a PL signature. Develop its full definition and show that this is not an adjoint morphism. (Hint:
the signature functor does not preserve products.)

3.16. Morphism FOL →MFOL
There exists an institution morphism FOL →MFOL which maps any FOL signature (S,F,P) to
the MFOL signature (S,S,F,F,P,P), such that α erases the modalities 2 and 3 from the sentences,
and βM = (W,R) such that IW = {∗}, W ∗ = M, R = {⟨∗, ∗⟩}.

3.17. Morphism POA → FOL
There exists a forgetful institution morphism POA → FOL which forgets the preorder structure
both syntactically and semantically.

3.18. Morphism PL → IPL
There exists a trivial adjoint institution morphism PL → IPL which regards the standard two-
element Boolean algebra as a Heyting algebra.

3.19. Morphism MA → POA
Each multialgebra operation determines an ordinary algebra operation on the powerset of the carrier
of the multialgebra. This determines a preordered algebra.

1. Adjust the concept of homomorphism of multialgebras such that the mapping of multialgebras
to preorder algebras is functorial.
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2. By mapping each preorder atom t ≤ t ′ to its corresponding inclusion sentence t ≺ t ′ and each
equation t = t ′ to the conjunction of the inclusions t ≺ t ′ and t ′ ≺ t we obtain an adjoint mor-
phism of institutions MA → POA .

3.20. Morphism FOL →MA
Each FOL-model can be canonically regarded as a ‘deterministic’ multialgebra, i.e., in which all
operations are deterministic. This determines an institution morphism FOL →MA which at the
level of sentences maps both deterministic equations t .

= t ′ and inclusions t ≺ t ′ to equations t = t ′.

3.21. Morphism CA → FOL
There exists a forgetful institution morphism CA → FOL mapping each contraction algebra to its
underlying algebra and each equation t = t ′ to the approximation equation t ≈0 t ′.

3.22. Morphism and comorphism MBA → FOL
Each membership algebraic signature (S,K,F,kind) determines a FOL signature (K,F,P) where
P = { : s | s ∈ S} such that : s ∈ Pkind(s) for each sort s. This determines both an institution

morphism and an institution comorphism MBA → FOL . (Hint: ModMBA (S,K,F,kind) is canon-
ically isomorphic to ModFOL (K,F,P) by mapping each (S,K,F,kind)-algebra A to the (K,F,P)-
model with A( : s) = As, and SenFOL (K,F,P) is canonically isomorphic to SenMBA (S,K,F,kind)
by mapping each atomic relation t : s to the atomic membership t : s and by mapping equations to
themselves.)

3.23. Comorphism AUT → F OL1

Any set V determines a F OL1 signature (F = V +{0},P = { f inal}) such that F0 = {0}, F1 = V ,
and P1 = { f inal}. This can be extended to a functor Set→ SigF OL1

which constitutes the signature
functor Φ for a comorphism AUT → F OL1.

3.24. Comorphism HN K →HOL
The inclusion of model categories ModHOL (S,F) ⊆ ModHN K (S,F) determines a canonical co-
morphism HN K → HOL . Note this does not have the flavour either of an ‘embedding’ or of an
‘encoding’.

3.25. Comorphism FOEQL →HN K
Each algebraic signature (S,F) can be regarded as a HOL-signature by defining the type of σ

as s1 → (s2 → . . .(sn → s) . . .) for each operation symbol σ ∈ Fs1...sn→s. Then each (S,F)-term
σ(t1, . . . , tn) can be mapped to its ‘Polish prefix translation’, the HOL (S,F)-term α σ(t1, . . . , tn) =
(. . .(σ αt1 . . .αtn)). This determines a canonical institution comorphism FOEQL → HN K . By
using the encoding of relations as operations, this can be extended to an institution comorphism
FOL →HN K .

3.26. Comorphism HOL →HOLλ

There is a ‘natural embedding’ comorphism from HOL to HOLλ, and also a similar comorphism
from HN K to HN K λ, such that the translation α on the sentences is defined as follows:

• any equation t = t ′ is mapped to the term t = t ′ of Ω,

• (∀X)ρ is mapped to λX .ρ = λX .true,

• ¬e is mapped to e = false,

• e1∧ e2 is mapped to ⟨e1,e2⟩= ⟨true, true⟩,

where true abbreviates λx:Ω.x = λx:Ω.x and false abbreviates (∀x:Ω)x.
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3.27. [22] Comorphism PL →WPL
Let weak propositional logic (denoted WPL) designate a variant of PL , where the sentences are
the same as in PL , but the models are valuations M : Sen(P)→{0,1} of all sentences that respect
the usual truth table semantics of all the Boolean connectives except for negation, for which they
respect only one-half of the usual condition:

• M(ρ1 ∧ρ2) = 1 if and only if both Mρ1 = 1 and Mρ2 = 1, M(ρ1 ∨ρ2) = 0 if and only if both
Mρ1 = 0 and Mρ2 = 0, M(ρ1⇒ ρ2) = 1 if and only if Mρ1 = 0 or Mρ2 = 1, and

• M(¬ρ) = 0 if Mρ = 1.

There exists a comorphism PL→WPL such that the sentence translations are defined by αPπ = π

for π ∈ P, αP(ρ1⊗ρ2) = αPρ1⊗αPρ1 for ⊗ ∈ {∧,∨,⇒}, and αP(¬ρ) = αPρ⇒¬αPρ and such
that the models are translated by βPM′ = {π |M′π = 1}.

3.28. S-sorted FOL
For any fixed set S, let FOLS = (SigS,SenS,ModS, |=) be the institution of S-sorted first-order logic
defined as the sub-institution of FOL determined by the subcategory SigS of the signatures with
S-sorted operation and relation symbols. (A signature in SigS is just a FOL signature (S,F,P), and
a signature morphism ϕ in SigS is identity on the sort symbols, i.e., ϕst = 1S.)

1. Each function u : S → S′ determines a canonical ‘forgetful’ adjoint institution morphism
(Φu,αu,βu) : FOLS′ → FOLS such that for each signature (S′,F ′,P′) of S′-sorted operation
and relation symbols, Φu(S′,F ′,P′) = (S,F,P) with Fw→s = F ′uw→u(s) and Pw = P′uw for each
arity w ∈ S∗ and each sort symbol s ∈ S.

2. Describe the institution comorphism (Φu,αu,βu) : FOLS → FOLS′ adjoint to (Φu,αu,
βu). Show that αu is a bijection when u is injective.

3.29. Exercise 3.8 continued
For each institution (Sig,Sen,Mod, |=) there exists a forgetful adjoint institution morphism (Sig→,
Sen→,Mod→, |=→)→ (Sig,Sen,Mod, |=) which maps each signature morphism ϕ : Σ→ Σ′ to its
domain signature Σ.

3.30. [181] Charter morphisms (Ex. 3.11 continued)
Define the concept of charter morphism and show that there is a functor from the category of
charters to Ins. Does this have a left adjoint?

3.31. For any adjoint pair of institution morphism (Φ,α,β) and institution comorphism (Φ,α,β)
between the institutions I and I′ corresponding to an adjunction (Φ,Φ,ζ,ζ) between their categories
of signatures, the following squares commute:

SenΣ
Senϕ
//

αΣ

��

Sen(ΦΣ′)

αΣ′

��

ModΣ Mod(ΦΣ′)
Modϕ

oo

Sen′(ΦΣ)
Sen′ϕ

// Sen′Σ′ Mod′(ΦΣ)

βΣ

OO

Mod′Σ′
Mod′ϕ
oo

βΣ′

OO

for each signature morphism ϕ : Σ→ΦΣ′ and ϕ : ΦΣ→ Σ′ such that ϕ = ζΣ;Φϕ.
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3.4 Institutions as functors
The definition of the concept of institution given so far supports very well model-theoretic
intuitions. In this section, we give an alternative more categorical definition for institu-
tions.

Rooms. A room is a triple (S,M,R) such that S is a set, M is a category, and R is a
function |M| → [S→ 2] where (as usual) |M| is the class of the objects of M and [S→
2] = Set(S,2) = { f : S→ 2 | f function} with 2 denoting the set {0,1}.

A rooms morphism (s,m) : (S′,M′,R′)→ (S,M,R) consists of a function s : S→ S′

and a functor m : M′→M such that the diagram below commutes:

|M′| R′
//

|m|
��

[S′→ 2]

(s;−)
��

|M|
R
// [S→ 2]

where |m| is the ‘discretization’ of m, i.e., the mapping on the objects given by m, and
(s;−) f = s; f for each function f : S′→ 2.

Let Room be the category of rooms and their morphisms.

Proposition 3.10. Room has all small limits.

Proof. Because Setop has all small limits (since Set has all small co-limits) and the (con-
travariant) homomorphism-functor Set(−,2) : Setop→ Set preserves them, by Prop. 2.3
we obtain that the comma-category A/Sen(−,2) has all small limits. Moreover, it is easy
to see that for each function f : A→ B, the induced functor B/Set(−,2)→ A/Set(−,2)
preserves these limits.

This means that the indexed category (| − |)/Set(−,2) : Catop → Cat mapping
each category M to |M|/Set(−,2) satisfies the hypotheses of the limit part of Thm. 2.10.
It follows that its Grothendieck category ((|− |)/Set(−,2))♯, which is just Room, has all
small limits. □

Institutions as functors. Let Sig be any category and I : Sigop→ Room a functor. If
we write

• I Σ = (SenΣ,ModΣ, |=Σ) for each object Σ ∈ |Sig|, and

• I ϕ = (Senϕ,Modϕ) for each arrow ϕ ∈ Sig,

then it is easy to see that (Sig,Sen,Mod, |=) is an institution. The converse is also true,
institutions are exactly the functors Sigop→ Room.

Any functor Φ : Sig′→ Sig induces a canonical functor

(Φop;−) : Cat((Sig′)op,Room)→ Cat(Sigop,Room).

This gives an indexed category Cat((−)op,Room) : Catop→ Cat.
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Fact 3.11. The category Ins of the institution morphisms is the Grothendieck category
Cat((−)op,Room)♯.

Now we have already collected all necessary ingredients to showing easily the com-
pleteness property of Ins.

Corollary 3.12. Ins has all small limits.

Proof. Because Room has small limits (cf. Prop. 3.10), by Prop. 2.2 we have that each
Cat(Sigop,Room) has all small limits. Note that each functor (Φop;−) preserves these
limits. Since Cat has all small limits we can apply now the limit part of Thm. 2.10. □

Exercises
3.32. The Satisfaction Condition for institutions is equivalent to the satisfaction relation |=Σ : |ModΣ|→
[SenΣ→ 2] being a natural transformation:

Σ

ϕ

��

ModΣ
|=Σ
// [SenΣ→ 2]

Σ′ ModΣ′

Modϕ

OO

|=Σ′
// [SenΣ′→ 2]

(Senϕ)−1

OO

3.33. [230, 130]

1. Room has small co-limits.

2. coIns has small limits.

3.34. [62] Room can be enriched with a 2-categorical structure given by the natural transformations
m1⇒m2 between the ‘model components’ of room homomorphisms (s1,m1),(s2,m2) : (S′,M′,R′)
→ (S,M,R). Then the 2-categorical structure on Ins given by the institution modifications arises as
a Grothendieck 2-categorical construction.

3.35. [187] Each institution comorphism (Φ,α,β) : (Sig,Sen,Mod, |=)→ (Sig′,Sen′,Mod′, |=′)
determines a span of institution morphisms

(Sig,Sen,Mod, |=) (Sig, Φ;Sen′, Φop;Mod′, |=)oo //(Sig′,Sen′,Mod′, |=′) .

In a category C, two spans A B1
f1

oo
g1
//A′ and A B2

f2
oo

g2
//A′ are equivalent when

there exists an isomorphism i : B1 → B2 such that f1 = i; f2 and g1 = i;g2. In any category with
pullbacks, equivalence classes of spans (denoted [ ]) can be composed as follows:

[A B
f

oo
g
//A′ ]; [A′ B′

f ′
oo

g′
//A′′ ] = [A B0

h; f
oo

h′;g′
//A′′ ]

where B B0
h

oo
h′
//B′ is a pullback of B

g
//A′ B′

f ′
oo . This yields a category span(C)

having the same objects as C but (equivalence class of) spans as arrows. Show that the construction
of a span of morphisms from an institution comorphism is functorial, i.e., it yields a functor coIns→
span(Ins).
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Notes. The origins of institution theory are within the theory of algebraic specification, the seminal
work being [124].

FOL was first presented as an institution in [124]. That early capture of FOL as an institution
differs from ours especially in how the variables are considered, their approach is global while ours
is local. The global treatment of variables owes to the logic tradition and had led to mathematically
incorrect definitions of the FOL institution due to the possibility of clashes between variables and
constants in signatures, a situation that may result in a series of undesirable consequences, such as
the failure of the Satisfaction Condition. This style of defining the FOL institution was all perva-
sive in the rather vast institution theory literature until the publication [76]. However, even after [76]
there is still a lack of awareness about the incompatibility between the ‘naive’4 approach to vari-
ables from traditional logic and the purpose to define institutions rigorously. It is interesting that the
local approach to variables employed by our definition of FOL matches very well the way variables
are implemented in a series of algebraic specification and programming systems. But the message
we get from this is that the capture of logical systems rigorously as institutions is non-trivial and in
the process some aspects that are traditionally treated ‘naively’ in logic require an intricate math-
ematical treatment in line with the rigour characteristic to the axiomatic style of institution theory.
Moreover, our FOL definition puts forward the perspective of variables-as-constants, which is con-
trary to the traditional view of variables whose separation from the constants is imposed globally
(i.e., across all signatures) by designation. With variables-as-constants the semantics of the quan-
tifiers can be defined only in terms of model reducts, which is essential for the development of
institution-independent model theory. We will see later in the book what this means and also how
this approach greatly benefits the applications of institution-independent model theory to concrete
logics.

There are many approaches to partial algebra, two classical references being [36, 208], how-
ever, it has been organized as the institution PA presented here in [186]. Preorder algebras (POA)
are used for formal specification and verifications of algorithms [94], for automatic generation of
case analysis [94], and in general for reasoning about transitions between states of systems. POA
constitutes an unlabeled form of Meseguer’s rewriting logic [176], but the latter fails to be an institu-
tion. The institution of multialgebras has been studied in [159]. Our multialgebra homomorphisms
are called ‘weak’ homomorphisms in the literature, for alternative notions of multialgebra homo-
morphisms see [242]. Membership algebra has been introduced by [177]. For a historical overview
of modal logics we suggest [133], while [29] gives rather a complete presentation of modern modal
propositional logic. The hybrid versions of modal logics originate with the work in [207], other
important references being [28, 35]. Standard modal logic was first captured as an institution in
[225]. Higher-order logic with Henkin semantics has been introduced and studied in [43, 145], a
recent book on the topic being [11]. Here, in the main text, we consider a simplified variant close to
the work of [178], while some exercises consider a more sophisticated version containing products
and λ-abstraction in a variant very close to the original one. Contraction algebras have been intro-
duced in [56] in the context of the extension of logic programming to infinite terms. The institution
CatEQL of categorical equational logic is a slightly more abstract version of the institution of the
so-called ‘category-based equational logic’ of [117, 58]. Formal intuitionistic logic was developed
by seminal works [113, 148, 156] while Heyting algebras emerged from the so-called ‘closure al-
gebras’ or ‘Browerian algebras’ investigated by McKinsey and Tarski. A categorical approach to
intuitionistic logic can be found in [158]. Investigations of many-valued logics have a long history
[114, 164, 206] and still constitute an active area of research. Fuzzy sets have been introduced in

4In the same sense like ‘naive’ set theory [142] is opposed to axiomatic set theory.
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[245] (see also [115, 119]) as a formalism for dealing with vagueness in systems engineering and
they constitute the origin of the so-called fuzzy logic approach. Many-valued logic has been pre-
sented for the first time as an institution in [2] in a slightly different way than here. A very brief
list of logics from formal specification theory that have been captured as institutions but have not
been presented here includes polymorphic [220], temporal [107], process [107], behavioral [26],
coalgebraic [45], object-oriented [125] logics.

Due to its abstract definition, institutions may accommodate examples which might appear as
‘non-logical’, at least in the conventional sense. While some of them are only mildly ‘non-logical’
(automata, linear algebra), much less conventional examples appear in myriad ways including ab-
stract constructions on (already existing) institutions. In the book [219] we can find some interesting
‘non-logical’ institutions for programming, such as an institution for functional programming, and
another one for imperative programming.

Institution morphisms were introduced in [124], while comorphisms were studied later under
the name of “plain map” in [175] or “representation” in [229, 231]. The literature studies many
other types of mappings between institutions, each of them playing a specific role in applications.
The name “comorphism” was introduced by [130]. The duality between institution morphisms and
comorphisms was established in [13]. In [60, 62, 95] institution adjoints are called “embeddings”.
Notice also that institution adjoint morphism or comorphism are not adjunctions in the 2-categorical
sense. Equivalences of institutions have been introduced in [191].

Kolmogorov’s translation of ‘classical’ propositional logic into intuitionistic propositional
logic by adding a double negation to each sub-sentence was originally introduced in [156], and in
the form of a comorphism was presented in [190]. The encoding of modal logic into FOL is due to
van Bentham [238]. The encoding of relations as operations was introduced in [55] and was used
in [57] for reducing ordinary logic programming to equational logic programming.

The presentation of institutions as functors was given already in [124] and the 2-categorical
structure of the category of institutions has been studied in [62]. Completeness of Ins was first ob-
tained by Tarlecki in [226] and of coIns in [230]. Both results have been re-done by Roşu using Kan
extensions [211]. Cocompleteness fails for both Ins and coIns due to foundational issues (see [130]
for a counterexample originally due to Tarlecki) but it can still be recovered under the condition
that the categories of the signatures are small.



Chapter 4

Theories and Models

In this chapter, we will continue with the development of some fundamental institution
theoretic concepts that play an important role for our institution-independent approach to
model theory.

The concepts of (logical) theory and its semantic closure play an important role in
the semantics of formal / algebraic specification but also in institution encodings support-
ing the transfer of model-theoretic properties between institutions. These applications are
conceptually facilitated by an abstract construction of an ‘institution of theories’ over an
arbitrary institution which relies on the crucial concept of morphisms between theories.
The foundations of these developments lie in the Galois connection between the syntax
and the semantics of institutions, a property that can be presented at the fully abstract
level without any additional assumptions.

Theory co-limits are especially useful in formal specification theory since they pro-
vide support for advanced modularization techniques of software systems. They are also
required within the context of some institution encodings.

Model amalgamation, here introduced as a limit preservation property of the model
functor, is the institutional property which is required by almost all institution-indepen-
dent model-theoretic developments. Even the Satisfaction Condition of institutions cap-
turing logics with quantifiers may rely upon a form of model amalgamation. In fact when
we proved the Satisfaction Condition of FOL we have already used that implicitly, but
now we will become aware of this property explicitly and at the abstract level. The insti-
tution theoretic concept of model amalgamation is a rather basic property of institutions
which should not be confused with the existence of a common (elementary) extension of
models, a much harder property playing an important role in conventional model theory.

The method of diagrams pervades a large part of the conventional model theory and,
in its abstract institution-independent form, also of the results presented in this book. At
the level of abstract institutions this appears as a coherence property between the syntactic
and semantic sides of the institution, which gets a simple categorical formulation. As a
consequence of the method of diagrams, we develop a general result about the existence
of co-limits of models.
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The concepts of ‘sub-model’ and ‘quotient model’ are handled by the so-called ‘in-
clusion systems’, which constitute a categorical abstraction of their basic factorization
property. Another rather different application domain for inclusion systems are the signa-
ture morphisms, which is especially relevant for the studies of modularization properties
of formal specification.

The last topic of this chapter is that of the free constructions of models along theory
morphisms, called ‘liberality’ in institution theory. Liberality is intimately related to good
computational properties of the actual institutions and it plays a crucial role in the seman-
tics of abstract data types and logic programming. In its simple form, liberality means the
existence of initial models for theories, a property which holds for Horn theories.

4.1 Theories and their morphisms
A Galois connection between syntax and semantics. Let Σ be a signature in an insti-
tution (Sig,Sen,Mod, |=). Then, for a signature Σ, each set E of Σ-sentences is called a
Σ-theory and may be denoted (Σ,E). We define:

– For each theory (Σ,E), E∗ = {M ∈ModΣ |M |=Σ e for each e ∈ E}.

– For each class M of Σ-models, M∗ = {e ∈ SenΣ |M |=Σ e for each M ∈M}.

For any individual sentence or model X , by X∗ we mean {X}∗. These two functions,
denoted “(−)∗”, form what is known as a Galois connection (see Sect. 2.3). This means
that they satisfy the following easy-to-check properties for any collections E,E ′ of Σ-
sentences and collections M,M′ of Σ-models:

1. E ⊆ E ′ implies E ′∗ ⊆ E∗.

2. M⊆M′ implies M′∗ ⊆M∗.
3. E ⊆ E∗∗.

4. M⊆M∗∗.

Closed classes of models M=M∗∗ are called elementary and E is a closed theory when
E = E∗∗.

The above properties 1–4 imply quite immediately the following properties:

5. E∗ = E∗∗∗.

6. M∗ =M∗∗∗.
7. There is a dual (i.e., inclusion reversing) isomorphism between closed theories and

elementary classes of models.

Note that for E and E ′ sets of sentences, E∗ ⊆ E ′∗ means E |= E ′. Two sentences e and e′

of the same signature are semantically equivalent (denoted as e |=| e′) if they are satisfied
by the same class of models, i.e., {e} |= {e′} and {e′} |= {e}.

Two models M and M′ of the same signature are elementarily equivalent (denoted
as M ≡M′) if they satisfy the same set of sentences, i.e., M∗ = M′∗.
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Presentations of theories. A theory (Σ,E) is presented by a theory (Σ,Γ) when Γ∗ =
E∗.

Theory morphisms. A theory morphism is a signature morphism ϕ : Σ→ Σ′ such that
ϕE ⊆ E ′∗∗.

Proposition 4.1. In any institution I , the theory morphisms form a category – denoted
ThI – with the composition inherited from the category of the signatures SigI .

Proof. That composition of theory morphisms is a theory morphism follows by sim-
ple calculations using the observation that ϕE∗∗ ⊆ (ϕE)∗∗ for each signature morphism
ϕ : Σ→ Σ′ and theory (Σ,E). □

Let CTh denote the full subcategory of Th determined by the closed theories. As we will
see further in the book, in a few cases CTh is more meaningful than Th.

The institution of the theories. The model functor Mod of an institution can be ex-
tended from the category of its signatures Sig to a model functor from the category of
its theories Th, by mapping a theory (Σ,E) to the full subcategory Modth(Σ,E) of ModΣ

consisting of all Σ-models satisfying E. The correctness of the definition of Modth is
guaranteed by the Satisfaction Condition of the base institution; this is easy to check.
This leads to the institution of theories

I th = (Sigth,Senth,Modth, |=th)

over the base institution I = (Sig,Sen,Mod, |=) where

– Sigth is the category Th of theories of I ,

– Senth(Σ,E) = SenΣ, and

– for each (Σ,E)-model M and Σ-sentence e, M |=th
(Σ,E) e if and only if M |=Σ e .

This construction is very useful for institution encodings. Often, comorphisms encoding
‘complex’ institutions into ‘simpler’ ones map signatures of the ‘complex’ institution to
theories of the ‘simpler’ institution. As comorphisms usually correspond to embeddings,
from the point of view of the structural complexity of institutions this is quite an expected
cost, since such a difference of complexity has to show up somewhere. The rest of this
section is devoted to examples of such encodings. The reader is invited to complete the
definitions given and to check all the details of each of these examples, including their
Satisfaction Condition.

Encoding many-sorted logic into single-sorted logic
This is a comorphism (Φ,α,β) : FOL → (F OL1)th defined as follows:

• A many-sorted signature (S,F,P) gets mapped to the single-sorted theory ((F ,P+
{(− : s) | s ∈ S}),Γ(S,F,P)) where
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– for each natural number n, Fn = {σ∈ Fw→s | |w|= n} and Pn = {σ∈ Pw | |w|= n}
(here by |w| we denote the length of the string w),

– Γ(S,F,P) = {(∀x1 . . .xn)
∧

i≤n(xi : si)⇒ (σ(x1 . . .xn) : s) | σ ∈ Fs1...sn→s}.

• On the sentence side:

– any equation t = t ′ gets mapped to itself,

– α commutes with the Boolean connectives, i.e., α(ρ1∧ρ2) = αρ1∧αρ2, etc.,

– any sentence of the form (∀x)ρ gets mapped to (∀x)(x : s)⇒ αρ with s being the
sort of the variable x.

• On the models side, for each (S,F,P)-model M

– (βM)s = M(− : s) for each sort s,

– for each operation symbol σ∈ Fw→s, (βM)σ is the restriction of Mσ to (βM)w, and

– (βM)π = (βM)w∩Mπ for each relation symbol π ∈ Pw.

This comorphism may give an insight into why and how the single-sorted approach of
conventional mathematical practice works despite the fact that mathematical realities con-
stitute a many-sorted heterogeneous rather than a single-sorted homogeneous framework.

Encoding operations as relations in FOL
This is a comorphism (Φ,α,β) : FOL → REL th defined as follows:

• Each FOL signature (S,F,P) gets mapped to a REL-theory ((S,C(F),F+P),rel(S,F,P))
where

– C(F) is the set of the constants of F ,

– Fs = /0 for each sort s ∈ S and Fws = Fw→s when w is non-empty, and

– rel(S,F,P) =
{((∀X)(∃y)σ(X ,y))∧ ((∀X ,y,y′)σ(X ,y)∧σ(X ,y′)⇒ (y = y′)) | σ ∈ Fws}.

• On the sentence side:

– x = y gets mapped to itself when both x and y are constants,

– α(σ(t1, . . . , tn) = y) = (∃{x1, . . . ,xn})(σ(x1, . . . ,xn,y)∧
∧

1≤i≤n α(ti = xi)) for each
operation symbol σ, appropriate list of terms t1, . . . , tn and x1, . . . ,xn variables (i.e.,
new constants),

– α(t1 = t2) = (∃y)(α(t1 = y)∧α(t2 = y)) for any terms t1 and t2 of the same sort
and y variable,

– α π(t1, . . . , tn) = (∃{x1, . . . ,xn})(π(x1, . . . ,xn)∧
∧

i≤n α(ti = xi)) for each relational
atom π(t1, . . . , tn), and
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– α commutes with the Boolean connectives and with the quantifiers.

• On the models side, for each ((S,C(F),F +P),rel(S,F,P))-model M,

– for each relation symbol σ ∈ F , (βM)σm = y if and only if ⟨m, y⟩ ∈Mσ.

This encoding goes in a sense opposite to the encoding of the relations as operations pre-
sented in Sect. 3.3, that one being quite exceptional since it does map the signatures to
signatures rather than to proper theories. In that case, the difference in structural com-
plexity, which is rather slight, still shows up at the level of the signatures.

Encoding partial operations as total operations

The so-called ‘operational encoding’ of PA into FOL is a comorphism PA → FOL th

defined as follows:

• Each PA-signature (S,TF,PF) gets mapped to the FOL-theory

((S,TF +PF,(Ds)s∈S),Γ(S,TF,PF))

where

– for each sort s ∈ S, Ds is a relation symbol of arity s,

and Γ(S,TF,PF) consists of the Horn sentences

– (∀X)Ds(σX)⇒ DwX for each σ ∈ (TF +PF)w→s, and

– (∀X)DwX ⇒ Ds(σX) for each σ ∈ TFw→s

(where DwX denotes
∧

(x:s)∈X Dsx).

• On the sentence side:

– α(t e
= t ′) = (Dst ∧ (t = t ′)),

– α commutes with the Boolean connectives, and

– α((∀X)ρ) = (∀X)(DwX ⇒ αρ) for each sentence ρ.

• Each (total) ((S,TF +PF,D),Γ(S,TF,PF))-model M gets mapped to the partial (S,TF,
PF)-algebra βM such that

– (βM)s = MDs for each sort s, and

– for each operation σ : s1 . . .sn → s, (βM)σ is the ‘restriction’ of Mσ to MDs1
×

·· ·×MDsn and ‘co-restriction’ to MDs . (Note that if σ ∈ PF this restriction may be
partial in order to give results in MDs .)
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Encoding partial operations as relations
Another comorphism PA→FOL th, which may be called the ‘relational encoding’ of PA
into FOL , encodes the partial operations as relations as follows:

• Each PA-signature (S,TF,PF) gets mapped to the FOL-theory ((S,TF,PF), Γ(S,TF,PF))

such that PFws = PFw→s for each w ∈ S∗ and s ∈ S, and

Γ(S,TF,PF) = {(∀X ,y,z)σ(X ,y)∧σ(X ,z)⇒ (y = z) | σ ∈ PF}.

• Each (S,TF,PF)-model M gets mapped to the partial (S,TF,PF)-algebra βM such
that

– (βM)x = Mx for each x ∈ S or x ∈ TF ,

– for each σ ∈ PF , if (m,m0) ∈Mσ then (βM)σm = m0.

• α commutes with the quantifiers and the Boolean connectives, and

α(t e
= t ′) = (∃X ,x0)bind(t,x0)∧bind(t ′,x0)

where for each (S,TF,PF)-term t and variable x, bind(t,x) is a (finite) conjunction of
atoms defined by

bind(σ(t1 . . . tn),x) =
∧

1≤i≤n

bind(ti,xi)∧
{

σ(x1, . . . ,xn) = x when σ ∈ TF
σ(x1, . . . ,xn,x) when σ ∈ PF

and X is the set of the variables introduced by bind(t,x0) and bind(t ′,x0).

The proof of the Satisfaction Condition relies upon the fact that M |= (∃X ,x0)bind(t,x0)
if and only if (βM)t is defined. Moreover in such case we have that (βM)t = M′x0

, where
M′ is the unique expansion of M that satisfies bind(t,x0).

Exercises
4.1. In any institution, for any signature Σ

• (
⋃

i∈I Ei)
∗ =

⋂
i∈I E∗i for each family (Ei)i∈I of sets of Σ-sentences, and

• (
⋃

i∈I Mi)
∗ =

⋂
i∈I M∗i for each family (Mi)i∈I of classes of Σ-models.

4.2. For a fixed signature, any (possibly infinite) intersection of closed theories is a closed theory
too.

4.3. Strong theory morphisms
A theory morphism ϕ : (Σ,E)→ (Σ′,E ′) in CTh is strong when E ′ = (ϕE)∗∗. Show that strong
theory morphisms are closed under composition.

4.4. Given a signature morphism ϕ : Σ→ Σ′ in any institution

• for each E1 and E2 sets of Σ-sentences, E1 |=Σ E2 implies ϕE1 |=Σ′ ϕE2,
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• for each set E of Σ-sentences, (ϕE)∗ = (Modϕ)−1E∗, and

• (Σ,ϕ−1E ′) is closed when (Σ′,E ′) is closed.

4.5. [161] Semantic topology
Recall that a topology (X ,τ) consists of a set X and a set τ of subsets of X such that /0,X ∈ τ and τ

is closed under finite intersections and (possibly infinite) unions. Then for each signature Σ of any
institution, the class of |ModΣ| of all Σ-models admits a natural semantic topology

τΣ = {
⋃
i∈I

E∗i | (Ei)i∈I family of finite sets of Σ-sentences}.

Recall also that given two topologies (X ,τ) and (X ′,τ′) a function f : X → X ′ is continuous when
f−1U ′ ∈ τ for all U ′ ∈ τ′. Then Modϕ : (|ModΣ′|,τΣ′) → (|ModΣ|,τΣ) is continuous for each
signature morphism ϕ : Σ→ Σ′.

4.6. For any institution morphism (Φ,α,β) : I ′ → I , (ΦΣ′,α−1
Σ′ E ′) is a closed theory of I when

(Σ′,E ′) is a closed theory of I ′.

4.7. In AUT each theory is closed. (Hint: each language can be represented as a (possibly infinite)
intersection of regular languages.)

4.8. In any institution I the forgetful functor Th→ Sig determines a canonical institution adjoint
morphism I th→ I . Moreover

• (I th)th→ I th is an equivalence of institutions, and

• (−)th : Ins→ Ins is a functor mapping each institution morphism (Φ,α,β) to the institution
morphism (Φth,αth,βth) such that Φth(Σ′,E ′) = (ΦΣ′,α−1

Σ′ E ′∗∗) and αth and βth being the
restrictions of α and β.

4.9. Comorphism POA → FOL th

There exists a comorphism POA → FOL th mapping each algebraic signature (S,F) to the FOL-
theory ((S,F,(≤s)s∈S), pre(S,F)) such that

• for each sort symbol s ∈ S the arity of ≤s is ss, and

• pre(S,F) contains the preorder axioms corresponding to all ≤s plus the monotonicity axioms
for ≤ corresponding to all σ ∈ F .

4.10. [71] Comorphism PA → FOEQL th

There exists a comorphism (Φ,α,β) : PA → FOEQL th such that:

• Each PA-signature (S,TF,PF) gets mapped to FOEQL-theory ((S∪{b},TF⊕PF),Γ(S,TF,PF))
where (TF⊕PF)w→s = TFw→s∪PFw→s when s ̸= b, (TF⊕PF)ss→b = { e⃝s} for each s ∈ S,
and (TF⊕PF)→b = {true}, and Γ(S,TF,PF) contains the following conditional equations:

1. (∀X)(X e⃝X = true)⇒ (σ(X) e⃝σ(X) = true) for any total operation symbols σ and X
a string of variables matching the arity of σ.1

2. (∀X ,Y )(X e⃝Y = true)⇒ (X e⃝X = true).

3. (∀X ,Y )(X e⃝Y = true)⇒ (X = Y ).

4. (∀X)(σ(X) e⃝σ(X) = true)⇒ (X e⃝X = true) for any total or partial operation sym-
bols.

1If X = {x1, . . . ,xn} then X e⃝X denotes the finite conjunction (x1 e⃝ x1)∧·· ·∧ (xn e⃝ xn).
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• α(S,TF,PF)(t
e
= t ′)= (t e⃝ t ′= true), α(S,TF,PF) preserves the Boolean connectives, and α(S,TF,PF)(∀X)ρ=

(∀X)((X e⃝X)⇒ α(S,TF∪X ,PF)ρ).

• (βA)s = {a ∈ As | A e⃝s(a,a) = Atrue} for each s ∈ S, and

• (βA)σa =

{
Aσa, when A e⃝s(Aσa,Aσa) = Atrue,
undefined, otherwise

for each operation symbol σ ∈ TFw→s∪PFw→s.

4.11. Comorphism IPL → (FOEQL1)th

Let FOEQL1 be the single-sorted variant of FOEQL . There exists a comorphism (Φ,α,β) : IPL→
(FOEQL1)th such that:

• Let (H,E) be the single-sorted equational theory of the Heyting algebras with H0 = {⊤,⊥},
H1 = {¬}, and H2 = {∧,∨,⇒} (otherwise Hn = /0). Each set (= IPL-signature) P gets mapped
by Φ to the theory (H +P,E) where P are added to H as constants.

• αPρ = (ρ =⊤) for each IPL-signature P and each P-sentence ρ.

• For each IPL-signature P and each (H +P,E)-algebra A, βPA = M where M : P→ A↾H is
defined by Mπ = Aπ for each π ∈ P.

4.12. Comorphism HN K → FOEQL th

There exists a comorphism (Φ,α,β) : HN K → FOEQL th such that

• Each HN K -signature (S,F) gets mapped to the theory ((
−→
S ,
−→
F ),Γ(S,F)) where

–
−→
S is the set of all S-types,

– −→F s = Fs for each s ∈ −→S ,
−→
F [(s→s′)s]→s′ = {apps,s′} for all s,s′ ∈ −→S and

−→
F w→s = /0 other-

wise,

– Γ(S,F) = {(∀ f ,g,x)apps,s′( f ,x) = apps,s′(g,x))⇒ ( f = g) | s,s′ ∈ −→S }.

• (β(S,F)M) = M where M is the inductively (on the structure of the types) defined HN K -
model such that there exists an isomorphism funM : M→M (here M is canonically regarded
as a FOL ((

−→
S ,
−→
F ),Γ(S,F))-model with app interpreted as ordinary functional application)

with funM
s being identities for s ∈ S.

Then β(S,F) is an equivalence of categories with an ‘inverse’ β(S,F) such that

β(S,F);β(S,F) = 1 and fun : 1
∼=→ β(S,F);β(S,F).

• α is defined as the canonical extension of the mapping on the terms αtm defined by αtm(tt ′) =
app(αtmt,αtmt ′).

4.13. Comorphism HOLλ→HOL th

There is an ‘encoding’ comorphism from HOLλ to HOL th. (Hints: A HOLλ-signature (S,F) is
mapped to a HOL-theory that extends (S,F) with an axiomatization of Ω, product types and pairing
functions. λ-abstraction is coded in an innermost way by appropriate existential quantification over
functions. λx:s.t is just coded as f , where ∃ f :s→ s′.∀x:s. f x = t ∧ ·· · is added at an appropriate
place.)

This ‘encoding’ comorphism can also be modified into a comorphism from HN K λ to
HN K th. (Hint: It must additionally be ensured that all λ-terms have a denotation. This can be
expressed by appropriate existential statements.)
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4.14. Comorphism LA → (FOEQL1)th

Let FOEQL1 be the single-sorted variant of FOEQL . There exists an institution comorphism
LA → (FOEQL1)th mapping each commutative ring R = (|R|,+,−,×,0) to the theory (FR,ER)
where

– (FR)0 = {0}, (FR)1 = |R|⊎{−}, (FR)2 = {+}, and (FR)n = /0 otherwise, and
– ER consists of the axioms for the commutative group for {+,−,0} and

(∀x) r(r′x) = (r× r′)x, (∀x) (r+ r′)x = rx+ r′x, (∀x) (−r)x = −rx, and (∀x)0x = 0 for each
r,r′ ∈ |R| elements of the ring R.

4.15. [190] Comorphism WPL → PL th (see Ex. 3.27)
For each set P (of propositional variables) let us consider SenP as a PL signature and let ΓP be

the specification of the WPL semantics, i.e., ΓP = {[ρ1 ⋆ρ2]⇔ ([ρ1] ⋆ [ρ2]) | ⋆ ∈ {∧,∨,⇒} and
ρ1,ρ2 ∈ SenP}∪{[ρ]⇒¬[¬ρ] | ρ ∈ SenP}, where, in order to avoid confusion, by [ρ] we denote
the WPL-sentence ρ regarded as a propositional variable of the PL signature SenP. The mapping
of P to (SenP,ΓP) determines a comorphism WPL → PL th.

4.16. [159] Comorphism PA →MA th

This comorphism is defined by mapping each PA signature (S,TF,PF) to a MA-theory ((S,TF +
PF),Γ(S,TF,PF)) such that

• Γ(S,TF,PF) = {(∀y,X)(y .
= y)∧ (y≺ σX ⇒ σX .

= σX) | σ ∈ TF +PF},

• α(t e
= t ′) = (t .

= r′), α commutes with the Boolean connectives and α((∀X)ρ) =
(∀X)((X .

= X)∧αρ),
• (βA)s =As for each sort s∈ S and (βA)σ(a1, . . . ,an) = a when Aσ(a1, . . . ,an) = {a}, otherwise

it is undefined.

4.17. [159] Comorphism MBA →MA th

Each MBA signature (S,K,F,kind) can be mapped to the MA-theory ((K,F∪{ps | s∈ S}),Γ(S,K,F,kind)),
where ps are constants of sort kind(s) and

Γ(S,K,F,kind) = {(∀X)(X .
= X)⇒ (σX .

= σX) | σ ∈ F}.

This determines a comorphism MBA →MA th.

4.2 Theory (co-)limits
The following simple result shows that the limits and co-limits of theories exist in depen-
dence on limits and co-limits of signatures.

Proposition 4.2. In any institution, the forgetful functor U : Th→ Sig lifts limits and
co-limits. Moreover, the forgetful functor CTh→ Sig lifts them uniquely.

Proof. Consider a functor D : J→ Th. When µ : D;U ⇒ Σ is a co-limit co-cone in Sig.
By a simple checking, we obtain that µ : D⇒ (Σ,(

⋃
i∈|J| µiEi)) is a co-limit co-cone in

Th, where for each i ∈ |J|, Di = (Σi,Ei) is the theory corresponding to i.

Σi
Du

//

µi
��

Σ j

µ j
��

(Σi,Ei)
Du

//

µi
$$

(Σ j,E j)

µ j
zz

Σ (Σ,
⋃

i∈|J| µiEi)
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Similarly, when µ : Σ⇒ D;U is a limit cone in Sig, then µ : (Σ,
⋂

i∈|J| µ
−1
i E∗∗i )⇒ D is a

limit co-cone in Th. □

Corollary 4.3. In any institution, the category Th of its theories, respectively CTh of its
closed theories, have whatever limits or co-limits its category Sig of the signatures has.

Limits and co-limits of FOL signatures

We can apply Prop. 4.2 through Cor. 4.3 to show that FOL has small limits and co-limits
of (closed) theories by proving that the category SigFOL of FOL-signatures has small
limits and co-limits. The arguments of the proof of the result below can be repeated with
some adjustments in the form to many other concrete institutions, especially when they
are in a many-sorted format.

Proposition 4.4. The category of FOL signatures has small limits and co-limits.

Proof. Let us use ⊎ / ∏ for denoting disjoint unions / cartesian products of sets, respec-
tively. Given a any set S, because Set has all small limits and co-limits, cf. Prop. 2.2, the
functor categories Cat(S∗×S,Set) and Cat(S∗,Set) have small limits and co-limits too.
So do their products Cat(S∗× S,Set)×Cat(S∗,Set) (by calculating (co-)limits compo-
nentwise).

Each function f : S→ S′ determines a functor Cat(S′∗×S′,Set)×Cat(S′∗,Set)→
Cat(S∗×S,Set)×Cat(S∗,Set) by composition to the left with ( f ∗× f , f ∗). This functor
has

• a left adjoint mapping each (F,P) to (F ′,P′) such that

F ′w′→s′ =
⊎
{Fw→s | f ∗(ws) = w′s′}, P′w′ =

⊎
{Pw | f ∗w = w′}, and

• a right adjoint mapping each (F,P) to (F ′′,P′′) such that

F ′′w′→s′ = ∏{Fw→s | f ∗(ws) = w′s′}, P′′w′ = ∏{Pw | f ∗w = w′}.

From Prop. 2.6 we know that a right adjoint preserves all limits, thus the hypotheses
of Thm. 2.10 are fulfilled for the indexed category Setop → Cat mapping each set S to
Cat(S′∗×S′,Set)×Cat(S′∗,Set). It follows that its Grothendieck category, which is ex-
actly SigFOL , has small limits and co-limits. □

The above proof involves some non-trivial category theoretic machinery. It is also
useful to understand in more concrete terms how the limits and the co-limits of FOL
signatures are constructed.
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Limits. For any small category J, the limit cone µ : (S,F,P) ⇒ (D : J → SigFOL)
(where Du : (Si,Fi,Pi)→ (S j,Fj,Pj) for each u ∈ J(i, j)) is defined by

1. µst is the limit of D;(−)st : J→ Set

Si
(Du)st

// S j

S
µst

i

\\

µst
j

AA

2. Each arity w ∈ S∗ and each sort s ∈ S determine a functor J → Set mapping each
arrow u ∈ J(i, j) to (Du)op

µst
i w→µst

i s : (Fi)µst
i w→µst

i s → (Fj)µst
j w→µst

j s. Let

((µop
i )w→s)i∈|J| be the limit cone of this functor.

(Fi)µst
i w→µst

i s

(Du)op
µst
i w→µst

i s
// (Fj)µst

j w→µst
j s

Fw→s

(µop
i )w→s

ee

(µop
j )w→s

99

3. For each arity w ∈ S∗, ((µrl
i )w : Pw → (Pi)µst

i w)i∈|J| is the limit cone for the functor
J→ Set mapping each arrow u ∈ J(i, j) to (Du)rl

µst
i w : (Pi)µst

i w→ (Pj)µst
j w.

Co-limits. For any small category J, the co-limit co-cone µ : (D : J → SigFOL)⇒
(S,F,P) (where Du : (Si,Fi,Pi)→ (S j,Fj,Pj) for each u ∈ J(i, j)) is defined by

1. µst is the co-limit of D;(−)st : J→ Set

Si
(Du)st

//

µst
i ��

S j

µst
j��

S

2. For each arity w ∈ S∗ and each sort s ∈ S, let (F ′i )w→s =
⊎

µst
i wisi=ws(Fi)wi→si . For

each arrow u ∈ J(i, j) let (Du)op
w→s : (F ′i )w→s→ (F ′j )w→s be the ‘disjoint union’ of all

functions

(Fi)wi→si

(Du)op
wi→si
// (Fj)(Du)stwi→(Du)stsi

//
⊎

µst
j (w js j)=ws(Fj)w j→s j .
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Then we define ((µi)
op
w→s)i∈|J| to be the co-limit co-cone for the functor J→ Set map-

ping each u to (Du)op
w→s.

(F ′i )w→s
((Du)op)w→s

//

(µop
i )w→s ##

(F ′j )w→s

(µop
j )w→s{{

Fw→s

For each wi and si we define (µop
i )wi→si as the restriction of (µop

i )w→s to (Fi)wi→si .

3. For each i ∈ |J| and arity wi ∈ S∗i we define (µrl
i )wi in the same way we have defined

(µop
i )wi→si in the item above.

Exercises

4.18. The category of CA signatures has small co-limits but only finite limits.

4.19. The category of HOL / HN K signatures does have pushouts and small co-products.

4.20. Weak co-amalgamation for sentences
In FOL the sentence functor weakly preserves pullbacks, i.e., any pullback of signature morphisms
gets mapped by SenFOL to a weak pullback in Set.

4.21. [70] Finitely presented signatures
A FOL signature (S,F,P) is finitely presented (as an object of SigFOL ) if and only if S, F , and P
are finite. (F ‘finite’ means that {(w,s) | Fw→s ̸= /0} is finite and each non-empty Fw→s is also finite
and the same for P.)

4.22. [98] Finitary sentences
A sentence ρ for a signature Σ of an institution is finitary when there exists a signature morphism
ϕ : Σ0→ Σ such that Σ0 is finitely presented and there exists a Σ0-sentence ρ0 such that ρ = ϕρ0.
Then any FOL-sentence is finitary. Give an example of a FOL∞,ω-sentence which is not finitary.

4.23. [70] Finitely presented closed theories
Assume an institution with finitary sentences. Then for each finitely presented closed theory (Σ,E)
(i.e., it is a finitely presented object in the category CTh of theories),

• Σ is a finitely presented signature, and

• E can be presented by a finite set of sentences, i.e., there exists a finite set E0 of Σ-sentences
such that E = (E0)

∗∗.
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4.3 Model amalgamation
Model amalgamation in institutions. In any institution, a commuting square of signa-
ture morphisms

Σ
ϕ1
//

ϕ2

��

Σ1

θ1
��

Σ2
θ2

// Σ′

is an amalgamation square if and only if for each Σ1-model M1 and a Σ2-model M2
such that M1↾ϕ1 = M2↾ϕ2 , there exists a unique Σ′-model M′, called the amalgamation
of M1 and M2, such that M′↾θ1 = M1 and M′↾θ2 = M2. When ϕ1,ϕ2,θ1,θ2 are clear, the
amalgamation M′ may be denoted as M1⊗M2.

Without the uniqueness requirement on the amalgamation M′, we say that this is a
weak amalgamation square.

Note that from a categorical viewpoint, the model amalgamation property means
that

|ModΣ| |ModΣ1|
Modϕ1
oo

|ModΣ2|

Modϕ2

OO

|ModΣ′|
Modθ2

oo

Modθ1

OO

is a pullback in Class, the ‘category’ of classes.2

To have model amalgamation, it is necessary that the corresponding square of sig-
nature morphisms does not collapse entities of Σ1 and Σ2 which do not come from Σ

(via ϕ1 and ϕ2). On the other hand, for ensuring the uniqueness of the amalgamation it is
necessary that Σ′ does not contain entities which do not come from either Σ1 or Σ2. There-
fore the primary candidates for model amalgamation are the pushout squares of signature
morphisms. We may say that an institution has model amalgamation if and only if each
pushout of signatures is an amalgamation square.

Model amalgamation in FOL
Modulo some adjustments the result below can be replicated to a multitude of actual
institutions.

Proposition 4.5. FOL has model amalgamation.

Proof. We consider any pushout (θ1,θ2) of a span of signature morphisms (ϕ1,ϕ2) and
Σk-models Mk, k = 1,2, such that M1↾ϕ1 = M2↾ϕ2 . Let U be the union of all the carrier
sets of M1 and M2. We define the following signature Ω = (SΩ,FΩ,PΩ):

2This is the ‘extension’ of Set having classes as objects.
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• SΩ = PU , i.e., the set of all subsets of U ,

• for any sets s1, . . . ,sn,s ⊆U , FΩ
s1...sn→s = Set(s1×·· ·× sn,s), i.e., the set of all func-

tions s1×·· ·× sn→ s, and

• for any sets s1, . . . ,sn, PΩ
s1...sn = P (s1×·· ·× sn), i.e., the set of all subsets of s1×·· ·×

sn.

We note that for any FOL-signature (S,F,P), the (S,F,P)-models that have all carrier
sets included in U are exactly the signature morphisms (S,F,P)→ Ω. Moreover, under
this perspective the reduct M′↾ϕ of any model M′ appears as ϕ;M′.

Σ
ϕ1
//

ϕ2

��

Σ1

θ1
�� M1

��

Σ2
θ2

//

M2 11

Σ′

M′

��

Ω

Therefore M1↾ϕ1 =M2↾ϕ2 just means that ϕ1;M1 =ϕ2;M2. Let M′ : Σ′→Ω be the unique
signature morphism such that θk;M′ = Mk for k = 1,2. Then M′ is the unique amalgama-
tion of M1 and M2. □

Note that in the proof of Prop. 4.5 the assumption that all carrier sets are included
in U does not affect the validity our argument because of two reasons. On the one hand,
the pushout square of FOL-signatures does not allow in Σ′ for syntactic entities beyond
those that come from Σ1 and Σ2. On the other hand, the FOL-model reducts preserve the
carrier sets. This means that all candidates for the amalgamation M′ cannot go beyond
this assumption. Alternatively, we can shortcut this argument by going beyond sets by
allowing classes and functions between classes. Under this approach we let U be the
class of all sets. Then a pushout in Set is also a pushout in the ‘category’ Class of classes.

The proof of Prop. 4.5 is rather smart, but it may not bring the best insight into
the structure of the amalgamation M′. Let us explain this more directly. Since Σ′ is the
vertex of a pushout, according to the construction of co-limits of FOL-signatures dis-
cussed above, for each sort s′ of Σ′ there exists k ∈ {1,2} and sk a sort of Σk such that
s′ = θst

k sk. Then M′s′ = (Mk)sk . But what if we had s′ = θst
1 s1 = θst

2 s2? In this situation
(M1)s1 = (M2)s2 = Ms where s is a sort of Σ such that sk = ϕsts, so M′s′ is well-defined.
The existence of s is given by the way pushouts exist in Set. Similar considerations apply
also to the interpretations or operation and relation symbols in M′, just by following the
details of the construction of pushouts of FOL-signatures.

Extended model amalgamation. The concept of model amalgamation is most often
used in the form presented above, for squares of signature morphisms. However, some-
times other forms of model amalgamation are necessary, e.g., for co-cones over other
types of diagrams of signature morphisms.
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Given a diagram D : J→ Sig, a D-model is a family (Mi)i∈|J| such that

• Mi is a Di-model for each i ∈ |J|, and

• M j↾Du = Mi for each arrow u ∈ J(i, j).

We say that a co-cone µ over a diagram D : J→ Sig of signature morphisms has model
amalgamation when for each D-model (Mi)i∈|J| there exists a unique model M such that
M↾µi = Mi for each i ∈ |J|. When we drop the uniqueness requirement, we say that µ has
weak model amalgamation.

An institution has J-model amalgamation for a category J when all co-limits of all
diagrams J→ Sig have model amalgamation. Ordinary model amalgamation, as originally
introduced in this section, is thus J-model amalgamation for J being a span of arrows
• •oo //• .

This terminology can be also extended to classes J of categories J. For example,
when J consists of all directed, respectively total posets, we talk about directed, respec-
tively inductive, model amalgamation.

The proof of Prop. 4.5 can be extended without any problem to all small co-limits
of signatures (which exist by Prop. 4.4).

Proposition 4.6. FOL has J-model amalgamation for all small categories J.

Exact institutions
In most situations the kind of amalgamation which is needed is at the level of the mod-
els only, however, there are results which rely upon a form of amalgamation for model
homomorphisms.

Amalgamation for model homomorphisms means that Mod maps any pushout of
signatures to a pullback of categories (of models) rather than to a pullback of classes (of
models). We called this property the semi-exactness of the institution. The terminology
introduced for model amalgamation can be extended to exactness. Thus an institution
(Sig,Sen,Mod, |=) is

• semi-exact when the model functor Mod : Sigop→ Cat preserves pullbacks,

• directed / inductive-exact when Mod preserves directed / inductive limits,

• (J)-exact when Mod preserves all (J)(small) limits, and

• weakly J-exact when Mod preserves weak J-limits.3

FOL exactness. Prop. 4.5 can be refined to model homomorphisms.

Proposition 4.7. FOL is exact.

3A weak universal property, such as adjunction, limits, etc., is the same as the ordinary universal property
except that only the existence part is required while uniqueness is not required.
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Proof. We have to show that ModFOL : (SigFOL)op→Cat preserves all small limits. Let
us consider the case of the pullbacks (which in SigFOL appear as pushouts), other limits
being handled similarly.

We re-use the idea underlying the proof of Prop. 4.5 by changing the signature Ω

in order to capture model homomorphisms as follows. Let hk : Mk → Nk be Σk-model
homomorphisms, k = 1,2, where h1↾ϕ1 = h2↾ϕ2 .

• SΩ = {s function | dom(s),cod(s) ⊆ U} where U is the union of all carrier sets of
M1,M2,N1,N2.

• for all functions s1, . . . ,sn,s, FΩ
s1...sn→s is the subset of

Set(dom(s1)×·· ·×dom(sn),dom(s))×Set(cod(s1)×·· ·× cod(sn),cod(s))

of all pairs of functions which satisfy the homomorphism property for operations, i.e.,
⟨µ, ν⟩ ∈ FΩ

s1...sn→s if and only if

µ;s = (s1×·· ·× sn);ν

• for any functions s1, . . . ,sn, PΩ
s1...sn is the subset of

P (dom(s1)×·· ·×dom(sn))×P (cod(s1)×·· ·× cod(sn))

of all pairs that satisfy the homomorphism property for relations, i.e., ⟨µ, ν⟩ ∈ PΩ
s1...sn

if and only if

(s1×·· ·× sn)µ⊆ ν.

Then for any FOL-signature (S,F,P), an (S,F,P)-model homomorphism h : M → N
such that all carrier sets of of M and N are included in U arise as a signature morphism
h : (S,F,P)→ Ω as follows. For any s ∈ S, Ms = dom(hs), Ns = cod(hs), for any σ ∈
Fw→s, hσ = ⟨Mσ, Nσ⟩, etc. □

Model amalgamation for theories
Given a weak amalgamation square in an institution

Σ
ϕ1
//

ϕ2

��

Σ1

θ1
��

Σ2
θ2

// Σ′

if M1 |=Σ1 E1, M2 |=Σ2 E2 and M1↾ϕ1 = M2↾ϕ2 let M′ be an amalgamation of M1 and M2.
Then, by the Satisfaction Condition, M′ |=Σ′ θ1E1 ∪ θ2E2.
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This argument works also for all co-cones of diagrams of presentation morphisms.
By recalling how co-limits of theories are constructed on top of co-limits of signatures
(Prop. 4.2), the above argument shows that any model amalgamation property of an in-
stitution can be lifted from the level of the signatures to the level of the (closed) theories.
Moreover, this can be extended easily to model homomorphisms too. These considera-
tions are collected by the following result.

Theorem 4.8. If an institution I is J-exact, then the institution I th of its theories is J-exact
too.

As an application, from Prop. 4.7 and Thm. 4.8 it follows that:

Corollary 4.9. The institution FOL th is exact.

Model amalgamation for institution mappings

The transfer of institutional properties along institution mappings, usually comorphisms,
relies sometimes upon a form of model amalgamation of the respective institution map-
ping.

Exact comorphisms. An institution comorphism (Φ,α,β) : I → I ′ is exact if for each
I -signature morphism ϕ : Σ1→ Σ2 the naturality square below

ModΣ1 Mod′(ΦΣ1)
βΣ1

oo

ModΣ2

Modϕ

OO

Mod′(ΦΣ2)
βΣ2

oo

Mod′(Φϕ)

OO

is a pullback. When discarding the model homomorphisms from the above (i.e., the di-
agram above is a pullback of classes of models rather than categories of models), we
say that (Φ,α,β) has model amalgamation. This means that for any ΦΣ1-model M′1 and
any Σ2-model M2, if βΣ1M′1 = M2↾ϕ, then there exists a unique ΦΣ2-model M′2 such that
βΣ2M′2 = M2 and M′2↾Φϕ = M′1. If we drop the uniqueness requirement on M′2, then we
say that (Φ,α,β) has weak model amalgamation.

As a simple example, notice that the exactness of the institution comorphism EQL→
FOL holds trivially because the model translation functors β(S,F) are isomorphisms for
all algebraic signatures (S,F).

Exact morphisms. A similar definition can be formulated for exact institution mor-
phisms. However, in the actual institutions, comorphisms rather than morphisms interact
better with model amalgamation. For example, while the comorphism EQL → FOL is
trivially exact, its adjoint (forgetful) institution morphism FOL → EQL does not have
model amalgamation. However, it does have weak model amalgamation. Why is that?
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Exercises
4.24. A signature morphism ϕ : Σ→ Σ′ has the model expansion property when each Σ-model has
at least a ϕ-expansion. Given a weak amalgamation square in an institution

Σ
ϕ
//

θ

��

Σ′

θ′

��

Σ1
ϕ1
// Σ′1

show that ϕ1 has the model expansion property when ϕ has it.

4.25. In the commuting diagram below

Σ //

��

Σ1

��

��

Σ2 //

,,

Σ′′
ϕ

��

Σ′

if [Σ,Σ1,Σ2,Σ
′′] is an amalgamation square, then [Σ,Σ1,Σ2,Σ

′] is a weak amalgamation square if
and only if ϕ has the model expansion property.

4.26. Categorical equational logic CatEQL (see Ex. 3.7) is trivially exact.

4.27. For any semi-exact institution I , the institution I→ of its signature morphisms (see Ex. 3.8)
is semi-exact.

4.28. A method to prove model amalgamation properties of institutions I is to ‘borrow’ them from
another institution I ′ via a comorphism I → I ′ with the following properties:

1. the signature translation functor preserves the respective co-limits of signatures, and

2. the model translation functor has a left inverse.

Apply this method to obtain model amalgamation properties for various institutions presented in
this book.

4.29. The institution IPL is exact.

4.30. The institution MVL♯ is exact.

4.31. The institutions F OL1, LA and AUT are semi-exact but they are not exact.

4.32. The institution CA of contraction algebras does not have model amalgamation. Find out why.
However, model amalgamation holds for the pushout squares for which the contraction parameter
q is fixed for all signatures.

4.33. While HOL has model amalgamation, HN K has only weak model amalgamation.

4.34. The institution WPL of Ex. 3.27 has weak model amalgamation.

4.35. Any chartable institution has model amalgamation. (see Ex. 3.11)

4.36. The sub-institutions of FOL obtained by restricting the model homomorphisms to those
which are injective, respectively surjective, are exact.
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4.37. The comorphism FOL → FOEQL encoding relations as operations (see Sect. 3.3) does not
have model amalgamation but it has weak model amalgamation.

4.38. Let us assume that for an institution morphism (Φ,α,β) : I ′→ I , the signature translation
functor Φ : Sig′ → Sig has a left adjoint Φ, is full and surjective on objects, and that I ′ is semi-
exact. If (Φ,α,β) is exact, then its adjoint institution comorphism (Φ,α,β) is exact too.

4.39. Study the model amalgamation properties of the following comorphisms which have been in-
troduced above in the book (either in the main text or in exercises): MPL∗→REL1, PA→FOL th,
FOL → REL th, POA → FOL th, FOL → PA th, FOL → (F OL1)th, and HN K → FOEQL th.

4.40. [84] Institutional seeds
We can extend the idea underlying Prop. 4.5 to a develop a simple generic way to define institutions.
An institutional seed consists of a ‘sentence functor’ Sen : Sig→ Set, a fixed ‘signature’ Ω ∈ |Sig|
and a ‘truth function’ T : SenΩ→{0,1}. Show that by defining

• for each ‘signature’ Σ, ModΣ = {M |M : Σ→Ω},
• for each ‘signature morphism’ ϕ : Σ→ Σ′, Modϕ : ModΣ′→ModΣ by (Modϕ)M′ = ϕ;M′,

and

• for each M ∈ModΣ and ρ ∈ SenΣ, M |=Σ ρ if and only if (T (SenM))ρ = 1,

the tuple (Sig,Sen,Mod, |=) is an institution.
Show that PL and localized variants (in the sense that all carrier sets of models are subsets of a
fixed set U) of other institutions such as FOL , PA etc. can be defined in this way from institutional
seeds.

4.4 The method of diagrams
This is one of the most useful methods of model theory in general. Note that ‘diagrams’
here are used with a different meaning than the categorical diagrams. In this section, we
begin with the presentation of the concrete concept of model-theoretic diagrams in FOL .
Then we prove an institution-theoretic property of FOL diagrams which when taken as
an axiom provides the concept of diagram in abstract institutions. Next, we introduce
a couple of basic concepts around the diagrams. Finally, we develop an initial general
application of diagrams. Many more applications will naturally follow as we advance
through the book.

Diagrams in FOL
Each model M of a signature (S,F,P) determines an extension of signatures
ι : (S,F,P) ↪→ (S,FM,P) where

• (FM)w→s = Fw→s for any non-empty arity w ∈ S∗ and any sort s ∈ S, and

• (FM)→s = F→s⊎Ms (disjoint union) for any sort s ∈ S.

Then note that M can be canonically expanded to an (S,FM,P)-model MM by interpreting
the new constants of (FM)→s by the corresponding elements of Ms, i.e., (MM)a = a for
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each a ∈ M. Let EM be the set of all atoms (either equational or relational) satisfied by
MM .

The theory ((S,FM,P),EM), called the diagram of M, has the crucial categorical
property that it axiomatizes the class of homomorphisms from M.

Proposition 4.10. There exists a natural isomorphism

i : Mod((S,FM,P),EM)→M/Mod(S,F,P).

Proof. The isomorphism i maps each (S,FM,P)-model N satisfying EM to the (S,F,P)-
model homomorphism hN : M→ N↾ι such that hNa = Na for each element a ∈M. Let us
check that hN is indeed a model homomorphism.

– For each operation σ ∈ Fw→s and for each m ∈Mw we have that:

1 (σm = Mσm) ∈ EM MM |= σm = Mσm

2 N |= σm = Mσm 1, N |= EM

3 Nσm = NMσm 2, definition of |=

4 hN(Mσm) = NMσm definition of h

5 hNm = Nm definition of h

6 Nσm = Nσ(Nm) = (N↾ι)σ(hNm) 5

7 hN(Mσm) = (N↾ι)σ(hNm) 3, 4, 6.

– We consider any relation symbol π ∈ Pw and any m ∈Mπ. Then

1 πm ∈ EM MM |= πm

2 N |= πm N |= EM

3 Nm ∈ Nπ 2

4 hNm = Nm definition of h

5 hNm ∈ Nπ 3, 4

The inverse isomorphism i−1 maps any (S,F,P)-model homomorphism h : M →
N to the (S,FM,P)-model i−1h = Nh where (Nh)↾ι = N and (Nh)a = ha for each a ∈
M. We have to check that Nh |= EM . We first notice that h is also an (S,FM,P)-model
homomorphism MM → Nh.

– Consider an equation t = t ′ in EM . Then

1 (Nh)t = h((MM)t), (Nh)t ′ = h((MM)t ′) by induction on the structure of t, t ′

2 (MM)t = (MM)t ′ MM |= EM

3 (Nh)t = (Nh)t ′ 1, 2

4 Nh |= t = t ′ 3, definition of |=.
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– Now consider a relational atom πt ∈ EM (here t denotes an appropriate string of terms
rather than a single term). Then

5 MM |= πt MM |= EM

6 (MM)t ∈ (MM)π 5, definition of |=

7 (Nh)t ∈ (Nh)π 1, 6, h homomorphism

8 Nh |= πt 7, definition of |=.

We have analyzed i and i−1 on models only. They also work as expected on model homo-
morphisms. □

Changing model homomorphisms. To maintain the isomorphic relationship between
the category of homomorphisms M/Mod(S,F,P) and the category of the models of the
theory ((S,FM,P),EM), any change of the concept of model homomorphism induces a
change in the concept of diagram. Note that considering other model homomorphisms
between FOL models means working with another institution. For example, if we impose
some condition which shrinks the class of model homomorphisms, then consequently the
diagram should get bigger so that the class of its models shrinks too.

Below we give a list of several possibilities for model homomorphisms between
FOL models obtained by imposing some additional conditions on the standard FOL
model homomorphisms. In all cases, diagrams do exist as shown in the right-hand side
column of the table below. All entries of the table can be checked similarly to the proof
of Prop. 4.10. A FOL-model homomorphism h : M→ N

– is closed when Mπ = h−1Nπ for each relation symbol π of the signature, and

– is an elementary embedding when MM ≡ Nh (where Nh = i(h) like in the proof of
Prop. 4.10). Note that because MM |= m ̸= m′ for all m,m′ ∈ M that differ, h is also
injective.)

model homomorphisms EM
all all atoms in (MM)∗

injective all atoms and negations of atomic equations in (MM)∗

closed all atoms and negations of atomic relations in (MM)∗

closed and injective all atoms and negations of atoms in (MM)∗

elementary embeddings (MM)∗

In some other model-theoretic works, in the context of FOL models, the diagrams
of the last entry in the table above are called ‘elementary diagrams’.

Institution-independent diagrams
We may note that the isomorphism between the category of model homomorphisms from
M (for whatever concept of model homomorphism we employ) and the class of models
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of the ‘diagram’ of M is a purely categorical property which can be therefore formulated
at an institution-independent level. An institution (Sig,Sen,Mod, |=) has diagrams if and
only if for each signature Σ and each Σ-model M

• there exists a signature ΣM and a signature morphism ιΣM : Σ→ ΣM , that is func-
torial in Σ and M, and

• a set EM of ΣM-sentences such that Mod(ΣM,EM) and the comma category M/ModΣ

are naturally isomorphic, i.e., the following diagram commutes by the isomorphism
iΣ,M natural in Σ and M:

Mod(ΣM,EM)
iΣ,M

//

Mod(ιΣM)
''

M/ModΣ

forgetful
��

ModΣ

(4.1)

The signature morphism ιΣM : Σ→ ΣM is called the elementary extension of Σ via M
and the set EM of ΣM-sentences is called the diagram of the model M. For each model
homomorphism h : M→ N let Nh denote i−1

Σ,Mh.
The “functoriality” of ι means that for each signature morphism ϕ : Σ→ Σ′ and

each Σ-model homomorphism h : M→M′↾ϕ, there exists a theory morphism
ιϕh : (ΣM,EM)→ (Σ′M′ ,EM′) such that

Σ
ιΣM

//

ϕ

��

ΣM

ιϕh

��

Σ′
ι
Σ′M

′
// Σ′M′

commutes and ιϕh ; ιϕ′h′ = ιϕ;ϕ′(h;h′↾ϕ) and ι1Σ
1M = 1ΣM .

The “naturality” of i means that for each signature morphism ϕ : Σ→ Σ′ and each
Σ-model homomorphism h : M→M′↾ϕ the following diagram commutes:

Mod(ΣM,EM)
iΣ,M

// M/ModΣ

Mod(Σ′M′ ,E
′
M′) i

Σ′,M′
//

Mod(ιϕh)

OO

M′/ModΣ′

h/Modϕ=h;(−)↾ϕ

OO

The reader is invited to check the above functoriality and naturality properties of the
diagrams for FOL and its sub-institutions presented above.

An institution with diagrams ι may be denoted by (Sig,Sen,Mod, |=, ι).
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A(n even) more categorical formulation
The diagrams ι of an institution (Sig,Sen,Mod, |=) can be expressed more compactly as a
functor ι : Mod♯→ Th→ from the Grothendieck category Mod♯ determined by the model
functor Mod to the category Th of the theories of the institution such that

Mod♯ ι
//

(fibration) projection
��

Th→

dom
��

Sig
left adjoint

// Th

commutes, where Th→ is the functor category of theories morphisms (i.e., the functors
(• //•)→ Th), and dom is the functor projecting on the domain of the presentation
morphisms, and such that the following functors Mod♯→ Cat→ are isomorphic:

Mod♯

ι

��

Mod♯

−/Mod(−)

��

Th→

Mod→
��

∼=

Cat→ Cat→

where

• Mod→((Σ,E)
ϕ
//(Σ′,E ′)) = Mod(Σ′,E ′)

Modϕ
//Mod(Σ,E) and

• (−/Mod(−))⟨Σ, M⟩= M/ModΣ→ModΣ.

Elementary homomorphisms
Recall that a FOL-model homomorphism h : M → N is by definition an elementary
embedding if and only if MM and Nh are elementarily equivalent (they satisfy exactly the
same sentences). Note that this relies on the diagrams of FOL . In the same way a concept
of ‘elementary homomorphism’ can be defined in any abstract institution provided it has
diagrams.

Fact 4.11. In any institution with diagrams ι, the diagram of any model M has an initial
model, denoted MM .

A model homomorphism h : M→ N is ι-elementary when Nh(= i−1
Σ,MN) |= (MM)∗.

By applying the Satisfaction Condition for ιΣM we have:

Fact 4.12. For each ι-elementary homomorphism h : M→ N, M∗ ⊆ N∗.

When the ι-elementary homomorphisms are closed under compositions and un-
der model reducts, by restricting the model homomorphisms only to those that are ι-
elementary we get a sub-institution of the original institution. This happens in FOL , al-
though seeing why and how is not immediate. Much more difficult is to have this property
at the general institution-independent level. In Sect. 5.6 we will solve this problem.
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We say that an institution with diagrams ι is ι-elementary when each model ho-
momorphism is elementary. For instance the sub-institution E(FOL) determined by the
FOL the elementary embeddings is ι′-elementary where ι′ is the system of diagrams of
the FOL elementary embeddings (it shares with the standard system of FOL diagrams
the elementary extensions but the diagram of a model M is (MM)∗).

Fact 4.13. An institution with diagrams ι is ι-elementary if and only if (MM)∗ = (EM)∗∗

for each model M.

Morphisms of institutions with diagrams

Given a model M for a FOL signature (S,F,P), notice that the forgetful institution mor-
phism FOL → EQL

– maps the elementary extension (S,F,P) ↪→ (S,FM,P) to the elementary extension
(S,F) ↪→ (S,FM) of algebraic signatures which corresponds to the (S,F)-algebra un-
derlying M, and

– the diagram of the (S,F)-algebra underlying M is the restriction of the diagram of M
to all equations.

This situation suggests that the forgetful institution morphism FOL → EQL acts as a
‘morphism of diagrams’ between the system of diagrams of FOL and that of EQL .

In general, a morphism of institutions with diagrams (Φ,α,β) : (I ′, ι′)→ (I , ι) is
an institution morphism such that

Mod′♯ ι′
//

β♯

��

Th′→

Φ→

��

Mod♯
ι
// Th→

commutes, where

– for each signature Σ′ ∈ |Sig′| and each Σ′-model M′, the functor β♯ maps ⟨Σ′, M′⟩ to
⟨ΦΣ′, β′

Σ
M′⟩, and

– the functor Φ→ maps each theory morphism ϕ : (Σ′1,E
′
1)→ (Σ′2,E

′
2) to

Φϕ : (ΦΣ′1,α
−1
Σ′1

E ′∗∗1 )→ (ΦΣ′2,α
−1
Σ′2

E ′∗∗2 ).

More concretely, this means that Φ(ι′
Σ′M

′)= ιΦΣ′(βΣ′M′) (which implies ΦΣ′M′ =(ΦΣ′)β
Σ′M

′ )
and Eβ

Σ′M
′ |=| α−1

Σ′
M′

E∗∗M′ for each signature Σ′ ∈ |Sig′| and each Σ′-model M′.

The category of institutions with diagrams is denoted as EDIns.
A dual concept of ‘comorphism of institutions with elementary diagrams’ can be

defined similarly.
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Co-limits of models
In the presence of diagrams, co-limits of models can be obtained from corresponding
co-limits of signatures. This is an important consequence of the existence of diagrams
for at least two reasons. On the one hand in the actual institutions, co-limits of models
are much more difficult to establish than co-limits of signatures. On the other hand, in
general, in actual institutions, the co-limits of models are more complicated than the limits
of models. For instance, in algebra the limits of algebraic structures are created from the
limits of their carrier sets. Groups are an example. But on the other hand, if we think of
co-products of groups it is quite clear that these are significantly more complicated than
the products. And if we considered R-modules then the gap between limits and co-limits
becomes even more clear since the co-products of R-modules (R commutative ring) are
the tensor products.

Theorem 4.14. Consider an institution with diagrams and initial models of theories. If
the category of signatures Sig has J-co-limits and the institution has J-model amalgama-
tion then, for each signature Σ, the category of Σ-models has J-co-limits.

Proof. Let J be a category such that Sig has J-co-limits, and consider a J-diagram M : J→
ModΣ of Σ-models. Let us denote Mi by Mi for each index i ∈ |J|, Mu by Mu for each
index morphism u ∈ J, and let ιΣMi : Σ→ (ΣMi ,EMi) be the diagram of Mi.

• We take the co-limit (φi : (ΣMi ,EMi)→ (Σ′,E ′))i∈|J| of (ιΣMu : (ΣMi ,EMi)→ (ΣM j ,EM j))u∈J .

• Let 0Σ′,E ′ be the initial model in Mod(Σ′,E ′). Then we define N = 0Σ′,E ′↾ϕ where
ϕ = ιΣMi ; φi.

• Then the co-limit µ : M⇒ N is defined by µi = iΣ,Mi(0Σ′,E ′↾φi) for each i ∈ |J|. That µ
is a co-cone can be checked as follows. For each u : i→ j we have that:

1 i−1
Σ,Mi(Mu;µ j) = i−1

Σ,M j(µ j)↾ιΣMu naturality of i

2 i−1
Σ,M j(µ j)↾ιΣMu = 0Σ′,E ′↾φ j↾ιΣMu = 0Σ′,E ′↾φi definition of µ j , φi = ιΣMu ; φ j

3 Mu;µ j = iΣ,Mi(0Σ′,E ′↾φi) = µi 1, 2, definition of µi.

• For proving the universal property of µ let us consider a co-cone µ′ : M⇒ N′.

– This determines a co-cone ((ΣMi ,EMi)
ιΣµ′i
//(ΣN′ ,EN′))i∈|J| and let ϕ′ : (Σ′,E ′)→

(ΣN′ ,EN′) be the unique theory morphism such that φi;ϕ′ = ιΣµ′i for each i ∈ |J|.
i

u

��

Mi

Mu

��

µi

��

(ΣMi ,EMi)

ιΣMu

��

φi
&&

ιΣµ′i

((

N Σ

ιΣMi ::

ιΣM j
$$

(Σ′,E ′)
ϕ′
// (ΣN′ ,EN′)

j M j
µ j

??

(ΣM j ,EM j)

φ j 88

ιΣµ′ j

66
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Let h : N→ N′ be the ϕ-reduct of the unique model homomorphism h′ : 0Σ′,E ′ →
(N′N′)↾ϕ′ . For each i ∈ |J| we have that

h′↾φi : 0Σ′,E ′↾φi → (N′N′)↾ϕ′↾φi(= (N′N′)↾ιΣµ′i)

0Σ′,E ′↾φi = i−1
Σ,Miµi definition of µi

i−1
Σ,Miµ′i = i−1

Σ,Mi(µ′i;1N′) = (i−1
Σ,N′1N′)↾ιΣµ′i = (N′N′)↾ιΣµ′i i natural, definition of N′N′ .

Hence h= iΣ,Mi(h′↾φi) : µi→ µ′i in the comma category Mi/ModΣ. This shows that
µi;h = µ′i for each i ∈ |J|.

– It remains to show that h is unique. Let us first establish that NN↾θ = 0Σ′,E ′ where
θ : (Σ′,E ′)→ (ΣN ,EN) is the unique theory morphism such that φi;θ = ιΣµi for
each i ∈ |J|.

Σ
ϕ
//

ιΣMi
##

(Σ′,E ′) θ
// (ΣN ,EN)

ιΣh
// (ΣN′ ,EN′)

(ΣMi ,EMi)

φi

OO

ιΣµi
88

ιΣµ′i

66

For this, by the J-model amalgamation hypothesis is enough to establish that NN↾θ↾φi =
0Σ′,E ′↾φi for each i ∈ |J|. This holds because

iΣ,Mi(NN↾θ↾φi) = iΣ,Mi(NN↾ιΣµi) φi;θ = ιΣµi

= µi; iΣ,N(NN) naturality of i

= µi;1N = µi definition of NN .

– Now we apply i−1
Σ,N to h : 1N → h; let denote the result by h′′ : NN → N′h = N′N′↾ιΣh.

Then

1 φi ; θ ; ιΣh = ιΣµi ; ιΣh = ιΣµ′i = φi ; ϕ′ definition of θ, ι functorial, definition of ϕ′

2 θ ; ιΣh = ϕ 1, φ co-limit co-cone

3 h′′↾θ : NN↾θ→ N′N′↾ιΣh↾θ = N′N′↾ϕ 2, definition of h′′.

– The uniqueness of h = h′′↾θ↾ϕ now follows from the uniqueness of h′′↾θ which
follows from the initiality property of (NN)↾θ = 0Σ′,E ′ .

□

Co-limits of FOL models. Let us apply Thm. 4.14 above to obtain the existence of
co-limits of FOL models. The method illustrated by the proof of Cor. 4.15 may be also
applied to other actual institutions.

Corollary 4.15. The category of models of any FOL signature has small co-limits.

Proof. Let us consider the sub-institution AFOL of the atoms of FOL , which restricts the
sentences to (equational or relational) atoms only. AFOL inherits the FOL diagrams, but
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unlike FOL , it has initial models for all its theories (a result which we anticipate and is
given by Cor. 4.28 below). The category of signatures has small co-limits (cf. Prop. 4.4)
and the institution has J-model amalgamation for all small categories J (cf. Prop. 4.7)
Therefore by Thm. 4.14 the category of models of any signature has small co-limits. □

Exercises
4.41. The standard diagrams of FOL can be defined slightly differently than the ordinary way,
such that the elementary extension adds to the given signature only the elements which are not
interpretations of constants.

4.42. Co-products of groups
Construct the co-products of any two groups G1 and G2 by following the steps in the proof Thm. 4.14.
The more ambitious readers may also try to construct in the same way the tensor product of two
R-modules.

4.43. A FOL model homomorphism h : M → N is strong when Nπ = h(Mπ) for each relation
symbol π of the signature. The sub-institution of infinitary first-order logic FOL∞,ω where the
model homomorphisms are restricted to the strong ones, has diagrams with the same elementary
extensions as in FOL but such that for each (S,F,P)-model M the diagram EM consists of the FOL
diagram plus

• {¬πm ∈ (MM)∗ | π ∈ P}, and

• all sentences of the form

(∀X)(πX ⇒
∨

m∈Mw

(X = m))

for each relation symbol π of arity w, and where X = m means
∧

1≤k≤n(xk = mk) for
X = x1 . . .xn and m = m1 . . .mn.

4.44. Borrowing diagrams
Let I ′ be an institution with diagrams ι′ and let (Φ,α,β) : I → I ′ be an institution comorphism
such that

1. Φ is full and faithful,

2. βΣ are isomorphisms (for each model M let M′ denote β
−1
Σ

M),

3. for each Σ-model M in I :
(a) there exists a signature ΣM in I such that (ΦΣ)M′ = ΦΣM , and

(b) for each sentence ρ′ ∈ EM′ there exists a ΣM-sentence ρ such that ρ′ |=| αΣM ρ.

Then the institution I has diagrams ι defined by

• ιΣM is the unique signature morphism such that Φ(ιΣM) = ΦΣM , and

• EM = {ρ | there exists ρ′ ∈ EM′ such that αΣM′ ρ |=| ρ
′}.

Apply this general result to the embedding comorphism EQL → FOL .

4.45. The table below gives the diagrams of several institutions:
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I Σ ΣM MM EM

PA (S,TF,PF) (S,TFM ,PF) with (MM)m = m {t e
= t ′ |MM |= t e

= t ′}
(TFM)→s = TF→s⊎Ms for m ∈M
for s ∈ S

POA (S,F) (S,FM) with (MM)m = m {t = t ′ |MM |= t = t ′}∪
(FM)→s = F→s⊎Ms for m ∈M {t ≤ t ′ |MM |= t ≤ t ′}
for s ∈ S

MBA (S,K,F,kind) (S,K,FM ,kind) with (MM)m = m {t = t ′ |MM |= t = t ′}∪
(FM)→k = F→k ⊎Mk for m ∈M {(t : s) |MM |= (t : s)}
for k ∈ K

MA (S,F) (S,FM) with (MM)m = {m} {m .
= m | m ∈M}∪

(FM)→s = F→s⊎Ms for m ∈M {x≺ σm | σ ∈ Fw→s and
for s ∈ S m ∈Mw and x ∈Mσm}

CA (S,F,q) (S,FM ,q) with (MM)m = m {t ≈ε t ′ |MM |= t ≈ε t ′}
(FM)→s = F→s⊎Ms for m ∈M
for s ∈ S

HN K (S,F) (S,FM) with (MM)m = m {t = t ′ |MM |= t = t ′}
(FM)s = Fs⊎Ms for m ∈M
for s ∈ S

4.46. Diagrams in IPL
IPL has diagrams as follows. Let M : P→ A be a P-model. Then ΣM is the disjoint union P⊎A and
we define the ΣM-model MM : P⊎A→ A by (MM)π = Mπ, π∈ P and (MM)a = a, a∈ A. Let ∆A be
the diagram of A in FOL ; this consists of equalities of the form a∧a′ = a A∧ a′, a∨a′ = a A∨ a′,
a⇒ a′ = a A⇒ a′. Let ∆′A consist of the translations of the equations in ∆A as IPL-sentences. (For
instance a∧a′ = b gets translated as (a∧a′⇒ b)∧ (b⇒ a∧a′).) Then EM = ∆′A∪{a⇒ π |MM |=
a⇒ π, a ∈ A, π ∈ P}.

4.47. [74] Diagrams in MVL♯

MVL♯ does not have diagrams, however, its extension with equalities between constants does have
diagrams as follows. For each MVL♯ signature (S,C,P) and each (S,C,P)-model M, the elementary
extension adds the elements of M as new constants and the diagram of M consists of {(πm,Mπm) |
π ∈ Pw, m ∈Mw}∪{c = Mc | s ∈ S, c ∈Cs}.

4.48. Diagrams in WPL
For any given set P (of propositional symbols), there exists a partial order on the WPL-models (see
Ex. 3.27) given by M ≤ N if and only if for each π ∈ P, Mπ = 1 implies Nπ = 1. Let this partial
order define the category ModWPL P. Then WPL has diagrams.

4.49. Let Cat+EQL be the sub-institution of CatEQL determined by categories with binary co-
products. Then Cat+EQL has empty diagrams. (Hint: For any object A in a category C having
binary co-products, the elementary extension of C via A is the left adjoint to the forgetful functor
A/C→ C.)

4.50. Limits and co-limits of MVL♯ models
The category of MVL♯-models for a fixed signature has small limits and co-limits. (Hint: In the
case of the co-limits apply Thm. 4.14.)

4.51. Diagrams for theories
(a) For each institution I with diagrams the institution I th of its theories has diagrams such that the
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(original) diagrams of I are ‘borrowed’ from those of I th along the canonical embedding comor-
phism I → I th.
(b) As an application to (a), for any institution with diagrams and initial models for theories, the
categories of models of theories have all (co-)limits of the category of signatures.
(c) Does (b) apply to the problem of co-products of groups (see Ex. 4.42)?

4.52. [64] Weak limits of models
Consider an institution with diagrams and initial models of theories. Then, for each signature Σ, the
category of Σ-models has weak J-limits whenever the category of signatures Sig has J-limits.

4.53. Preserving carriers
A signature morphism ϕ : Σ→ Σ′ preserves carriers when

Σ
ιΣM
//

ϕ

��

ΣM

ιϕ1M

��

Σ′
ιΣ′M

′
// Σ′M′

is a pushout of signature morphisms for all Σ′-models M′ and Σ-models M for which M′↾ϕ = M.
Then signature morphisms preserving carriers are closed under composition.
In FOL all signature morphisms which are bijective on sorts preserve the carriers.

4.54. Study the model amalgamation properties of E(FOL), i.e., the sub-institution of FOL
with elementary embeddings as model homomorphisms.

4.5 Inclusion systems
In this section, we introduce a general category-theoretic device that provides support for
abstract institution-independent concepts of ‘sub-model’ and ‘quotient model’. Further-
more, we will also discuss applications of this concept to categories of signatures and
theories.

The standard inclusion system of Set. Each function f : A→ B can be factored as a
composition between a surjection and an inclusion, i.e., f = e f ; i f

A
f
//

e f
��

B

f A
i f

EE

as follows:

• f A = { f a | a ∈ A},

• e f a = f a for each a ∈ A, and

• i f b = b for each b ∈ f A.
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It is easy to see that this factorization is unique, that is for any other factorization f =
e′f ; i′f with e′f surjection and i′f inclusion we necessarily have e′f = e f and i′f = i f . The
existence and the uniqueness of such a factorization are a consequence of the nature of
the surjective functions and of the inclusions. For the uniqueness, it is especially important
that inclusions are unique in the sense that there exists at most one inclusion between any
two given sets.

This factorization phenomenon may be found in various forms in many other cate-
gories, including categories of models. In a salient way, it constitutes an important con-
ceptual device in model theory, especially in its areas that are closer to universal algebra.

Categorical inclusion systems. The factorization property of functions presented above
can be expressed at the level of abstract categories. In this book, this property will be used
in two different ways: on the one hand, for categories of models in institutions, and on the
other hand, for the categories of signatures / theories of institutions.

⟨I , E⟩ is an inclusion system for a category C if I and E are two broad sub-
categories of C, i.e., |I |= |E |= |C|, such that

1. I is a partial order, and

2. every arrow f in C can be factored uniquely as f = e f ; i f with e f ∈ E and i f ∈ I .

The arrows of I are called abstract inclusions, and the arrows of E are called abstract
surjections. The domain of the inclusion i f in the factorization of f is called the image
of f and is denoted as Im( f ) or f A when dom( f ) = A. That I is partial order means that
between any objects A and B there exists at most one arrow in I . Hence it is appropriate
to denote abstract inclusions A→ B simply by A⊆ B, which yields a partial order on the
objects of C. While the reflexivity and transitivity of ⊆ follow from the fact that I is a
broad sub-category of C, the anti-symmetry of ⊆ means that A ⊆ B and B ⊆ A implies
A = B.

The following property is a useful technical device in many proofs.

Lemma 4.16 (Diagonal-fill). Given an inclusion system ⟨I , E⟩ in a category C, if f ,g ∈
C, e ∈ E , i ∈ I , and f ; i = e;g then there exists an unique h ∈ C such that e;h = f and
h; i = g.

• e
//

f

��

•

g

��

h

��

•
i
// •

Proof. Let us factor f = e f ; i f and g = eg; ig. Then e;eg; ig = e;g = f ; i = e f ; i f ; i. By the
uniqueness of the factorization of e;g = f ; i it follows that e f = e;eg and ig = i f ; i and
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also that dom(i f ) = cod(eg). Then h = eg; i f .

• e
//

f

��

e f

��

•

g

��

eg
��

•

ig ��

i f

��

•
i

// •

The uniqueness of h follows by noticing that each inclusion is mono and because
h; i = g. □

Epic inclusion systems. The abstract surjections of some inclusion systems need not
necessarily be surjective in the ordinary set-theoretic sense. Consider for example the triv-
ial inclusion system for Set where each function is an abstract surjection and the abstract
inclusions are just the identities. An inclusion system ⟨I , E⟩ is epic when all abstract sur-
jections are epis. Therefore the standard inclusion system of Set presented above is epic,
while the trivial one is not.

Unions. An inclusion system ⟨I , E⟩ has unions when I has finite least upper bounds
(denoted ∪). Note that the standard inclusion system of Set has unions which are exactly
the usual unions of sets, while the trivial inclusion system of Set does not have unions.

Inclusive functors. A functor U : ⟨I , E⟩ → ⟨I ′, E ′⟩ (between the underlying cate-
gories of the inclusion systems) is inclusive when it preserves the inclusions, i.e., UI ⊆ I ′.
Inclusion systems and inclusive functors form a category denoted IS.

Submodels and quotients in FOL
Now we will see how inclusion systems capture submodels and quotient of models from
conventional first-order model theory.

Closed and strong model homomorphisms. The category of models for a FOL sig-
nature (S,F,P) admits two meaningful epic inclusion systems which inherit the standard
inclusion system of the category of sets and functions. Before discussing them, we have
to define some special classes of model homomorphisms.

A model homomorphism h : M→ N

• is closed when Mπ = h−1Nπ for each relation symbol π ∈ P, and

• is strong when hMπ = Nπ for each relation symbol π ∈ P.

For each model homomorphism M→ N that is a set inclusion for each sort s ∈ S, let us
say that M is a submodel of N.
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Inclusion systems for FOL models.

Fact 4.17. For any FOL signature (S,F,P), the category of (S,F,P)-models admits the
following two inclusion systems:

inclusion system abstract surjections abstract inclusions
closed surjective homomorphisms closed sub-models
strong strong surjective homomorphisms sub-models

Moreover, for each signature morphism ϕ : (S,F,P)→ (S′,F ′,P′), the model reduct
functor Modϕ is inclusive between both the closed and the strong inclusion systems of
Mod(S′,F ′,P′) and Mod(S,F,P)

The difference between these two inclusion systems can easily be understood when
we try to factor a model homomorphism h : M→M′:

M

e
��

h
// M′

hM
i

CC

Then in both inclusion systems e ; i is the unique factorization of h as (many-sorted) func-
tion and (hM)s = hsMs for each sort s. Also, in both inclusion systems the interpretation
of the operation symbols is canonically defined by (hM)σm = M′σm for each operation
symbol σ ∈ Fw→s and each m ∈ (hM)w. It is easy to see that for the carriers and the op-
erations there is no other possibility. However, the difference between the two inclusion
systems occurs at the level of the interpretations of the relation symbols for hM. Given
π ∈ P, we should have e(Mπ)⊆ (hM)π and i((hM)π)⊆M′π. This means

e(Mπ)⊆ (hM)π ⊆ i−1(M′π).

For the closed inclusion system the interpretation of the relations is defined ‘maximally’
for i, while in the second situation they are defined ‘minimally’ for e.

Congruences. Several types of abstract surjections for model homomorphisms corre-
spond to several types of congruences. Given a model M for a FOL signature (S,F,P),
an S-sorted equivalence relation ∼ on M consists of an equivalence relation ∼s on Ms for
each sort s. As a matter of notation for any list of sorts w = s1 . . .sn, for any m,m′ ∈Mw,
m∼w m′ when m1 ∼s1 m′1, . . . , mn ∼sn m′n. Then ∼ is

• an (S,F)-congruence when for each operation symbol σ ∈ Fw→s, Mσm ∼s Mσm′ for
all m,m′ ∈Mw with m∼w m′,

• a (S,P)-congruence when for each relation symbol π ∈ Pw, m ∼w m′ and m ∈ Mπ

implies m′ ∈Mπ for each m,m′ ∈Mw, and

• an (S,F,P)-congruence when it is both an (S,F)-congruence and an (S,P)-congruence.
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Quotient models. Given an (S,F)-congruence∼ on M, the quotient M/∼ (of the model
M by the congruence ∼) is defined by

– (M/∼)s = {m/∼ |m ∈Ms} is the set of equivalence classes for ∼s for each sort s ∈ S,

– (M/∼)σ(m/∼) = (Mσm)/∼ for each operation σ ∈ Fw→s and each m ∈Mw, and

– (M/∼)π = {m/∼ | m ∈Mπ} for each relation symbol π ∈ P.

The homomorphism M→M/∼ mapping each m to its congruence class m/∼ is called a
quotient homomorphism.

Fact 4.18. Any quotient homomorphism M→M/∼ is strong surjective. Moreover when
∼ is an (S,F,P)-congruence it is also closed.

It is also easy to see that each closed abstract surjection is strong too.

Kernels. Given a model homomorphism f : M→ N, its kernel is defined by

= f = {(a,a′) | f a = f a′}

Fact 4.19. The kernel of any homomorphism f is an (S,F)-congruence. Moreover, it is
an (S,F,P)-congruence when f is closed.

The universal property of quotients. Model quotients admit the following universal
property:

Proposition 4.20. Let q : M→M′ be a surjective (S,F,P)-model homomorphism for a
signature (S,F,P). Then for each model homomorphism f : M→ N, if =q ⊆ = f , then
there exists a unique model homomorphism f ′ : M′→ N such that q; f ′ = f .

M
q

//

f
��

M′

f ′
��

N

Moreover, f ′ is strong when f is strong and it is closed when f is closed.

Proof. f ′ is defined by f ′(m/=q) = f m for each m ∈M. This definition is correct since
=q ⊆= f . The fact that f is an (S,F)-algebra homomorphism implies that f ′ is an (S,F)-
algebra homomorphism. Also, the fact that f is a (S,P)-model homomorphism implies
that f ′ is a (S,P)-model homomorphism. The uniqueness of f ′ follows from the fact that
q is surjective.

Simple calculations show that f being strong / closed, respectively, implies f ′ is
strong / closed, respectively. □

Corollary 4.21. For each strong surjective model homomorphism f : M→ N, M/= f
∼=

N, i.e., M/= f and N are isomorphic.
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Proof. In Prop. 4.20 above assume that f is surjective and that q is the quotient M →
M/= f . Then (=q) = (= f ) implies that f ′ is injective, while f surjective implies that
f ′ is surjective. Therefore f ′ is a bijection, which makes it immediately an (S,F)-algebra
isomorphism. When f is strong, f ′ is also strong, which means that for each relation
symbol π∈P, f ′((M/= f )π) =Nπ. This implies that the inverse f ′−1 is also a (S,P)-model
homomorphism, hence f ′ is an (S,F,P)-model isomorphism. □

Signature inclusions in FOL
Now we study inclusion systems at the level of the syntax of FOL .

Fact 4.22. The category of FOL signatures admits the inclusion systems given by the
table below:

inclusion system abstract surjections abstract inclusions
ϕ : (S,F,P)→ (S′,F ′,P′) (S,F,P) ↪→ (S′,F ′,P′)

closed ϕst : S→ S′ surjective S⊆ S′

Fw→s = F ′w→s for w ∈ S∗

Pw = P′w for s ∈ S
strong ϕst : S→ S′ surjective S⊆ S′

F ′w′→s′ =
⋃

ϕst(ws)=w′s′ ϕ
op(Fw→s) Fw→s ⊆ F ′w→s for w ∈ S∗

P′w′ =
⋃

ϕst(w)=w′ ϕ
rl(Pw) Pw ⊆ P′w for s ∈ S

Other non-trivial inclusion systems for SigFOL can be obtained by considering the
closed property at the level of the operation symbols and the strong property at the level
of the relation symbols, or vice versa.

We can also note that the closed inclusion system does not have unions but the
strong one has them:

Fact 4.23. The strong inclusion system has unions. The union of signatures (S,F,P) =
(S1,F1,P1)∪ (S2,F2,P2) is given by

• S = S1∪S2,

• for each w∈ S∗ and s∈ S, Fw→s = (F ′1)w→s∪(F ′2)w→s where (F ′k)w→s = (Fk)w→s when
w ∈ S∗k , s ∈ Sk and (F ′k)w→s = /0 otherwise, and

• for each w ∈ S∗, Pw = (P′1)w∪ (P′2)w where (P′k)w = (Pk)w when w ∈ S∗k and (P′k)w = /0

otherwise.

Inclusive institutions. An institution (Sig,Sen,Mod, |=) is called inclusive when Sen
is an inclusive functor, i.e., the category of signatures comes equipped with an inclusion
system such that SenΣ ⊆ SenΣ′ whenever Σ ⊆ Σ′ is an inclusion of signatures. For ex-
ample PL (propositional logic) is inclusive by considering the inclusion system for its
signatures to be the standard inclusion system of Set, but FOL falls short from being in-
clusive because of the translations of the quantifiers that update the signature part in the
qualification of the variables (i.e. for any inclusion of signatures Σ⊆ Σ′, a variable (x,s,Σ)
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gets translated to (x,s,Σ′)). At this moment an adjustment of the definition of FOL such
that it becomes an inclusive institution is an open research problem. An alternative to this
is to by-pass this problem by relaxing the inclusive functor condition by allowing each
signature inclusion Σ⊆ Σ′ to get mapped to a designated injection SenΣ→ SenΣ′.

Theory inclusions
Let us consider an arbitrary institution I such that its category of signatures is endowed
with an inclusion system. Its category CTh of closed theories inherits the inclusion sys-
tems from the category of signatures in two different ways similar to the ways model
homomorphisms in FOL inherit the conventional inclusion system of Set. A theory mor-
phism ϕ : (Σ,E)→ (Σ′,E ′) in CTh

• is closed when E = ϕ−1E ′, and

• is strong when E ′ = (ϕE)∗∗.

Then in CTh, we may factor each theory morphism ϕ : (Σ,E)→ (Σ′,E ′) through the
inclusion system of the signatures as ϕ = eϕ ; iϕ

(Σ,E)

eϕ
  

ϕ
// (Σ′,E ′)

(ϕΣ,E ′′)
iϕ

>>

In order to get a factorization of ϕ in CTh, it remains to fix the theory E ′′. Since E,E ′,E ′′

are all closed theories, we can establish easily that

(eϕE)∗∗ ⊆ E ′′ ⊆ i−1
ϕ E ′.

This means that at the general level, we have two choices for E ′′,

• a ‘maximal’ one, when iϕ is closed, or

• a ‘minimal’ one, when eϕ is strong.

Hence we can formulate the following result (and leave it straightforward proof as an
exercise to the reader).

Proposition 4.24. In any institution, an inclusion system of signatures lifts to closed
theories in two different ways as shown in the following table:

inclusion system abstract surjections abstract inclusions
ϕ : (Σ,E)→ (Σ′,E ′) (Σ,E)⊆ (Σ′,E ′)

closed ϕ : Σ→ Σ′ abstract surjection Σ⊆ Σ′ abstract inclusion (i)
E = i−1E ′

strong ϕ : Σ→ Σ′ abstract surjection Σ⊆ Σ′ abstract inclusion
E ′ = (ϕE)∗∗
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At this point perhaps many of us wonder why CTh and not Th for establishing
meaningful inclusions systems for categories of theory morphisms? If we tried with Th
then E ′′ in (Σ′′,E ′′) would be essentially undetermined in any of the ‘closed’ and ‘strong’
choices, which are in fact about E ′′∗∗. The problem here is that there can be many E ′′

with the same closure. At the general level, the only way out of this problem is to impose
that E ′′ is closed, but such a choice would immediately lead to CTh (just by looking at
what happens with the identities, which are abstract inclusions and abstract surjections
simultaneously).

The following result shows that unions are inherited by the strong inclusion system
of theories (its proof is left as an exercise to the reader).

Proposition 4.25. When the inclusion system of the signatures has unions, the strong
inclusion system of theories has unions too by letting

(Σ,E)∪ (Σ′,E ′) = (Σ∪Σ
′,(iE ∪ i′E ′)∗∗)

where i / i′ denote the inclusions Σ⊆ Σ∪Σ′ / Σ′ ⊆ Σ∪Σ′, respectively.

Exercises
4.55. In any inclusion system the class of the abstract inclusions determines the class of abstract
surjections, in the sense that if ⟨I , E⟩ and ⟨I ′, E ′⟩ are two inclusion systems for the same category
and if I ⊆ I ′, then E ′ ⊆ E .

4.56. In any inclusion system

• each abstract inclusion is a mono,

• each co-equalizer is an abstract surjection,

• an arrow is both an abstract inclusion and an abstract surjection if and only if it is an identity,

• if f ;g is an abstract surjection, then g is an abstract surjection.

4.57. In any category with an inclusion system, the abstract surjections are stable under pushouts.

4.58. In any category with an inclusion system, for each sink ⟨i, g⟩ that has a pullback, if i is an
abstract inclusion then there exists a unique pullback ⟨g′, i′⟩ such that i′ is an abstract inclusion

• i
// •

•

g′

OO

i′
// •

g

OO

Consequently, each sink of abstract inclusions •
⊆
//• •

⊇
oo that has a pullback, has a unique

pullback consisting of abstract inclusions. (Comment: These allow for the definition of the ‘in-
tersection’ A∩B of any two objects in an inclusion system as the pullback of their union A∪B,
provided that the latter exists. Moreover, A∩B is the infimum of A and B in the partial order of the
abstract inclusions.)

4.59. In any inclusion system for a category with small limits, each small co-cone (ik : Nk→M)k∈I
of inclusions has a limit (i′k : N→ Nk)k∈I consisting of inclusions.
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4.60. In any epic inclusion system, the abstract inclusions are weakly stable under direct products,
i.e. if (pi : M→Mi)i∈I is a direct product and (hi : Ni→Mi)i∈I are abstract inclusions then there
exists a direct product (qi : N→ Ni)i∈I such that the unique homomorphism h : N→M such that
h; pi = qi;hi, i ∈ I, is abstract inclusion.

N

h ⊆
��

qi
// Ni

hi⊆
��

M pi
// Mi

4.61. Properties of IS

• The forgetful functor IS→ Cat mapping inclusion systems to their underlying categories has
a left adjoint and creates small products.

• The category IS of inclusion systems is cartesian closed.

4.62. Generated closed sub-models
Given an (S,F,P)-model M for a FOL signature (S,F,P), an arbitrary intersection of [closed] sub-
models of M is a submodel of M. This allows for the following definition: for any S-sorted set
(Xs)s∈S ⊆ (Ms)s∈S we say that N is the [closed] submodel of M generated by X when N is the least
[closed] submodel containing X .

4.63. Intersection of congruences
For any model of any FOL signature (S,F,P), an arbitrary intersection of (S,F)-congruences is a
congruence but only the intersection of a non-empty family of (S,F,P)-congruences is an (S,F,P)-
congruence.

4.64. For any family { fi : Mi→ Ni | i ∈ I} of model homomorphisms for a fixed FOL signature,
the cartesian product ∏i∈I fi : ∏i∈I Mi → ∏i∈I Ni is closed / strong, when the fi’s are closed /
strong, respectively.

4.65. Amalgamation of homomorphisms
The sub-institutions of FOL determined by the closed / strong model homomorphisms, respec-
tively, are exact.

4.66. Inclusion system for preordered algebras
For any algebraic signature (S,F), the category of preordered (S,F)-algebras admits an inclusion
system in which the abstract inclusions are closed preordered subalgebras, i.e., preordered subal-
gebras M ↪→ N such that m ≤M m′ if and only if m ≤N m′, and the abstract surjections are just
preordered algebra homomorphisms which are (component-wise) surjective functions.

4.67. Preorder algebra congruences
A POA-congruence (preorder algebra congruence) on a preorder algebra for a signature (S,F) is a
pair (∼,⊑) such that

• ∼ is an (S,F)-congruence on M,

• ⊑ is a(n S-sorted) preorder on M compatible with the operations and which contains M≤, i.e.,
M≤ ⊆ ⊑, and

• a′ ∼ a, a⊑ b, b∼ b′ implies a′ ∼ b′ for all elements a,a′,b,b′ of M.
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The POA-kernel ker(h) of a preorder algebra homomorphism h : M→N is (=h,≤h) where a =h b
is defined by ha = hb and a≤h b by ha≤ hb.

Define the quotient of preordered algebras by POA-congruences. Extend Prop. 4.20 to a
universal property for preordered algebra quotients.

4.68. Inclusion systems for partial algebra
Let (S,TF,PF) be a PA signature. A homomorphism h : A→ B of partial algebras is

• full if whenever Bσ(ha) ∈ hA, then there exists a′ ∈ Aw such that Aσa′ is defined and ha′ = ha,

• closed when Aσa is defined if Bσ(ha) is defined

for each σ ∈ PFw→s.
The category of (S,TF,PF)-partial algebras admits the following inclusion systems:

abstract surjections abstract inclusions
epi homomorphisms closed inclusions (Sc)

surjective homomorphisms full inclusions (S f )
full surjective homomorphisms (plain) inclusions (Sw)

4.69. Full FOL model homomorphisms
Let (S,F,P) be a FOL signature. An (S,F,P)-model homomorphism h : M→N is full when hMπ =
Nπ∩hMw for each relation symbol π ∈ P. Then

• any full surjective model homomorphism is strong, and

• any closed model homomorphism is full.

4.70. Which of the institutions MBA , MA , CA , IPL , HOL , and HN K , admit non-trivial inclu-
sion systems for their categories of models?

4.71. Inclusion systems for MVL models
For any MVL signature (S,C,P) its category of models admits a ‘closed’ and a ‘strong’ inclusion
system as follows:

closed: the abstract surjections are the surjective homomorphisms and abstract inclusions are the
inclusive homomorphisms M→N (i.e. Ms ⊆Ns for each s∈ S) such that Mπm = Nπm for
all π ∈ Pw and m ∈Mw.

strong: the abstract surjections are the surjective homomorphisms h : M → N such that Nπy =∨
{Mπx | hwx = y} for all π ∈ Pw and y ∈ Nw and the abstract inclusions are the inclusive

homomorphisms.

4.72. Let (Σ,E), (Σ′,E ′), and (Σ′′,E ′′) be closed theories in an arbitrary institution and ϕ : Σ→ Σ′

and φ : Σ′ → Σ′′ be signature morphisms such that ϕ;φ is a theory morphism (Σ,E)→ (Σ′′,E ′′).
Then

• if ϕ is a strong theory morphism (Σ,E)→ (Σ′,E ′), then φ is a theory morphism (Σ′,E ′)→
(Σ′′,E ′′), and

• if φ is a closed theory morphism (Σ′,E ′)→ (Σ′′,E ′′), then ϕ is a theory morphism (Σ,E)→
(Σ′,E ′).

4.73. The strong inclusion system of FOL signatures is epic.

4.74. When the inclusion system of signatures is epic, both the closed and the strong inclusion
systems of theories are epic too.
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4.75. Prove Prop. 4.24.

4.76. Prove Prop. 4.25. Why the closed inclusion system of the theories does not inherit the unions
from the inclusion system of the signatures?

4.6 Free models
In this section, we study the existence of free models along theory morphisms, which
means the existence of left-adjoint functors to the reducts Mod(Σ′,E ′)→Mod(Σ,E) cor-
responding to theory morphisms (Σ,E)→ (Σ′,E ′). This general problem comes from
specification theory as it supports initial semantics in the context of structured specifica-
tions. It can be solved in two steps as follows. First, we establish the existence of initial
models for certain theories, and then on this basis we develop the full result. At this point
in the book we only have means to prove the existence of initial models for Horn theories
in first-order logic. Later on, in Chap. 8, empowered by quasi-varieties, we will be able
to develop a general institution-independent approach to initial models of theories. For
the second step, we can already develop it in an the institution-independent manner by
assuming initial models for theories.

Initial models of Horn theories in FOL
Recall that a Horn clause for a signature (S,F,P) is a sentence of the form (∀X)H ⇒C,
where H is a finite conjunction of (relational or equational) atoms, C is a (relational or
equational) atom, and H⇒C is the implication of C by H.

For each (S,F,P)-model M and for each set Γ of Horn (S,F,P)-clauses, we define
the model MΓ by

– Let

=Γ =
⋂
{=h | h : M→ N model homomorphism and N |= Γ}.

Since any intersection of (S,F)-congruences is an (S,F)-congruence, =Γ is an (S,F)-
congruence too.

– As (S,F)-algebra, let MΓ be the quotient M/=Γ
.

– For each relation symbol π ∈ P let

(MΓ)π = {m/=Γ
| hm ∈ Nπ for each h : M→ N such that N |= Γ}.

We notice easily that the quotient mapping qΓ : M→MΓ defined by qΓm = m/=Γ
is a

model homomorphism.
However note also that MΓ is not the quotient M/=Γ

of the (S,F,P)-model M by =Γ

(as defined in Sect. 4.5). The reason is that they differ on the interpretations of the relation
symbols; we have that (M/=Γ

)π ⊆ (MΓ)π but in general, this is a strict inclusion.
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Proposition 4.26. Let Γ be any set of Horn (S,F,P)-clauses.

1. For each (S,F,P)-model homomorphism h : M→ N such that N |= Γ there exists a
unique model homomorphism hΓ : MΓ→ N such that qΓ;hΓ = h.

M
qΓ
//

h
  

MΓ

hΓ

��

N

2. MΓ |= Γ.

Proof. 1. This follows from Prop. 4.20 because (=qΓ
) = (=Γ) ⊆ (=h). Note that

hΓ(m/=Γ
) = hm for each m ∈M.

2. Let (∀X)H ⇒C be any Horn clause in Γ. Consider any expansion M′
Γ

of MΓ to
(S,F +X ,P) such that M′

Γ
|= H. We have to prove that M′

Γ
|=C.

Let M′ be any expansion of M to (S,F +X ,P) such that qΓ : M′→M′
Γ

is an (S,F +
X ,P)-model homomorphism (which means that for each x ∈ X we choose an element
M′x ∈ (M′

Γ
)x).

For any model homomorphism h : M→ N such that N |= Γ let N′ be the expansion
of N to (S,F +X ,P) such that h : M′ → N′ is an (S,F +X ,P)-model homomorphism
(thus defined by N′x = hM′x). Then hΓ : M′

Γ
→ N′ becomes an (S,F +X ,P)-model homo-

morphism too. Because M′ |= H and h : M′ → N′, as model homomorphism, preserves
the satisfaction of the atoms (the reader is requested to check this) we have that N′ |= H,
which implies N′ |=C (because N |= (∀X)H⇒C).

• When C is an equational atom t = t ′, N′ |= t = t ′ means that hM′t = hM′t ′ which,
written differently, means (M′t ,M

′
t ′) ∈=h. Since h is arbitrarily chosen, this implies

M′t =Γ M′t ′ . Thus M′
Γ
|= t = t ′.

• When C is a relational atom πt (for t an appropriate list of terms), N′ |= πt means
that hM′t = N′t ∈ Nπ which, since h is arbitrarily chosen, implies M′t/=Γ

∈ (MΓ)π.
But this means that (M′

Γ
)t ∈ (MΓ)π which is the same with M′

Γ
|= πt.

Thus M′
Γ
|=C. □

The result of Prop. 4.26 says that MΓ is the free Γ-model over M. In the language of
adjoint functors, this is the same as saying that the forgetful functor Mod((S,F,P),Γ)→
Mod(S,F,P) has a left-adjoint.

Initial models of FOL signatures. To obtain that each Horn theory in FOL has initial
models, we should apply Prop. 4.26 for M being the initial (S,F,P)-model. So we have to
establish the existence of initial models in Mod(S,F,P).

Proposition 4.27. For any FOL-signature (S,F,P) there exists an initial (S,F,P)-model
0(S,F,P) defined by
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– for each sort s ∈ S, let (0(S,F,P))s = (T(S,F))s be the set of all (S,F)-terms of sort s;

– for each operation symbol σ ∈ Fw→s and for each list of terms (t1, . . . , tn) ∈ (T(S,F))w,

(0(S,F,P))σ(t1, . . . , tn) = σ(t1, . . . , tn);

– for each relation symbol π ∈ Pw, (0(S,F,P))π = /0.

Proof. For each (S,F,P)-model N, there exists a unique model homomorphism
h : 0(S,F,P)→ N defined by

hs(σt) = Nσ(hwt)

(for each operation symbol σ ∈ Fw→s and each list of terms t ∈ (T(S,F))w). □

Corollary 4.28. For any set Γ of Horn (S,F,P)-clauses, the model 0Γ = (0(S,F,P))Γ is the
initial Γ-model, i.e., the initial model in Mod((S,F,P),Γ).

Liberal theory morphisms
In any institution, a theory morphism ϕ : (Σ,E)→ (Σ′,E ′) is liberal if and only if the
reduct functor Modϕ : Mod(Σ′,E ′)→Mod(Σ,E) has a left-adjoint ( )ϕ. In other words,
for each (Σ,E)-model M there exists a (Σ′,E ′)-model Mϕ and a Σ-model homomorphism
ηM : M→ (Mϕ)↾ϕ

M |=Σ E M
ηM
//

h
��

(Mϕ)↾ϕ

h′↾ϕ{{

Mϕ

there exists a unique h′
||

M′ |=Σ′ E ′ M′↾ϕ M′

such that for each (Σ′,E ′)-model M′ and for each Σ-model homomorphism h : M →
M′↾ϕ, there exists a unique Σ′-model homomorphism h′ : Mϕ→M′ such that ηM ; h′↾ϕ =
h. The pair (ηM,Mϕ) is called the free extension of M along ϕ , or the free (Σ′,E ′)-model
over M. We already have an example of this in FOL : (qΓ,MΓ) is the free extension of M
along the theory morphism 1(S,F,P) : ((S,F,P), /0)→ ((S,F,P),Γ).

Note that by the composition of adjunctions (see Sect. 2.3), the composition of
liberal theory morphisms is liberal. An institution is liberal if and only if each theory
morphism is liberal.

In any institution with initial signatures (let Z be one of them) which are mapped by
the model functor to the terminal category (a property which holds in any exact institu-
tion), it is easy to see that the existence of initial models for a theory (Σ,E) is the same as
the liberality of the unique theory morphism (Z, /0)→ (Σ,E). This shows that under very
mild conditions the existence of initial models of theories is a special case of liberality.
In what follows we will work towards the converse of this, to establish how general lib-
erality may follow from the existence of free models of theories. The crucial move in this
direction is to decompose the general problem of free extensions along theory morphisms
ϕ : (Σ,E)→ (Σ′,E ′) into two of its special cases:
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1. when ϕ is a theory inclusion of the form 1Σ : (Σ, /0)→ (Σ,E), and

2. when ϕ is a signature morphism Σ→ Σ′.

Proposition 4.29. Consider an institution with diagrams ι such that each theory has an
initial model. Then

1. for each theory (Σ,E), the forgetful functor Mod(Σ,E)→ ModΣ has a left-adjoint,
and

2. if in addition the institution has pushouts of signatures and is semi-exact, then for
each signature morphism ϕ the reduct functor Modϕ has a left adjoint.

Proof. For each theory (Σ,E), we denote its initial model by 0Σ,E .

1. Consider a theory (Σ,E) and let M be a Σ-model. Let E ′= (ιΣM)E. We show that M′=
(0ΣM ,EM∪E ′)↾ιΣM is the free (Σ,E)-model over M with the universal arrow
ηM = (MM → 0ΣM ,EM∪E ′)↾ιΣM : M→M′. Thus we have to prove that for each model
homomorphism h : M→ N such that N |=Σ E, there exists a unique h′ : M′→ N such
that ηM ; h′ = h.

M
ηM
//

h
  

M′

h′

��

N

Let Nh = i−1
Σ,Mh. Then

1 Nh |= E ′ N |= E, Nh↾ιΣM = N, Satisfaction Condition

2 Nh |= EM definition of Nh.

Hence Nh |= EM ∪E ′. Let h′′ be the unique model homomorphism h′′ : 0ΣM ,EM∪E ′ →
Nh. Let h′ = h′′↾ιΣM . Then

ηM ; h′ = (MM → 0ΣM ,EM∪E ′)↾ιΣM ; h′′↾ιΣM = (MM → Nh)↾ιΣM = h.

The uniqueness of h′ follows by the hom-sets bijection

(M/ModΣ)(ηM,h) ∼= Mod(ΣM,EM)(0ΣM ,EM∪E ′ ,Nh).

2. Let ϕ : Σ→ Σ′ be a signature morphism and let M be a Σ-model. Consider the follow-
ing pushout square of signature morphisms:

ΣM
ϕ′
// Σ′′

Σ

ιΣM

OO

ϕ
// Σ′

ι′

OO
(4.2)
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We define Mϕ = (0Σ′′,ϕ′EM )↾ι′ and the candidate universal arrow ηM : M → (Mϕ)↾ϕ

to be (MM → (0Σ′′,ϕ′EM )↾ϕ′)↾ιΣM . For proving the universal property of ηM , consider
h : M → N↾ϕ with N any Σ′-model. We have to prove the existence of a unique Σ′-
model homomorphism h′ : Mϕ→ N such that the following diagram commutes:

M
ηM
//

h
!!

Mϕ↾ϕ

h′↾ϕ

��

Mϕ

h′

��

N↾ϕ N

Let Mh = i−1
Σ,Mh. Then Mh↾ιΣM = N↾ϕ which by the semi-exactness hypothesis applied

to the pushout square (4.2), allows for the existence of a unique amalgamation N⊗Mh.
We have that:

1 (N⊗Mh)↾ϕ′ = Mh definition of N⊗Mh

2 Mh |= EM definition of Mh

3 N⊗Mh |= ϕ′EM 1, 2, Satisfaction Condition.

Therefore there exists a unique model homomorphism h′′ : 0Σ′′,ϕ′EM → N⊗Mh. We
define h′ = h′′↾ι′ . Note that h′ : Mϕ→ N. It follows that:

1 ηM ; h′↾ϕ = ηM ; h′′↾ι′↾ϕ definition of h′

2 h′′↾ι′↾ϕ = h′′↾ϕ′↾ιΣM commutativity of (4.2), functoriality of Mod

3 ηM = (MM → (0Σ′′,ϕ′EM )↾ϕ′)↾ιΣM by definition

4 (MM →Mh)↾ιΣM = h definition of Mh

5 ηM ; h′↾ϕ = h 1, 2, 3, 4.

It remains to justify the uniqueness of h′. This follows from the uniqueness of h′′ (from
the initiality property of 0Σ′′,ϕ′EM ) and from the uniqueness side of the amalgamation
property for model homomorphisms (by using the semi-exactness hypothesis since h′′

is the amalgamation of h′ and h′′↾ϕ′ ).

□

Corollary 4.30. A semi-exact institution with diagrams and pushouts of signatures is
liberal when each theory has an initial model.

Conversely, if the institution has initial signatures and is finitely exact, each theory
has an initial model whenever the institution is liberal.

Proof. The second part of this corollary has been already discussed above. For the first
part let us consider a theory morphism ϕ : (Σ,E)→ (Σ′,E ′). Let M be a (Σ,E)-model.
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By Prop. 4.29 let (ηM,M′) be its free extension along ϕ as a signature morphism Σ→ Σ′

and let (ζM′ ,Mϕ) be the free (Σ′,E ′)-model over the Σ′-model M′.

M
ηM
//

h
""

M′↾ϕ

ζM′↾ϕ
//

h′↾ϕ

��

(Mϕ)↾ϕ

h′′↾ϕzz

M′

h′

��

ζM′
// Mϕ

h′′
zz

N′↾ϕ N′ |=Σ′ E ′

Then it is easy to see that (ηM ; ζM′↾ϕ, Mϕ) is the free extension of M along the theory
morphism ϕ : (Σ,E)→ (Σ′,E ′). □

A concrete application of Cor. 4.30 is the following:

Corollary 4.31. The institution HCL is liberal.

Liberal institution mappings

It is also useful to consider free models also across the institution morphisms or comor-
phisms. An institution morphism (Φ,α,β) : I ′→ I is liberal when the model translations
βΣ′ : Mod′Σ′→Mod(ΦΣ′) have left adjoints for all I ′-signatures Σ′. Similarly, an insti-
tution comorphism (Φ,α,β) is liberal when all βΣ’s have left adjoints.

Persistently liberal institution (co-)morphisms. Especially useful for the transfer of
institutional properties across institution mappings is the case when these adjunctions cor-
responding to the model translations βΣ are persistent, which means that the left-adjoint to
βΣ is also a left-inverse (up to isomorphism) to βΣ. In many actual situations, persistently
liberal institution comorphisms determine useful ‘representations’ of a more complex in-
stitution into a simpler one. The following is an example.

Encoding relations as operations. Recall the comorphism FOL→ FOEQL discussed
in Sect. 3.3. For each FOL-signature (S,F,P), the adjunction between ModFOL(S,F,P)
and ModFOL(S + {b},F + P + {true, /0}) is persistently liberal, with the free
(S+ {b},F +P+ {true})-algebra M′ over a model M interpreting ‘freely’ the non-true
values by M′b = {M′true}⊎{πm | π ∈ P,m ̸∈Mπ}. Hence

Proposition 4.32. The encoding of relations as operations FOL → FOEQL is a persis-
tently liberal comorphism.

Exercises
4.77. Give a counterexample showing that FOL is not liberal.

4.78. From Prop. 4.29 derive that each FOL signature morphism is liberal.
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4.79. Γ-congruences
Let Γ be a set of Horn clauses for an algebraic signature (S,F). A congruence ≡ on an algebra A is
a Γ-congruence if and only if for any sentence (∀X)H⇒ (t = t ′) in Γ and for each expansion A′ of
A to (S,F +X), A′t ≡ A′t ′ if A′t1 ≡ A′t2 for all t1 = t2 in H. Then =Γ is the least Γ-congruence.

4.80. Liberality in PA
In PA each morphism between presentations of universally quantified (possibly conditional) exis-
tence equations is liberal.

4.81. Liberality in POA
The institution HPOA (of Horn POA-sentences) is liberal. (Hint: Extend the concept of Γ-congru-
ence of Ex. 4.79 to POA-congruences of Ex. 4.67 and show that for each POA-algebra M, the
quotient qΓ : M → M/(=Γ,≤Γ) is the free preordered algebra satisfying Γ, where (=Γ,≤Γ) is the
least Γ-POA-congruence.)

4.82. Give a counterexample showing that in the institution MA of multialgebras not all sets of
atoms have initial models.

4.83. (a) Give a counterexample showing in general, in HOL , signatures do not admit initial mod-
els. (b) On the other hand, all HN K -signatures which have at least one constant for each type have
initial models. (Hint: Consider the comorphism (Φ,α,β) : HN K → FOEQL th of Ex. 4.12. Then
for each HN K -signature Σ, the FOEQL-theory ΦΣ has initial models, one of them being just the
term model.)

4.84. Each LA-signature morphism is liberal.

4.85. Each CA-signature has initial algebras. (S,F,q) in CA has an initial algebra. (Hint: For any
CA-signature (S,F,q) the S-sorted set T ω

F of (possibly) infinite terms can be organized as a contrac-
tion (S,F,q)-algebra with the distance between two terms t and t ′ being qα(t,t ′), where α(t, t ′) is the
minimum depth at which t and t ′ differ.)

4.86. Liberality of comorphism FOL → (F OL1)th

The encoding of many-sorted logic into single-sorted logic described in Sect. 4.1 is a liberal co-
morphism. (Hint: For each FOL-signature (S,F,P) and any (S,F,P)-model M, we first take the
disjoint union

⊎
s∈S Ms. Then we take the free F-algebra over

⊎
s∈S Ms where F is the single-sorted

variant of F . Then we take take its quotient under the congruence generated by the pairs ⟨σm, m′⟩
for which Mσm = m′ for all σ ∈ F . The final step is to organize this quotient F-algebra as an
(F ,P∪{(− : s) | s ∈ S})-model; this is done in a canonical way.)

4.87. Institution representations
An institution representation I → I ′ is just a persistently liberal institution comorphism I → I ′th

from I to the theories of I ′. Institution representations compose and form a category. (Hint: For
any institution representation I → I ′, the induced institution comorphism I th→ I ′th is persistently
liberal.)

4.88. [186] Creating liberality along institution comorphisms
Persistently liberal institution comorphisms (Φ,α,β) : I → I ′ create liberality in the sense that any
theory morphism ϕ : (Σ1,E1)→ (Σ2,E2) is liberal if Φϕ : (ΦΣ1,αE1)→ (ΦΣ2,αE2) is liberal.
Apply this to the following comorphisms:

• PA → FOL th (the operational encoding introduced in Sect. 4.1),

• PA → FOEQL th of Ex. 4.10,
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• POA → FOL th of Ex. 4.9,

• MBA → FOL of Ex. 3.22,

• AUT → F OL1 of Ex. 3.23,

• IPL → (FOEQL1)th of Ex. 4.11, and

• LA → (FOEQL1)th of Ex. 4.14,

and from all these deduce corresponding liberality results for PA , POA , MBA , AUT , IPL , and
LA .

4.89. Comorphism EQL →CatEQL
Construct a canonical institution comorphism EQL →CatEQL (see Ex. 3.7) by mapping

• each algebraic signature (S,F) to the category Alg(S,F) of (S,F)-algebras, and

• each (S,F)-equation (∀X)t = t ′ to the Alg(S,F)-equation (∀T(S,F)(X))t♯ = t ′♯ where t♯, t ′♯ are
the unique extensions of t, t ′ to (S,F)-algebra homomorphisms T(S,F)({∗})→ T(S,F)({X})
from the (S,F)-algebra free over the singleton set {∗} to the (S,F)-algebra free over the set X .

4.90. [64] Model pushouts
In any liberal institution with diagrams the category of models of any theory has pushouts. More-
over, if the institution is also exact and has initial signatures, then the category of models of any
theory has finite co-limits. (Hint: the pushout of model homomorphisms is the same with the uni-
versal arrow to a canonical functor between comma categories of models.)

Notes. In many institution theory texts, especially those from formal / algebraic specification, our
‘theories’ are called ‘presentations’. Our choice of terminology here is aligned with the mainstream
terminology in logic.

Both the ‘operational’ and the ‘relational’ encoding comorphisms PA → FOL th appear in
[186]. Encoding modalities in relational logic is known in modal logic literature under the name of
‘standard translation’. The ideas behind the comorphism HN K → FOEQL th appear in [178].

Co-limits of theories have been playing a very important role in algebraic specification [124,
96, 219]; one could say that the search for an institution-independent approach to compositionality
of specification theories was one of the origins of institutions. By contrast, theory limits seem to be
much less important in applications.

Institution theory is the only model theory that first properly identified [218] and then gradu-
ally realized the importance [96] of the model amalgamation (exactness) properties of logics. Since
then semi-exactness has been intensively used as a basic institutional property by various works
in algebraic specification. In practice very often the weak version of exactness suffices. This has
been already considered in several works [60, 231] and is especially important for the case of the
multi-paradigm or heterogeneous institutions obtained by a Grothendieck construction on institu-
tions [62]. Model amalgamation has been extended to arbitrary co-cones in works such as [221].

The model amalgamation proof for FOL is similar in flavour to the functorial semantics of
[160], and appears in the form we have presented here in [221].

The method of diagrams pervades much of conventional model theory [42]. The institution-
independent method of diagrams used here was developed in [64] and has been used in [64, 140,
139] etc. A precursor of the method of diagrams has been used for developing quasi-variety theo-
rems and the existence of free models within the context of the so-called ‘abstract algebraic insti-
tutions’ [227, 228]. Elementary homomorphisms have been introduced in [139]. The existence of
limits and co-limits of models via diagrams has been obtained in [64].
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Inclusion systems and inclusive institutions were introduced in [96] for the institution-inde-
pendent study of structuring specifications, however there they were defined in a stronger version
corresponding to our epic inclusion systems with unions. In [96, 130] they provide the underlying
mathematical concept for module imports, which are the most fundamental structuring constructs.
Inclusions of models are used in [212, 64, 81] for an institution-independent approach to quasi-
varieties of models. Mathematically, inclusion systems capture categorically the concept of set-
theoretic ‘inclusion’ in a way reminiscent of the well-known factorization systems [31]; however in
many applications the former are more convenient than the latter. In [53] the original definition of
[96] has been weakened to what they called ‘weak inclusion systems’, which are just our inclusion
systems.

Our (S,F,P)-congruences are elsewhere called ‘closed’ congruences.
Liberality has played a central role in institution theory from its beginning [124]. This was

due to the traditionally important role played in algebraic specification by initial algebra semantics.
Free models along theory morphisms provide semantics for initial denotation modules in structured
algebraic specifications [124]. Our institution comorphisms I → (I ′)th have been studied in [183,
130] under the name of ‘simple theoroidal comorphisms’.





Chapter 5

Internal Logic

The definition of the satisfaction relation between models and sentences in FOL was a
two-layered process. At the base level, we have defined the satisfaction of atomic sen-
tences. Then we performed an induction step on the structure of the sentences. This
Tarskian process of determining the actual satisfaction between models and sentences
is a common pattern for a multitude of concrete institutions. This is the case whenever
the sentences are defined inductively. In this chapter, we develop an abstract institution-
independent approach to this process by providing a uniform general treatment to Boolean
connectives, to quantifiers, and to some extent even to atomic sentences.

Our approach to atomic sentences is based on a simplified form of categorical in-
jectivity. When considering Horn sentences at an institution-independent level, their sat-
isfaction is equivalent to (full) categorical injectivity. Later on in the book this will prove
very useful for the development of Birkhoff-style axiomatizability results.

Many important results in model theory rely upon quantification being first order.
First-order quantifiers are handled at the institution-independent level by the concept of
‘(quasi-)representable’ signature morphisms. This is a rather semantic property as its for-
mulation involves the models of the institution.

Other topics of this chapter include substitutions (in continuation to our approach
to quantifiers) and a deepening of the study of elementary homomorphisms.

5.1 Boolean connectives

Given a signature Σ in an institution and a class M of Σ-models by M we denote
ModΣ \ M. Then a Σ-sentence ρ′ is a semantic

– negation of ρ when ρ′∗ = ρ∗;

– conjunction of the Σ-sentences ρ1 and ρ2 when ρ′∗ = ρ∗1 ∩ ρ∗2;

– disjunction of the Σ-sentences ρ1 and ρ2 when ρ′∗ = ρ∗1 ∪ ρ∗2;
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– implication of the Σ-sentences ρ1 and ρ2 when ρ′∗ = ρ∗1 ∪ ρ∗2;

– equivalence1 of the Σ-sentences ρ1 and ρ2 when ρ′∗ = (ρ∗1 ∩ ρ∗2) ∪ (ρ∗1 ∩ ρ∗2);

– true when ρ′∗ = ModΣ; and

– false when ρ′∗ = /0.

A more informal way to express these connectives is by relying on a meta-level. For
example ρ′ is the negation of ρ when for each Σ-model M, M |= ρ′ if and only if M ̸|= ρ.
Or ρ′ is the conjunction of ρ1 and ρ2 when for each Σ-model M, M |= ρ′ if and only if
M |= ρ1 and M |= ρ2, etc.

Fact 5.1. Negations, conjunctions, disjunctions, implications, and equivalences of sen-
tences are unique up to semantical equivalence.

An institution has (semantic) negation when each sentence of the institution has a
negation. It has (semantic) conjunctions when every two sentences (of the same signature)
have a conjunction. Similar definitions can be formulated for disjunctions, implications,
and equivalences. Designated Boolean connectives are denoted in the familiar way, nega-
tions by ¬ρ , conjunctions by ρ1∧ρ2 , disjunctions by ρ1∨ρ2 , implications by ρ1⇒ ρ2 ,
equivalences by ρ1⇔ ρ2 , true by true, and false by false.

When they exist, the semantic Boolean connectives are inter-definable as shown by
the following result which is familiar to us from propositional logic. In this sense the
institution-independent semantics of the Boolean connectives represent an ‘internalisa-
tion’ of propositional logic in abstract institutions.

Fact 5.2. In any institution having the corresponding Boolean connectives we have that

• disjunction: ρ1∨ρ2 |=| ¬(¬ρ1∧¬ρ2);

• implication: ρ1⇒ ρ2 |=| ¬ρ1∨ρ2;

• equivalence: ρ1⇔ ρ2 |=| (ρ1⇒ ρ2)∧ (ρ2⇒ ρ1);

• false: false |=| ρ∧¬ρ;

• etc.

In this book, we will sometimes use a notation like ∧E to denote the conjunction
of a finite set of sentences E. While the meaning of this is straightforward when the
institution has conjunctions and E is non-empty, ∧ /0 is just true. This means that the use
of the notation ∧E for any finite set E of sentences requires that the institution has true.
Sometimes it is not necessary to assume this explicitly since it may hold as a consequence
of other conditions, for example, when the institution has conjunctions and negations.

An institution which has all semantic Boolean connectives is called a Boolean com-
plete institution.

The following gives the situation of the semantic Boolean connectives in some in-
stitutions (the reader is invited to check this table by himself):

1Not to be confused with the semantical equivalence relation |=| between sentences.
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institution ∧ ¬ ∨ ⇒ ⇔
FOL , PL , HOL , HN K , MFOL♯, MPL♯ √ √ √ √ √

FOL+ √ √

EQL , HCL , MVL♯

EQLN
√

MFOL∗, MPL∗, IPL
√

Note that while designated connectives are semantic connectives, the presence of a
semantic connective does not necessarily mean it is designated. For instance if we define
PL only using the connectives ¬ and ∧, we would still have the other semantic Boolean
connectives but those are not designated. For instance ¬(¬ρ1 ∧¬ρ2) is a semantic dis-
junction of ρ1 and ρ2 but it is not a designated one.

Exercises
5.1. Preservation of Boolean connectives along signature morphisms
Let ρ′ be a semantic conjunction of the Σ-sentences ρ1 and ρ2. Let ϕ : Σ→ Σ′ be a signature
morphism. Then ϕρ is a semantic conjunction of ϕρ1 and ϕρ2. Prove similar preservation properties
for the other Boolean connectives.

5.2. In any institution, for any sets of Σ-sentences Γ and any Σ-sentences ρ, ρ1, ρ2 we have

1. Γ |= ρ1 and Γ |= ρ2 if and only if Γ |= ρ1∧ρ2,

2. ρ1 |= Γ and ρ2 |= Γ if and only if ρ1∨ρ2 |= Γ,

3. false |= Γ,

4. Γ∪{ρ} |= false if and only if Γ |= {¬ρ},
5. ρ |=| ¬¬ρ,

6. ¬ρ |=| ρ⇒ false, and

7. Γ∪{ρ1} |= ρ2 if and only if Γ |= ρ1⇒ ρ2.

5.3. Weak propositional logic (WPL , see Ex. 3.27) does have all semantic Boolean connectives
apart from negation.

5.4. [70] Finitary sentences (Ex. 4.22 continued)
(a) In any institution the negation of a finitary sentence is finitary.
(b) If the category of signatures has binary co-products, then any binary Boolean connection of
finitary sentences is finitary too.

5.2 Quantifiers
Let us first recall the semantics of quantifiers in a concrete institution such as FOL . Given
a FOL-signature (S,F,P) and a set X of variables for (S,F,P), let ρ′ be an (S,F +X ,P)-
sentence and M be an (S,F,P)-model. Then

M |= (∃X)ρ′ if and only if M′ |= ρ
′ for some (S,F +X ,P)-expansion M′ of M.
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General institution-independent quantifiers are defined similarly to the above by abstract-
ing from FOL signature inclusions (S,F,P) ↪→ (S,F +X ,P) to any signature morphisms
χ : Σ→ Σ′ in any arbitrary institution.

– A Σ-sentence ρ is a (semantic) existential χ-quantification of a Σ′-sentence ρ′ when
ρ∗ = (Modχ)ρ′∗; designated existential quantification may be written as (∃χ)ρ′,

– A Σ-sentence ρ is a (semantic) universal χ-quantification of a Σ′-sentence ρ′ when
ρ∗ = (Modχ)ρ′∗; designated universal quantification may be written as (∀χ)ρ′.

A more informal way to express semantic existential / universal quantifiers, which uses
meta-level ‘all’ and ‘some’, is as follows:

– M |=Σ (∃χ)ρ′ when there exists a χ-expansion M′ of M such that M′ |=Σ′ ρ′, and

– M |=Σ (∀χ)ρ′ when M′ |=Σ′ ρ′ for all χ-expansions M′ of M.

When they exist, in the presence of negation, the universal and the existential quan-
tifiers are inter-definable:

Fact 5.3. In any institution with negation

(∃χ)ρ |=| ¬(∀χ)¬ρ.

Usually, quantification is considered only for a restricted class of signature mor-
phisms. For example, quantification in FOL considers only the finitary signature exten-
sions with constants. For a class D ⊆ Sig of signature morphisms, we say that the insti-
tution has semantic universal / existential D-quantification when for each χ : Σ→ Σ′ in
D , each Σ′-sentence has a universal / existential χ-quantification, respectively. The table
below shows some internal quantifications in some institutions.2

institution D ∀ ∃
FOL finitary injective sign. extensions with constants

√ √

SOL , HOL ,
HN K finitary injective sign. extensions

√ √

PA finitary injective sign. extensions with total constants
√ √

EQL , HCL ,
MVL♯ finitary injective sign. extensions with constants

√

MFOL∗ finitary injective sign. extensions with rigid constants
√

MFOL♯ finitary injective sign. extensions with rigid constants
√ √

The situations listed in the table above can be traced back to the definitions of the
quantifiers in the respective institutions. However, this is not immediately obvious as they
go beyond the respective designated quantifications, a situation that shows that the seman-
tic quantifications may be broader than the designated quantifications in a rather different

2Where ‘injective signature extension’ means a signature morphism with all components injective, ‘finitary’
means that there is only a finite number of symbols outside the image of the signature morphism, and ‘with
constants’ means that all symbols outside the image of the signature morphism are constants.
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way than the cases when for instance the universal quantifications can be defined in terms
of existential quantifications and negations. For example, the definition of quantifications
in FOL considers only inclusive signature extensions with finite blocks of variables, while
the FOL entry in the table above allows for a the more general situation, when the exten-
sions may be only injective and when the new additional constants are not restricted to
be variables in the precise sense defined when FOL has been introduced as an institution.
The following result clarifies this situation and its main idea can be replicated to other
cases, such as those listed in the table above.

Proposition 5.4. FOL has semantic universal / existential χ-quantifications for any χ

finitary injective signature extension with constants.

Proof. It is enough to do this for existential quantification. Let χ : Σ→ Σ′ and let ρ′ be
any Σ′-sentence. There exists a signature extension χ′ : Σ→ Σ′′ of Σ with a finite block of
variables X such that there exists an isomorphism of signatures (i.e. bijective component-
wise) θ : Σ′→ Σ′′ with χ ; θ = χ′.

Σ
χ
//

χ′ ��

Σ′

θ

��

Σ′′

We define ρ as (∃X)θρ′ and prove that it is an existential χ-quantification of ρ′. Let M be
any Σ-model. Then:

1 M |=Σ ρ if and only if M |=Σ (∃X)θρ′ definition of ρ

2 if and only if there exists M′′, M′′↾χ′ = M, M′′ |=Σ′′ θρ′ 1.

We define M′ = M′′↾θ. Then:

3 M′↾χ = M′′↾θ↾χ = M′′↾χ′ = M

4 M′ = M′′↾θ |= ρ′ 2, Satisfaction Condition.

5 there exists M′, M′↾χ = M, M′ |= ρ′ 3, 4.

Because θ is isomorphism, M′ and M′′ determine each other (M′′ =M′↾θ−1 ), hence from 2
and 5 we get the equivalence that shows that ρ is an existential χ-quantification of ρ′. □

In general, in institutions, one may consider quantification only up to what the re-
spective concept of signature supports. For example, FOL signatures support quantifica-
tions only up to second order (by considering signature extensions also with operation /
relation symbols, and even with sorts). Quantifications higher than the second order re-
quire thus another concept of signature involving higher-order types, such an example is
given by HOL or HN K .
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Quantification systems. The following concept provides a formal general approach to
designated quantifications. A quantification system consists of a designated class D ⊆
SigI of signature morphisms and a designated class of pushout squares

Σ
ϕ
//

χ

��

Σ1

χ(ϕ)

��

Σ′
ϕ[χ]
// Σ′1

for any (χ : Σ→ Σ′) ∈D and ϕ : Σ→ Σ1, with χ(ϕ) ∈D and such that

(HCOMP) the ‘horizontal’ composition of such designated pushout squares is again a
designated pushout square, i.e., for the pushout squares in the following diagram

Σ
ϕ
//

χ

��

Σ1

χ(ϕ)

��

θ
// Σ2

χ(ϕ)(θ)

��

Σ′
ϕ[χ]
// Σ′1

θ[χ(ϕ)]
// Σ′2

we have that ϕ[χ] ; θ[χ(ϕ)] = (ϕ;θ)[χ] and χ(ϕ)(θ) = χ(ϕ;θ),

(UNIT) we also have χ(1Σ) = χ and 1Σ[χ] = 1Σ′ , and

(QAMG) each designated pushout is a model amalgamation square.

Given any quantification system D for an institution I we may extend I to another in-
stitution I D which adds sentences of the form (∀χ)ρ and (∃χ)ρ, for χ : Σ→ Σ′ ∈ D
and ρ ∈ SenI

Σ′, and which extends the satisfaction relation by using the definitions of
semantic universal and existential quantifications.

Proposition 5.5. I D is an institution.

Proof. We have only to establish the functoriality of the I D -sentence functor SenI D
and

the Satisfaction Condition for the extended satisfaction relation of I D . The former follows
immediately from (HCOMP) and (UNIT), while the latter makes essential use of (QAMG)
in the style of the induction step corresponding to quantifications in the proof the FOL
Satisfaction Condition in Sect. 3.1. □

Now we look back to the emblematic FOL case. The quantification system D in-
volved by the designated quantifiers in FOL consists of the signature extensions
χ : (S,F,P)→ (S,F +X ,P) with finite blocks of variables X and with the designated
pushout squares defined as follows. Given any signature morphism ϕ : (S,F,P)→ (S′,F ′,P′),
we set

• χ(ϕ) to be the signature extension (S′,F ′,P′)→ (S′,F ′+Xϕ,P′), and
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• ϕ[χ] : (S,F +X ,P)→ (S′,F ′+Xϕ,P′) to be the extension of ϕ with the canonical
bijection X → Xϕ that maps each variable (x,s,(S,F,P)) to (x,ϕsts,(S′,F ′,P′)).

(S,F,P)
ϕ

//

χ

��

(S′,F ′,P′)

χ(ϕ)

��

(S,F +X ,P)
ϕ[χ]
// (S′,F ′+Xϕ,P′)

Some actual institutions of interest arise as institutions of the form I D , or as parts
of institutions I D . For example, under the FOL quantification system D , the institution
EQL of equational logic is the universally quantified part of AEQLD (i.e., where AEQL
is the sub-institution of FOL that has only equations t = t ′ as sentences).

Conservative quantifications
In any institution with false, M |= (∀χ)false for all models M which do not admit a χ-
expansion. This indicates that quantification behaves ‘well’ only for the signature mor-
phisms χ : Σ→ Σ′ for which each Σ-model admits at least one χ-expansion. Then we say
that χ has the model expansion property.

Model expansion property in FOL . Characterisations of the signature morphisms with
the model expansion property similar to the FOL characterisation below are common to
many concrete institutions.

Fact 5.6. Let ϕ : Σ→ Σ′ be a FOL signature morphism such that Σ has non-empty sorts,
i.e., there exists at least one term for each of its sorts. Then ϕ has the model expansion
property if and only if it is injective, i.e., ϕst, ϕop, and ϕrl are injective.

The role of the non-empty sorts condition is to guarantee that a new operation in-
troduced by Σ′ such that its sort is in Σ can always get an interpretation. In the absence of
this situation the non-empty sorts condition is not necessary, such as in REL .

Finitary quantifications
The finiteness of quantifications is necessary for many important model theory results.
This concept can be defined at the level of abstract institutions as follows.

Finitary signature morphisms. A signature morphism χ : Σ→ Σ′ is finitary when for
each co-limit (µi)i∈I of a directed diagram ( fi, j)(i< j)∈(I,≤) of Σ-models

Mi

µi
��

fi, j
// M j

µ j
��

M

and for each χ-expansion M′ of M
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– there exists an index i ∈ I and a χ-expansion µ′i : M′i →M′ of µi, and

– any two different expansions as above can be ‘unified’ in the sense that for any χ-
expansions µ′i and µ′k as above there exists an index j ∈ I with i,k ≤ j, a χ-expansion
µ′j as above and f ′i, j, f ′k, j χ-expansions of fi, j, fk, j such that the following diagram
commutes

M′i
f ′i, j
//

µ′i   

M′j

µ′j
��

M′k
f ′k, j
oo

µ′k~~

M′

The following is a standard example.

Proposition 5.7. In FOL each injective signature extension with a finite number of con-
stants is finitary.

Proof. This is based on the remark that directed co-limits of FOL models are lifted from
the corresponding directed co-limits of the underlying carrier sets (see Prop. 6.8 below
for a proof of this fact). Then we have just to note that expansions of models M along
signature extensions with constants Σ ↪→ Σ+X are just functions X →M and use the fact
that X being finite is a finitely presented object in the category Set. □

Note that extending by an infinite number of constants, or by non-constant opera-
tions yields a non-finitary signature morphism. On the other hand extending by relation
symbols, in any number, yields a finitary signature morphism. So in concrete situations
this concept of finitary is meaningful mainly for first-order quantifications.

Accessibility

For each class of sentences E and each set O of connectives (Boolean connectives, quan-
tifications), let O(E) be the least set of ‘internal’ sentences closed under O and containing
E. In general, the actual institution does not necessarily have all sentences of O(E). A sen-
tence ρ of the institution is (semantically) accessible from E by O when ρ is semantically
equivalent to a sentence from O(E). The following table illustrates the accessibility sit-
uation in some concrete institutions, in all listed examples all sentences being accessible
from O(E).
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institution E O
FOL atomic equations and relations negation, conjunctions,

FOL universal quantifications
EQL atomic equations FOL universal quantifications
HCL atomic equations and relations conjunctions, implications

FOL universal quantifications
PA atomic existence equations negation, conjunctions,

universal quantifications with
finite blocks of total variables

In the list above only HCL does not have all sentences from O(E).

Exercises
5.5. In each institution

(∀χ)ρ⇒ (ρ1∧ρ2) |=| ((∀χ)ρ⇒ ρ1)∧ ((∀χ)ρ⇒ ρ2).

5.6. In any institution with weak model amalgamation let D be a class of signature morphism with
the model expansion property which is stable under pushouts. Then

(Qχ1)ρ1 (c) (Qχ2)ρ2 |=| (Qχ1;χ2)θ1ρ1 (c) θ2ρ2

where Q∈ {∀,∃}, (c)∈ {∧,∨} and the following is a pushout square of signature morphisms of D:

Σ
χ1
//

χ2

��

Σ1

θ1

��

Σ2
θ2

// Σ′

5.7. FOL admits infinitary quantifiers
Let χ2 = χ1;χ be signature morphisms such that χ has the model expansion property. Then (∀χ2)χρ |=|
(∀χ1)ρ. Apply this for showing that FOL admits semantic infinitary quantifications.

5.8. Generalization Rule
For each signature morphism χ : Σ→ Σ′ and each set E of Σ-sentences

E |=Σ (∀χ)e if and only if χE |=Σ′ e.

5.9. Stability under pushouts of finitary signature morphisms
In any semi-exact institution, the finitary signature morphisms are stable under pushouts along those
signature morphisms for which their model reducts preserve directed co-limits of models.

5.10. Finite models
(a) In any institution with diagrams ι a model is ι-finite when its diagram EM is finite. If the insti-
tution has finite conjunctions and existential quantification over elementary extensions along finite
models, any two elementary equivalent finite models are homomorphically related. (Hint: For a
model M consider the sentence (∃ιΣM)∧EM .)
(b) In any finite FOL-signature, any two elementary equivalent models with finite carriers are iso-
morphic. (Hint: The sub-institution of FOL determined by the closed and injective model homo-
morphisms admits a system of diagrams ι such that a model is ι-finite whenever its signature is
finite and it has finite carrier sets.)
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5.3 Substitutions
Substitutions are an important logical device, especially when some proof theory is in-
volved. The most notorious concept of substitution comes from the first order logic. Here
we recall this in a form that emphasises its institution theoretic properties. By taking these
properties as axioms we define an abstract institution-independent concept of substitution.

First order substitutions in FOL . Given a FOL signature Σ = (S,F,P) and two blocks
X and Y of variables for Σ a first order Σ-substitution from X to Y consists of a sort
preserving mapping ψ : X → TΣY of the variables X with Σ-terms over Y .

On the semantics side, each first order Σ-substitution ψ : X → TΣY determines a
functor

Modψ : ModFOL(S,F +Y,P)→ModFOL(S,F +X ,P)

defined by

– ((Modψ)M)x = Mx for each sort x ∈ S, or operation symbol x ∈ F , or relation symbol
x ∈ P, and

– ((Modψ)M)x = Mψx, i.e., the evaluation of the term ψx in M, for each x ∈ X .

On the syntax side, ψ determines a sentence translation function

Senψ : SenFOL(S,F +X ,P)→ SenFOL(S,F +Y,P)

which in essence replaces all symbols from X with the corresponding (S,F +Y )-terms
according to ψ. This can be formally defined as follows:

– (Senψ)(t = t ′) is defined as ψtmt = ψtmt ′ for each (S,F +X ,P)-equation t = t ′, where
ψtm : TΣX → TΣY is the unique extension of ψ to an (S,F,P)-homomorphism (ψtm

replaces the variables x ∈ X with ψx in each (S,F +X ,P)-term t).

– (Senψ)π(t1, . . . , tn) is defined as π(ψtmt1, . . . ,ψtmtn) for each (S,F +X ,P)-relational
atom π(t1, . . . , tn).

– (Senψ)(ρ1∧ρ2) is defined as (Senψ)ρ1 ∧ (Senψ)ρ2 for each conjunction ρ1∧ρ2 of
(S,F +X ,P)-sentences, and similarly for the case of any other Boolean connectives.

– (Senψ)(∀Z)ρ = (∀Z)(SenψZ)ρ for each (S,F +X +Z,P)-sentence ρ, where ψZ is the
trivial extension of ψ to an (S,F +Z,P)-substitution.

Σ+X

ψ

��

Sen(Σ+X)

Senψ

��

Sen(Σ+X +Z)
(∀Z)
oo

SenψZ

��

Σ+X +Z

ψZ

��

Σ+Y Sen(Σ+Y ) Sen(Σ+Y +Z)
(∀Z)
oo Σ+Y +Z
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Note that we have extended the notation used for the models functor Mod and for the
sentence functor Sen from the signatures to the first-order substitutions. This notational
extension is justified by the Satisfaction Condition developed below:

Proposition 5.8. For each FOL-signature (S,F,P), each (S,F,P)-substitution
ψ : X → TΣY , each (S,F +Y,P)-model M and each (S,F +X ,P)-sentence ρ:

(Modψ)M |= ρ if and only if M |= (Senψ)ρ.

Proof. The proof follows similar steps as in the proof of the FOL Satisfaction Condi-
tion of Prop. 3.2 We can establish by induction on the structure of terms that for each
(S,F +X)-term t we have that ((Modψ)M)t = Mψtmt . Then, on this basis, we establish
the Satisfaction Condition of the proposition by induction on the structure of the sen-
tences. □

General substitutions. The Satisfaction Condition property expressed in Prop. 5.8 al-
lows for the definition of a general concept of substitution by abstracting

• FOL signatures (S,F,P) to signatures Σ in arbitrary institutions, and

• sets of first-order variables X for (S,F,P) to signature morphisms Σ→ Σ1.

For any signature Σ of an institution, and any signature morphisms χ1 : Σ→ Σ1 and
χ2 : Σ→ Σ2, a Σ-substitution ψ : χ1→ χ2 consists of a pair (Senψ,Modψ), where

– Senψ : SenΣ1→ SenΣ2 is a function, and

– Modψ : ModΣ2→ModΣ1 is a functor

such that both of them preserve Σ, i.e., the following diagrams commute:

SenΣ1
Senψ

// SenΣ2 ModΣ1

Modχ1 ""

ModΣ2
Modψ

oo

Modχ2||

SenΣ

Senχ1

aa

Senχ2

==

ModΣ

and such that the following Satisfaction Condition holds for each Σ2-model M2 and each
Σ1-sentence ρ1:

(Modψ)M2 |= ρ1 if and only if M2 |= (Senψ)ρ1 (5.1)

Note that we have again extended the notations Mod and Sen from the model and
the sentence functors of the institution to the model and the sentence components of
substitutions.

Fact 5.9. The Σ-substitutions come equipped with a natural composition satisfying the
category axioms by inheriting the composition of the function and functor components.
Let this category of Σ-substitutions be denoted by SubstΣ.
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Substitution systems. In actual situations, one often considers only substitutions be-
tween signature morphisms which are used in quantifications. The main motivation for
this practice is proof-theoretic. Therefore, for any class D of signature morphisms in an
institution, let us say that a D-substitution is just a substitution between signature mor-
phisms in D .

When D is a quantification system, a D-substitution system consists of a |Sig|-
indexed family S = {SΣ | Σ ∈ |Sig|} such that

1. for each Σ∈ |Sig|, SΣ is a sub-category of the category Subst(Σ) of all Σ-substitutions
(cf. Fact 5.9);

2. |SΣ|= {X ∈D | dom(X) = Σ};

3. for any X ,Y ∈ |SΣ| and any functor F making the triangle below commute

Σ(Y ) Mod(Σ(Y )) F
//

ModY
##

Mod(Σ(X))

ModX
{{

Σ(X)

Σ

Y

[[

ModΣ Σ

X

CC

there exists a unique ψ ∈ SΣ such that F = Modψ.

The Σ-substitutions that belong to SΣ are called SΣ-substitutions.
For example, it is easy to see that the first order substitutions in FOL constitute

an example of a system of D-substitutions when D is the standard FOL quantification
system. The key to this is to analyse the latter condition above. In FOL , Σ(X) = Σ+X
and Σ(Y ) = Σ+Y . Then we consider the result of applying the functor F to 0Σ+Y , the
initial mode in ModFOL(Σ+Y ). The substitution ψ : X → TΣY that corresponds to F is
defined by ψx = (F 0Σ+Y )x.

Equivalent substitutions. Since general substitutions are a semantic concept, seman-
tical equivalence on substitutions is more meaningful than the strict equality. In other
words, what matters about substitution is their semantic effect. Two substitutions ψ,ψ′ : χ1→
χ2 are equivalent when Modψ = Modψ′. For instance in PL if χi, i = 1,2, are extensions
of signatures Σ ⊆ Σ⊎{πi}, i = 1,2, and ψ,ψ′ : χ1→ χ2 are the Σ-substitutions defined
by ψπ1 = π2 and ψπ1 = ¬¬π2, respectively, then Modψ = Modψ′ while Senψ ̸= Senψ′.
However in general the translation of models determines the translation on sentences up
to semantical equivalence:

Fact 5.10. If ψ and ψ′ are equivalent substitutions, then (Senψ)ρ1 |=| (Senψ′)ρ1 for each
Σ1-sentence ρ1.

Exercises
5.11. Substituting relations by sentences
Let (S,F,P) be a FOL signature and P1 a set of new relation symbols for S. Each mapping ψ
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of relation symbols π ∈ (P1)w to sentences ψπ ∈ Sen(S,F +X ,P) where X = {x1, . . . ,xn} such
xi is a variable of sort si where w = s1 . . .sn, can be extended to a mapping Sen(S,F,P+P1)→
Sen(S,F,P) by replacing each relational atom π(t1, . . . , tn) with (ψπ)(t1, . . . , tn). This determines a
general substitution in FOL between (S,F,P) ↪→ (S,F,P+P1) and 1(S,F,P).

5.12. Substitution rule
In any institution, for any substitution ψ : χ→ χ′ and any sentence ρ,

(∀χ)ρ |= (∀χ′)(Senψ)ρ.

5.13. Institution of substitutions
For each signature Σ of an institution (Sig,Sen,Mod, |=), let (Subst(Σ),Sen,Mod, |=) denote the
institution of Σ-substitutions. Its signatures are the signature morphisms with Σ as their domain of
the original institution and its signature morphisms are the Σ-substitutions. Then each signature
morphism ϕ : Σ→ Σ′ determines canonically a functor Subst(ϕ) : Subst(Σ)→ Subst(Σ′). This
construction further determines a functor Sigop→ Ins.

5.14. For any signatures (S+S1,F+F1) and (S+S2,F+F2) in HOL / HN K each pair consisting
of a mapping ψst : S1→

−−−−−→
(S+S2) and of a family of mappings {ψop

s : (F1)s→ (TF+F2)ψtypes | s ∈−−−−−→
(S+S1)} determines a general (S,F)-substitution in HOL / HN K between (S,F) ↪→ (S+S1,F +
F1) and (S,F) ↪→ (S+S2,F +F2).

5.4 Representable signature morphisms
FOL quantifications, called first order quantifications, provide a good balance between
expressivity and good model-theoretic properties. A great deal of mathematics is first
order, and this part can receive great logical / model-theoretic support. On the other hand,
a lot of arguments in mathematics have a second or even higher-order nature. This part of
mathematics is more problematic concerning logical support. The special strength of first-
order model theory owes to quantifications being first order. In this section, we develop an
abstract institution-independent approach to first-order quantifications. This will happen
on two slightly different levels. The weaker level allows for more concrete examples,
while the stronger level allows for more properties.

Quasi-representable signature morphisms
In any institution, a signature morphism χ : Σ→ Σ′ is quasi-representable when for each
Σ′-model M′, the canonical functor determined by the reduct functor Modχ is an isomor-
phism (of comma categories)

M′/ModΣ
′ ∼= (M′↾χ)/ModΣ.

This means that each Σ-model homomorphism h : M′↾χ→ N admits a unique χ-expan-
sion h′ : M′→ N′.

Proposition 5.11. In FOL any injective signature extension with constants is quasi-
representable.
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Proof. Let χ : Σ→ Σ′ be any injective FOL signature extension with constants. Each
Σ-homomorphism h : M′↾χ → N determines uniquely a χ-expansion h′ : M′→ N′ of h
defined, for each constant x ∈ Σ′ which does not occur in Σ, by N′x = hM′x. □

Note that in FOL quasi-representability fails when we extend signature morphisms
with some relation or some non-constant operation symbols.

Quasi-representability of signature extensions with constants holds in various insti-
tutions in ways similar to Prop. 5.11. For example, it also works in the institution E(FOL)
of the FOL elementary embeddings. However, in some cases, quasi-representability goes
beyond extensions with constants. An example is given by the restriction of FOL to strong
model homomorphisms (recall that h : M→N is strong when hMπ =Nπ for each relation
symbol π). In this institution any signature extension with constants or relation symbols
is quasi-representable.

Structural properties of quasi-representability. The following result provides a list
of basic structural properties of quasi-representable signature morphisms.

Proposition 5.12. In any institution

1. The quasi-representable signature morphisms are closed under composition.

2. If the institution is semi-exact, then quasi-representable signature morphisms are sta-
ble under pushouts.

3. If the institution is directed-exact, then any directed co-limit of quasi-representable
signature morphisms consists of quasi-representable signature morphisms.

4. If ϕ and ϕ;χ are quasi-representable, then χ is quasi-representable.

Proof. 1. That composition of quasi-representable morphisms is quasi-representable
follows immediately from the definition.

2. Consider a pushout of signature morphisms

Σ
χ
//

θ

��

Σ′

θ′
��

Σ1 χ1
// Σ′1

such that χ is quasi-representable. We have to show that χ1 is quasi-representable.
Consider a Σ1-model homomorphism h1 : M′1↾χ1 → N1. Let h : M → N be its θ-
reduct. Then M =M′1↾χ1↾θ =M′1↾θ′↾χ. Because χ is quasi-representable, let h′ : M′1↾θ′→
N′ be the unique χ-expansion of h. By the semi-exactness of the institution, the unique
amalgamation h′1 of h1 and h′ is the unique χ1-expansion of h1 as a homomorphism
M′1→ N′1.
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3. Let (ϕi, j)(i< j)∈(I,≤) be a directed diagram of quasi-representable signature morphisms
and let (θi)i∈I be its co-limit.

Σi
ϕi, j

//

θi
��

Σ j

θ j
��

Σ

For each i ∈ I we show that θi is quasi-representable. Let hi : M↾θi → Ni be a Σi-
homomorphism for some Σ-model M. We have to show that hi has an unique θi-
expansion to a Σ-model homomorphism h : M→ N.

• For each j ∈ I, let M j = M↾θ j . Notice that M j↾ϕi, j = Mi when j > i. For each
j > i, because ϕi, j is quasi-representable, let h j : M j → N j be the unique ϕi, j-
expansion of hi. By the uniqueness of expansion for quasi-representable signa-
ture morphisms, we can show that h j′↾ϕ j, j′ = h j for each i≤ j < j′.

• Now let (J,≤) be the sub-poset of (I,≤) determined by the elements { j | i≤ j}.
Because (J,≤) is a final sub-poset of (I,≤), by Thm. 2.4 we have that (θi)i∈J
is a co-limit of (ϕ j, j′)( j< j′)∈(J,≤). Because the institution is directed-exact, let
h : M→ N be the unique Σ-homomorphism such that h↾θ j = h j for each j ∈ J,
i.e., h is the unique amalgamation of (h j) j∈J . Then h is the unique θi-expansion
of hi to a Σ-homomorphism M→ N.

4. Let ϕ : Σ→ Σ′ and χ : Σ′ → Σ′′ be signature morphisms. Consider any Σ′-model
homomorphism h′ : M′′↾χ → N′. We show that the unique (ϕ;χ)-expansion of h′↾ϕ

to a Σ′′-model homomorphism h′′ : M′′→ N′′ constitutes the unique χ-expansion of
h′ to a Σ′′-model homomorphism M′′→ N′′.

Σ
ϕ
// Σ′

χ
// Σ′′

h′↾ϕ
 99

h′�oo h′′�oo

• That h′ = h′′↾χ follows by the uniqueness property of the quasi-representability
of ϕ since h′↾ϕ = (h′′↾χ)↾ϕ and h′ and h′′↾χ both have M′′↾χ as their domain.

• The uniqueness of h′′ as a χ-expansion of h′ follows by the uniqueness of h′′ as
a (ϕ;χ)-expansion of h′↾ϕ.

□

Quasi-representable signature morphisms in FOL . We know that the FOL signature
extensions with constants are quasi-representable. The question is: are these all the quasi-
representable signature morphisms? Below we give an answer to this question in the form
of a complete description of the quasi-representability in FOL .
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Proposition 5.13. A FOL signature morphism is quasi-representable if and only if it is
bijective on sort symbols, relation symbols, and non-constant operation symbols.

Proof. Consider such a FOL-signature morphism χ : Σ→ Σ′. Then there exists a signa-
ture Σ0 and injective extensions with constants ϕ : Σ0 → Σ and ϕ′ : Σ0 → Σ′ such that
the following triangle commutes:

Σ0

ϕ

��

ϕ′

��

Σ
χ

// Σ′

Because both ϕ and ϕ′ are (injective) extensions with constants, they are quasi-represent-
able (Prop. 5.11), hence by χ is quasi-representable too (Prop. 5.12 4.).

Conversely, let us assume that χ is quasi-representable. If one of χst, χop restricted
to non-constant operation symbols, or χrl, is not surjective, respectively not injective, then
we can find a Σ-homomorphism h : M→ N and a χ-expansion M′ of M such that h has
more than one, respectively does not have any, χ-expansion h′ : M′→ N′. We leave the
details of this argument to the reader. □

Corollary 5.14. A FOL signature morphism has the model expansion property and is
quasi-representable if and only if it is an injective extension with constants.

Finitary quasi-representable signature morphisms. Any quasi-representable signa-
ture morphism χ : Σ→ Σ′ determines a canonical functor (Modχ)−1 : ModΣ→ Class

• that maps each Σ-model M to {M′ ∈ |ModΣ′| |M′↾χ = M}, and

• that maps each Σ-model homomorphism h : M → N to the class function
(Modχ)−1h : (Modχ)−1M → (Modχ)−1N such that for each χ-expansion M′ of
M, ((Modχ)−1h)M′ = N′ where h′ : M′→ N′ is the unique χ-expansion of h from
M′.

These considerations allow us to express at the abstract institution-independent level the
signature morphisms that are both finitary and quasi-representable utilizing a preservation
property.

Fact 5.15. A quasi-representable signature morphism χ is finitary if and only if (Modχ)−1

preserves the directed co-limits.

Below, in Cor. 5.17 we will establish in concrete terms when the FOL quasi-representable
signature morphisms χ are finitary.

Representable signature morphisms
Consider a quasi-representable signature morphism χ : Σ→ Σ′ and assume that Mod(Σ′)
has an initial model 0Σ′ . We have the following canonical isomorphisms:

ModΣ
′ ∼= 0Σ′/ModΣ

′ ∼= (0Σ′↾χ)/ModΣ.
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This situation shows that the Σ′-models M′ can be ‘represented’ isomorphically by
Σ-model homomorphisms 0Σ′↾χ→M′↾χ.

A signature morphism χ : Σ → Σ′ is representable if and only if there exists a
Σ-model Mχ (called the representation of χ) and an isomorphism iχ of categories such
that the following diagram commutes:

ModΣ′
iχ
//

Modχ
%%

Mχ/ModΣ

forgetful
��

ModΣ

Since 1Mχ
is initial in Mχ/ModΣ, by the isomorphism iχ it follows that ModΣ′ necessarily

has an initial model whose χ-reduct is precisely Mχ.

Fact 5.16. A signature morphism χ : Σ→ Σ′ is representable if and only if it is quasi-
representable and ModΣ′ has an initial model.

For example, since FOL has initial models of signatures, in FOL representable and
quasi-representable signature morphisms are the same concept. Given a set X of first-
order variables for a FOL signature (S,F,P), the representation of the signature inclusion
(S,F,P) ↪→ (S,F +X ,P) is given by the model of the (S,F +X ,P)-terms T(S,F,P)X , which
is the free (S,F,P)-model over X . This is due to the fact that (S,F +X ,P)-models M are
in canonical bijection with valuations of variables from X to the carrier sets of M. By the
freeness property of T(S,F,P)X , these valuations are in canonical bijection with (S,F,P)-
model homomorphisms T(S,F,P)X →M.

By Fact 5.16, examples that fall between representability and quasi-representability
can be found only in institutions which do not have initial models of signatures. Examples
include the local and global MFOL institutions and HOL . A special class of institutions
without initial models for signatures arises by narrowing the class of model homomor-
phisms in institutions; examples include the sub-institution E(FOL) of FOL elementary
embeddings, and the sub-institution of strong FOL-model homomorphisms. In all exam-
ples mentioned above the signature extensions with constants are quasi-representable but
in general, they are not representable.

Finitary representable signature morphisms. Since for any χ representable signature
morphism we have that (Modχ)−1 is isomorphic to (ModΣ)(Mχ,−) it follows immedi-
ately that:

Corollary 5.17. A representable signature morphism χ : Σ→ Σ′ is finitary if and only if
its representation Mχ is finitely presented.

For instance, Cor. 5.17 together with the existence of initial models for FOL signa-
tures (Prop. 4.27) and the characterisation of quasi-representability in FOL (Prop. 5.13)
enable us to establish quite easily the following (we leave the details of the argument as
an exercise for the reader).
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Corollary 5.18. The finitary representable FOL signature morphisms χ are precisely
those that extend with a finite number of constants and such that the set of pairs of con-
stants {(c1,c2) | χc1 = χc2,c1 ̸= c2} is finite too. In particular, the finitary representable
FOL signature morphisms that have the model expansion property are just the injective
extensions with a finite number of constants.

Representable substitutions
The FOL situation that each first order (S,F,P)-substitution ψ : X → T(S,F,P)Y (of vari-
ables X with (S,F,P)-terms over Y ) can be extended uniquely to a model homomorphism
hψ : T(S,F,P)X → T(S,F,P)Y is a mere reflection of the more general fact that substitutions
between representable signature morphisms can be ‘represented’ as model homomor-
phisms.

Proposition 5.19. Any substitution ψ : χ1 → χ2 between representable signature mor-
phisms χ1 : Σ→ Σ1 and χ2 : Σ→ Σ2 determines canonically a Σ-model homomorphism
Mψ : Mχ1 →Mχ2 between the representations of the signature morphisms χ1 and χ2 such
that the diagram below commutes:

ModΣ2
iχ2
∼
//

Modψ

��

Mχ2/ModΣ

Mψ;

��

ModΣ1
∼
iχ1

// Mχ1/ModΣ

(5.2)

Moreover, the mapping of the substitutions ψ to the model homomorphisms Mψ is functo-
rial and faithful modulo substitution equivalence.

Proof. We define Mψ = (i−1
χ2

;Modψ ; iχ1)1Mχ2
.

• Let us show that Mψ : Mχ1 → Mχ2 . Since Mψ ∈ |Mχ1/ModΣ| it is obvious that
dom(Mψ) = Mχ1 . That cod(Mψ) = Mχ2 follows by analysing the results of applying
in succession the functors in the diagram below to 1Mχ2

∈ |Mχ2/ModΣ|.

ModΣ2
Modψ

//

Modχ2

��

ModΣ1

Modχ1
��

iχ1

""

Mχ2/ModΣ

i−1
χ2

<<

forgetful
// ModΣ Mχ1/ModΣ

forgetful
oo

(5.3)

• For proving the commutativity of the diagram (5.2) we consider any arrow
f : 1Mχ2

→ f in Mχ2/ModΣ. From the commutativity of the diagram (5.3) we get
that f : Mψ→ (i−1

χ2
;Modψ ; iχ1) f which implies (i−1

χ2
;Modψ ; iχ1) f = Mψ; f .

• Let ψ and ψ′ be substitutions that can be composed. By putting together the commu-
tative squares (5.2) that correspond to ψ and to ψ′ and by applying the functoriality
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of Mod (the model functor for substitutions) we get that Mψ ; Mψ′ = Mψ;ψ′ . That
M1χ

= 1Mχ
follows by considering the diagram (5.2) for the identity substitution.

• If ψ and ψ′ are equivalent substitutions then Mψ = Mψ′ since by its definition Mψ

are uniquely determined by the model translations Modψ.

□

The converse of the representation result of Prop. 5.19 is that each model ho-
momorphism h : Mχ1 → Mχ2 determines a unique equivalence class of substitutions
ψh : χ1 → χ2 such that h = Mψh . Thus we say that an institution has representable
D-substitutions for a class D of signature morphisms when for each signature Σ the
canonical functor (of Prop. 5.19) from the category of the Σ-D-substitutions between
representable signature morphisms to the category of Σ-models is full. Although a gen-
eral criterion for an institution to have representable substitutions is not to be expected,
this property can be established rather easily for some particular institutions. FOL is a
rather typical example.

Proposition 5.20. FOL has all representable substitutions.

Proof. Let χ1 : Σ→ Σ1 and χ2 : Σ→ Σ2 be representable signature morphisms in FOL
and let h : Mχ1 →Mχ2 be a Σ-model homomorphism.

By Prop. 5.13, without any loss of generality, we may assume that Σ = (S,F +
X ,P), Σ1 = (S,F +X1,P) and Σ2 = (S,F +X2,P) where X ,X1,X2 are sets of constants
and χ1 and χ2 keep (S,F,P) invariant but on X manifest as functions f1 : X → X1 and
f2 : X → X2. Then Mχ1 = (T(S,F,P)X1)↾χ1 and Mχ2 = (T(S,F,P)X2)↾χ2 . Note that because h
is a (S,F +X ,P)-homomorphism we have that h( f1x) = f2x for each x ∈ X .

The desired substitution ψ is defined as the first order substitution given by the re-
striction of h to a function X1→ T(S,F,P)X2. Although ψ appears as a substitution between
(S,F,P) ↪→ (S,F +X1,P) and (S,F,P) ↪→ (S,F +X2,P), the equality h( f1x) = f2x guar-
antees that ψ is a substitution χ1→ χ2. Finally, we notice that Mψ = h indeed. □

Exercises
5.15. Does PL have non-bijective representable signature morphisms?

5.16. For any quasi-representable signature morphism χ, the model reduct functor Modχ is faithful.

5.17. Representable signature morphisms in HN K
In HN K the signature extensions with constants χ : Σ→ Σ′, although in general are not repre-
sentable, they are however quasi-representable. Moreover, χ is representable whenever Σ′ has at
least a constant operation symbol for each type.

5.18. In any institution the quasi-representable signature morphisms preserve the epi model ho-
momorphisms, i.e., the model homomorphism reduct h↾χ is epi when h is epi and χ is quasi-
representable.

5.19. Quasi-representable theory morphisms
In any institution I for each theory (Σ,E) and each quasi-representable signature morphism χ : Σ→
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Σ′, the theory morphism χ : (Σ,E)→ (Σ′,χE) is quasi-representable (as signature morphism in
I th). For non-liberal institutions this constitutes another source of examples of quasi-representable
signature morphisms which are not representable.

5.20. Quasi-representability along institution comorphisms
Any exact institution comorphism (Φ,α,β) preserves quasi-representable signature morphisms in
the sense that Φχ is quasi-representable when χ is quasi-representable.

5.21. In IPL each morphism of signatures is representable. (Hint: Consider the comorphism
IPL → (FOEQL1)th of Ex. 4.11 and use the combined conclusions of Exercises 5.19 and 5.20.)

5.22. Liberal representable signature morphisms
In any institution with binary co-products of models, for each signature each representable signature
morphism is liberal.

5.23. In any institution the finitary quasi-representable signature morphisms are closed under com-
position.

5.24. Co-products of substitutions
In an institution with representable substitutions which has pushouts of signature morphisms, which
is semi-exact and its categories of models have finite co-products, for each signature Σ, the category
of the Σ-substitutions modulo substitution equivalence between representable signature morphisms
has finite co-products.

5.25. Representable substitutions for theories
Consider a liberal institution I and a class D of representable signature morphisms such that

– for all theories (Σ,E) the units of the adjunctions determined by the forgetful functors
Modth(Σ,E)→ModΣ are epi, and

– the representations Mχ of the signature morphisms χ ∈D are projective.

Let D th be the class of strong theory morphisms χ : (Σ,E)→ (Σ′,E ′) for which (χ : Σ→ Σ′) ∈
D . Then the institution I th has representable D th-substitutions. Apply this general result for es-
tablishing that AFOL th (where AFOL is the atomic sub-institution of FOL) has representable
D th-substitutions for D the class of FOL signature extensions with a finite number of constants.

5.5 Satisfaction by injectivity
In this chapter we have already introduced the semantics of Boolean connectives and
quantifiers at a general institution-independent level. To complete the institution-independent
expression of the fundamental built of first-order model theory it remains to develop an
abstract approach to atomic sentences. Unlike with the Boolean connectives and with
the quantifiers, at the institution-independent level the semantics of atoms can only be
approximated by relying on categorical injectivity. The satisfaction of the atoms can be
explained at the abstract level as a restricted form of categorical injectivity. On this basis,
we define a general abstract concept of Horn sentences whose satisfaction can be ex-
pressed as full categorical injectivity. Moreover, we show that satisfaction by categorical
injectivity cannot go beyond such sentences.
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Basic sentences

In any FOL-signature Σ = (S,F,P) let E be a set of atoms. Recall from Sect. 4.6 that E
has an initial model 0E constructed as follows: on the quotient (0Σ)=E of the term model
0Σ by the congruence generated by the equational atoms of E, we interpret each relation
symbol π ∈ P by (0E)π = {(t1/=E , . . . , tn/=E ) | π(t1, . . . , tn) ∈ E}.

Fact 5.21. For each set E of FOL-atoms and for each model M, M |= E if and only if
there exists a model homomorphism 0E →M.

The categorical characterization of atomic satisfaction above can serve as a first
institution-independent approximation for the concept of atom: in any institution, a set E
of Σ-sentences is basic if there exists a Σ-model ME , called a basic model of E, such that
for each Σ-model M,

M |=Σ E if and only if there exists a model homomorphism ME →M.

Given a basic set E of sentences, in general the basic models ME are not necessarily
unique, not even up to isomorphisms. Often ME is the initial model of E; we have already
seen this in Fact 5.21. One may think that the existence of an initial model for a set of
sentences implies that the respective set of sentences is basic. This is not true, and a simple
counterexample in FOL is given by the negation t1 ̸= t2 of an equation t1 = t2 (where t1
and t2 are different terms). The negation has the term model 0Σ as its initial model but is
not basic.

On the other hand, being basic covers significantly more than atomic sentences. For
instance in FOL the existentially quantified atoms are basic too. This even works at the
general level as follows.

Fact 5.22. Basic sentences are closed under quasi-representable existential quantifica-
tion. Moreover if χ is quasi-representable and Mρ′ is a basic model for ρ′ then Mρ′↾χ is a
basic model for (∃χ)ρ′.

Epi basic sentences. The concept of ‘epi basic’ sentences constitutes a more accurate
institution-independent capture of the actual atoms than the concept of basic sentences.
An epi basic set of Σ-sentences E is a basic set of sentences that admits a basic model
ME – called the epi basic model of E – which is initial in Mod(Σ,E).

Since the initial models are unique up to isomorphisms, for each epi basic set E of
sentences we may refer to any of its epi basic models as its epi basic model. Notice also
that if E is an epi basic set of sentences it does not necessarily mean that any of its basic
models is epi basic. For instance, let us consider a FOL signature with one sort s and two
constants a and b. Then the model N defined by Ns = {a,c} and Na = Nb = a is a basic
model for the equation a = b but it is not its epi basic model.

Fact 5.23. All sets E of FOL atoms are epi basic. However in general the existential
quantifications of FOL atoms are not epi basic.
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Finitary basic sentences. A basic set of Σ-sentences E is finitary if it has a basic model
ME that is finitely presented in the category ModΣ.

Proposition 5.24. All finite sets of FOL atoms are finitary basic.

Proof. We prove that for each set E of Σ-atoms in FOL , their initial model 0E is finitely
presented. Consider a model homomorphism h : 0E →M where the (µi : Mi→M)∈I is
a co-limit of a directed diagram ( fi, j)(i< j)∈(I,≤) of Σ-model homomorphisms. Since FOL
model homomorphisms preserve the satisfaction of the atomic sentences, it follows that
M |=E. It is enough to find j ∈ I and a homomorphism h j : 0E →M j because in that case
both h j ; µ j = h and the second condition defining finitely presented objects hold trivially
by the uniqueness side of the initiality property of 0E . Moreover h j is always guaranteed
if M j |= E, so the problem reduces to finding j such that M j |= E.

M j

µ j
��

f j,k
// Mk

µk
��

0E h
//

h j
BB

M

We do this first for the case when E consists of a single equational atom, then for the
case when E consists of single relational atoms, and finally for the general case. At some
moment in our proof, we will have to rely on the fact that forgetful functors from FOL
models to their carrier sets preserve directed co-limits; this will be proved only in Chap. 6
(Prop. 6.8).

• Let E = {t = t ′}. Then

1 Mt = Mt ′ M |= E.

Let us consider any i ∈ I. Then

2 µi (Mi)t = Mt , µi (Mi)t ′ = Mt ′ µi homomorphism

3 µi (Mi)t = µi (Mi)t ′ 1, 2.

Since the forgetful functors from FOL models to their carrier sets preserve directed
co-limits, from 3 it follows that there exists j ≥ i such that

4 fi, j (Mi)t = fi, j (Mi)t ′ directed co-limits in Set.

Since

5 fi, j (Mi)t = (M j)t , fi, j (Mi)t ′ = (M j)t ′ fi, j homomorphism

from 4 it follows that (M j)t = (M j)t ′ which means M j |= E.
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• Let E = {πt} such that πt is a relational atom (t represents a string of terms of ap-
propriate sorts). Since µ is a co-limit, Mπ =

⋃
i∈I µi (Mi)π. Thus there exists i ∈ I such

that

1 Mt ∈ µi (Mi)π.

It follows that

2 there exists mi ∈ (Mi)π, Mt = µimi 1

3 Mt = µi (Mi)t µi homomorphism

4 there exists j ≥ i, fi, jmi = fi, j (Mi)t 2, 3, mi, t finite strings, directed co-limits in Set

5 fi, jmi ∈ (M j)π mi ∈ (Mi)π, fi, j homomorphism

6 fi, j (Mi)t = (M j)t fi, j homomorphism

7 (M j)t ∈ (M j)π 4, 5, 6.

Hence there exists j ∈ I such that M j |= πt.

• For the general case, we perform a proof by induction on the size of E. The base case
has been solved above. For the induction step, we consider any partition E = E1⊎E2.
Then by the induction hypothesis let ji, i = 1,2, such that M ji |= Ei, i = 1,2. For any
k ≥ j1, j2, since f ji,k, i = 1,2, as homomorphisms do preserve the satisfaction of the
atoms, we have that Mk |= Ei, i = 1,2. Hence Mk |= E.

□

Basic diagrams. In concrete situations, it is quite common that the elementary exten-
sions that come with the respective concept of diagram are first order. The following result
develops a general consequence of such a situation.

Proposition 5.25. In any institution with diagrams ι such that the elementary extensions
are quasi-representable, the diagrams are epi basic.

Proof. Let M be a Σ-model and let ιΣM : Σ→ (ΣM,EM) be its diagram. Let MM be the
initial model of this diagram. We prove that MM is the epi basic model of EM .

• Let N′ be any ΣM-model. If N′ |=EM , then because MM is the initial (ΣM,EM)-model
there exists a unique model homomorphism MM → N′.

• Conversely, assume that there exists a model homomorphism h′ : MM → N′ and
let h = h′↾ιΣM : M → N′↾ιΣM . Let Nh = i−1

Σ,Mh. Then Nh |= EM . Because ιΣM is
quasi-representable and MM↾ιΣM = M, there exists a unique ιΣM-expansion of h to
a ΣM-model homomorphism from MM , which is necessarily h′. Therefore Nh = N′,
hence N′ |= EM .

□
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The result of Prop. 5.25 is quite telling about the concept of epic basic sets of sen-
tences. On the one hand, it is quite common for diagrams to be sets of atomic sentences.
On the other hand, there are many relevant situations when this is not so, the table of
Section 4.4 showing examples of diagrams in some sub-institutions of FOL determined
by various concepts of model homomorphisms that illustrate well this. Perhaps all these
tell us that from a semantic perspective the concept of the atom as the most primitive
constituent of sentences should be considered according to the actual concept of model
homomorphism.

Satisfaction by injectivity. The semantics of the basic sentences constitutes a simple
example of satisfaction by injectivity. Recall that a model M is injective with respect to a
model homomorphism h : A→ B when for each homomorphism f : A→M there exists
a homomorphism g : B→M such that h ; g = f .

A h
//

f
��

B

g
��

M

Let us denote this by M |=inj h. For each homomorphism h let Inj(h) be the class of
models injective with respect to h, and for each class of homomorphisms H let Inj(H) =⋂

h∈H Inj(h).

Fact 5.26. Let Σ be a signature with initial model 0Σ. For any basic set E of Σ-sentences,
any basic model ME for E, and for any Σ-model M,

M |= e if and only if M |=inj (0Σ→ME),

(where 0Σ → ME represents the unique model homomorphism given by the initiality of
0Σ).

General Horn sentences. The abstract concepts introduced so far allow us to define a
general institution-independent concept of Horn sentence as follows. In any institution,
for a designated class D of signature morphisms, a D-universal Horn sentence is any
sentence that is semantically equivalent to (∀χ)(E⇒ E ′) where

– χ : Σ→ Σ′ is a representable signature morphism in D ,

– E is a set of epic basic Σ′-sentences, and

– E ′ is a basic set of Σ′-sentences.

A universal Horn sentence (∀χ)(E⇒ E ′) is finitary when χ is finitary and E is finite.
While using the notation (∀χ)(E⇒ E ′) we do not assume that designated universal

quantifications or implications exist, instead, as usual, we just assume that they exist in
an implicit form.

Note that the general concept of finitary Horn sentence defined above covers more
sentences than some of the actual concepts of Horn sentence in concrete institutions. This
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is because the basic, and even the epi basic, sentences are usually more than the actual
atoms in institutions. For example, (∀X)(∃Y )t = t ′ is a general finitary Horn sentence in
FOL but it is not a HCL-sentence.

What remains from this section is devoted to establishing the equivalence between
the satisfaction of Horn sentences and the satisfaction by categorical injectivity.

Satisfaction of Horn sentences is injectivity
For the rest of this section let us assume that in our institutions the basic sets of sentences
are closed under finite unions. This is a mild condition in the applications as this happens
whenever there exist co-products of models by letting a basic model be ME∪E ′ = ME +
ME ′ . The following extends the encoding of satisfaction of sentences as injectivity from
basic sentences to Horn sentences.

Proposition 5.27. In any institution, for any universal Horn sentence (∀χ)(E⇒E ′) there
exists a model homomorphism h such that for each Σ-model M,

M |=inj h if and only if M |= (∀χ)(E⇒ E ′).

Proof. Let ME / ME ′ / ME∪E ′ be basic models for E / E ′ / E ∪E ′, respectively. Since E is
epi basic let us assume that ME = 0E , the initial model satisfying E. Because E∪E ′ |=E,
ME∪E ′ |= E. Therefore there exists a homomorphism h′ : ME →ME∪E ′ . We let h = h′↾χ.

• First, let us assume that a model M is injective for h. Consider any χ-expansion M′

of M such that M′ |= E. Hence there exists a model homomorphism f ′ : ME →M′.
Because M is injective for h, there exists a model homomorphism g : ME∪E ′↾χ→M
such that h ; g = f ′↾χ. Because χ is quasi-representable, we get g′ : ME∪E ′ →M′

such that g′↾χ = g. This means that M′ |= E ∪E ′, which implies M′ |= E ′.

ME↾χ

h
//

f
&&

ME∪E ′↾χ

g

��

ME
h′
//

f ′
$$

ME∪E ′

g′

��

M = M′↾χ M′

• Conversely, assume that M |= (∀χ)E ⇒ E ′. Because χ is quasi-representable, each
Σ-model homomorphism f : ME↾χ → M admits an expansion to an Σ′-model ho-
momorphism f ′ : ME →M′. This implies M′ |=E, therefore M′ |=E ′. Hence M′ |=
E∪E ′ which guarantees the existence of a model homomorphism g′ : ME∪E ′→M′.
Because ME is initial it follows that h′ ; g′ = f ′, which implies h ; g′↾χ = f .

□

The model homomorphism h : ME→ME∪E ′ of Prop. 5.27 has the flavour of a ‘quo-
tient’ because E ⊆ E ∪E ′. In some common cases, this can indeed be a proper quotient,
for instance when E and E ′ consist of equations.
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Injectivity is satisfaction of Horn sentences

We have seen that the satisfaction of Horn sentences can be expressed as categorical
injectivity for a model homomorphism. Now we show that the other way around is also
true, that the injectivity with a model homomorphism that resembles a ‘quotient’ can
be expressed as the satisfaction of a Horn sentence. But this result requires significantly
more conceptual infrastructure than the result of Prop. 5.27 because we have to ‘produce’
a Horn sentence from a model homomorphism. For this we use diagrams. The ‘quotient’
property of the model homomorphism involved is axiomatised in relation to the respective
diagrams as follows.

ι-conservative model homomorphisms. Given an institution with diagrams ι, a Σ-
model homomorphism h : A → B is ι-conservative when the theory morphism
ιΣh : (ΣA,(ιΣh)−1E∗∗B )→ (ΣB,EB) has the model expansion property.

Σ

ιΣA

}}

ιΣB

!!

(ΣA,EA)
ιΣh

// (ΣB,EB)

The informal meaning of this property is that the target of h does not contain anything
that cannot be expressed by the entities of the source of h. The following easy-to-check
fact gives an example of such a concrete situation.

Fact 5.28. Consider FOL with its standard system of diagrams. Then each surjective
model homomorphism h is ι-conservative.

In the absence of the surjectivity of h the ι-conservativity may fail as suggested by
the following simple example. Let Σ consist of one sort and one unary relation symbol
π. Let the carrier set of A consist of only one element such that Aπ = {a} and the carrier
set of B consist of two elements a and b such that Bπ = {a,b}. Let ha = a. Let M be
the ΣA-model consisting of two elements a and b and such that Ma = a, Mπ = {a}. Then
M |= (ιΣh)−1E∗∗B but M does not admits a ιΣh-expansion (to a (ΣB,EB)-model) because
b ̸∈Mπ.

Proposition 5.29. In any institution with diagrams ι, let h be a Σ-model homomorphism
h : A→ B. Let M be any Σ-model. Then

1. M |=inj h implies M |=Σ (∀ιΣA)(EA⇒ (ιΣh)−1E∗∗B ).

2. If h is ι-conservative, then M |=Σ (∀ιΣA)(EA⇒ (ιΣh)−1E∗∗B ) implies M |=inj h.

Consequently, if the elementary extensions of ι are representable then the satisfaction
by injectivity for any ι-conservative h is the same as the satisfaction of a general Horn
sentence.
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Proof. 1. Let M′ be any ιΣA-expansion of M such that M′ |= EA. Let f = iΣ,A M′. By
the injectivity of M, let g be such that h ; g = f and let Mg = i−1

Σ,B g.

Σ
ιΣA

//

ιΣB
""

ΣA

ιΣh
��

A

f
""

h
// B

g

��

ΣB M

By the naturality of i as shown in the following diagram

Mod(ΣA,EA)
iΣ,A

// A/ModΣ

Mod(ΣB,EB)

Mod(ιΣh)

OO

iΣ,B
// B/ModΣ

h;

OO
(5.4)

we get that Mg↾ιΣh = M′. Then

1 Mg |= E∗∗B Mg = i−1
Σ,B g ∈Mod(ΣB,EB)

2 (ιΣh)((ιΣh)−1E∗∗B )⊆ E∗∗B

3 Mg |= (ιΣh)((ιΣh)−1E∗∗B ) 1, 2

4 Mg↾ιΣh = M′ above

5 M′ |= (ιΣh)−1E∗∗B 3, 4, Satisfaction Condition

2. Consider a model M such that M |=Σ (∀ιΣA)(EA⇒ (ιΣh)−1E∗∗B ) and a model homo-
morphism f : A→M. Let M f = i−1

Σ,A f .

1 M f ↾ιΣA = M definition of M f , naturality of i

2 M f |= EA definition of M f

3 M f |= (ιΣh)−1E∗∗B 1, 2, M |= (∀ιΣA)(EA⇒ (ιΣh)−1E∗∗B )

4 there exists M′ ∈Mod(ΣB,EB), M′↾ιΣh = M f 3, h is ι-conservative.

Let g = iΣ,B M′. By the naturality of i, as shown in the diagram (5.4), applied to M′,
we have h ; g = f .

The final conclusion holds because EA is epi basic (cf. Prop. 5.25) and because of the
following claim:

If all elementary extensions are quasi-representable and h is ι-conservative,
then (ιΣh)−1E∗∗B is basic with the (BB)↾ιΣh being one of its basic models.

To prove this claim let us consider any Σ-model M.
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• On the one hand, if M |= (ιΣh)−1E∗∗B , then because h is ι-conservative, there exists
a ιΣh-expansion M′ of M to a (ΣB,EB)-model. Let f be the unique (ΣB,EB)-model
homomorphism BB→M′. Then f ↾ιΣh : (BB)↾ιΣh→M.

• On the other hand, let us consider a ΣA-model homomorphism (BB)↾ιΣ(h) → M.
Then

1 ιΣh quasi-representable ιΣA, ιΣB quasi-representable, ιΣA ; ιΣh = ιΣB, Prop. 5.12 4.

2 there exists homomorphism BB→M′ expansion of (BB)↾ιΣ(h)→M 1

3 BB epic basic model for EB Prop. 5.25

4 M′ |= EB 2, 3

5 (ιΣh)((ιΣh)−1E∗∗B )⊆ E∗∗B

6 M |= (ιΣh)−1E∗∗B M =M′↾ιΣh, 4, 5, Satisfaction Condition.

□

Exercises
5.26. Unions of finitary basic sets of sentences
Finite co-products of finitely presented objects are still finitely presented. If finite co-products of
models exist then the union of finitary basic sets of sentences is still finitary basic.

5.27. Finitary basic sentences are closed under finitary quasi-representable existential quantifica-
tions. (Hint: The model reducts corresponding to the finitary quasi-representable signature mor-
phisms preserve the finitely presented models.)

5.28. In any institution, any liberal signature morphism ϕ : Σ→ Σ′ preserve the (epi) basic sen-
tences, i.e. if E is a set of (epi) basic sentences then ϕE is (epi) basic too.

5.29. Representable theory morphisms
Let ϕ : Σ→ Σ′ be a quasi-representable signature morphism in an institution I . If E ′ is epi basic
then each theory morphism ϕ : (Σ,E)→ (Σ′,E ′) is representable (as a signature morphism of I th).

5.30. Preservation of Horn sentences

A sentence ρ is preserved by a limit (Mi
µi
//M )i∈|J| of a diagram of models (Mi

fu
//M j )u∈J

of models when Mi |= ρ for each i ∈ |J| implies M |= ρ.
In any institution:

1. Small products of models preserve Horn sentences.

2. Small limits of models preserve all Horn sentences (∀χ)E⇒ E ′ for which E ′ is epi basic.

3. Directed co-limits of models preserve the finitary Horn sentences.

5.31. Basic sentences modulo theories
Let I be a liberal institution.

1. Each set of sentences which is (epi) basic in I is (epi) basic in the institution I th too.

2. If each sentence of I is preserved by directed co-limits, then any finitary basic sets of sentences
in I is finitary basic in I th too.
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5.32. Borrowing basic sentences along comorphisms
Any persistently liberal institution comorphism (Φ,α,β) ‘borrows’ the (finitary) epi basic sen-
tences, i.e., E is (finitary) epi basic when αE is so. This can be applied in conjunction with the
results of Ex. 5.31 for the comorphisms of Ex. 4.88 for showing that finite sets of existence equa-
tions in PA or of any atoms of several other institutions (such as POA , AUT , MBA) are finitary
epi basic.

5.33. [47] HN K has atoms that are not basic. In the signature (S,F) defined by S = {s,s′} and
Fs→s = { f}, F(s→s)→s′ = {σ1,σ2}, for other types x, Fx being empty, the atom σ1 f = σ2 f is not
basic. (Hint: Consider the model M defined by Ms empty, and Ms′ , Ms→s and M(s→s)→s′ containing
only one element. Then M |= σ1 f = σ2 f . For any other model N satisfying σ1 f = σ2 f but such
that Nσ1 ̸= Nσ2 there exists no model homomorphism M→ N. Deduce from here that σ1 f = σ2 f
cannot be basic.)

5.34. In MVL♯ all sets of sentences of the form (π(c1, . . . ,cn),κ) where π is relation symbol,
c1, . . . ,cn are symbols of constants, and κ is an element of the residuated lattice, are epi basic.

5.35. An institution of injectivity
The following defines an institution IN J :

1. SigIN J is the category of the adjunctions, i.e., the signatures are categories and the signature
morphisms are adjunctions (U,F ,η,ε) : A→ B where U : B→A is the right adjoint and F
is the left adjoint.

2. SenIN J (A) = arr(A) (the class of all arrows of A), and SenIN J (U,F ,η,ε) = F for adjunc-
tions,

3. ModIN J (A) = A for each category A and ModIN J (U,F ,η,ε) = U for adjunctions, and

4. A |=IN J f if and only if A |=inj f .

There exists an institution comorphism from the sub-institution of CatEQL for which the cate-
gories have co-equalizers to IN J mapping each categorical equation (∀B)l = r to a designated
co-equalizer.

5.6 Elementary homomorphisms revisited

In Sect. 4.4 we have introduced the following concept of elementary homomorphism: in
any institution with diagrams ι, a Σ-model homomorphism h : M → N is ι-elementary
when Nh |= (MM)∗ where Nh is the canonical expansion of N to a ΣM-model, determined
by h , i.e., Nh = i−1

Σ,MN. This diagram-based definition of elementary homomorphism does
not support some desirable structural properties of elementary homomorphisms, such as
closure under composition. In this section, we provide an alternative concept of elemen-
tary homomorphism which we show to coincide with the diagram-based one under some
general ‘normality’ condition on the system of diagrams. The most important gain of the
convergence between these two different perspectives on elementary homomorphisms are
good structural properties which can be summed up by the fact that the elementary ho-
momorphisms of the institution determine themselves an institution with diagrams.
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D-elementary homomorphisms. Given a class D ⊆ Sig of signature morphisms, a
Σ-model homomorphism h : M→N is D-elementary when M′∗⊆N′∗ for each D-expan-
sion h′ : M′→ N′ of h.

In the actual institutions, D often consists of the class of all signature extensions
with constants, or of the injective signature extensions with constants. Notice that in the
case of FOL , and in fact in all institutions with finitary sentences, elementariness for
signature extensions with an arbitrary number of constants is equivalent to elementariness
for extensions adding finite numbers of constants.

The following applies to the cases when D contains all (injective) signature exten-
sions with constants.

Fact 5.30. In any institution with diagrams ι such that D contains all the elementary
extensions, any D-elementary homomorphism is ι-elementary.

Structural properties of elementary homomorphisms. We now give some general
conditions on D which ensure that the D-elementary homomorphisms determine a sub-
institution of the original institution.

Proposition 5.31. Let D be a class of signature morphisms.

1. If each morphism in D is quasi-representable, then the D-elementary homomor-
phisms are closed under composition.

2. If the institution is weakly semi-exact and D is stable under pushouts, then the
D-elementary homomorphisms are preserved by any model reduct functor.

3. If D is closed under compositions then the D-elementary homomorphisms are closed
under D-expansions.

Proof. 1. Let f : M→N and g : N→ P be D-elementary homomorphisms and for any
χ∈D let h′ : M′→P′ be a χ-expansion of f ;g. Then because χ is quasi-representable

• f and M′ determine a unique χ-expansion f ′ : M′→ N′ of f , and

• g and N′ determine a unique χ-expansion g′ : N′→ P′′ of g.

Σ

χ

��

M
f
// N

g
// P

Σ′ M′

h′

%%

f ′
// N′

g′
// P′

Therefore f ′;g′ is the unique χ-expansion of f ;g, hence P′′ = P′ and f ′ ; g′ = h′.
Since f and g are D-elementary it follows that M′∗ ⊆ N′∗ and that N′∗ ⊆ P′∗ hence
M′∗ ⊆ P′∗. This shows that f ;g is D-elementary.

2. Let h1 : M1→ N1 be a D-elementary Σ1-model homomorphism and ϕ : Σ→ Σ1 be
any signature morphism. In order to prove that h1↾ϕ is D-elementary, we consider
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(χ : Σ→ Σ′) ∈D . Because D is stable under pushouts, in the pushout square below
we also have that χ1 ∈D .

Σ
χ
//

ϕ

��

Σ′

ϕ′
��

Σ1 χ1
// Σ′1

Let h′ : M′→ N′ be any χ-expansion of h1↾ϕ. Then

1 there exists h′1 : M′1→ N′1, h′1↾ϕ′ = h′, h′1↾χ1 = h1 weak semi-exactness hyp.

2 (M′1)
∗ ⊆ (N′1)

∗ 1, h1 D-elementary

3 M′∗ ⊆ N′∗ 2, Satisfaction Condition for ϕ′.

3. Let χ : Σ→ Σ′ belong to D , h : M → N be D-elementary and h′ : M′ → N′ be a
χ-expansion of h. We prove that h′ is D-elementary. Let χ′ : Σ′ → Σ′′ belong to D
and let h′′ : M′′→ N′′ be a χ′-expansion of h′.

Σ
χ
// Σ′

χ′
// Σ′′

M
h
��

M′

h′
��

M′′

h′′
��

N N′ N′′

Then M′′∗ ⊆N′′∗ by the D-elementariness of h for χ ; χ′ (which belongs to D because
D is closed under compositions).

□

Corollary 5.32. Under the first two conditions of Prop. 5.31, the D-elementary homo-
morphisms determine a sub-institution of the original institution.

Normal diagrams

We have already seen that D-elementary homomorphisms are ι-elementary under the
natural assumption that the elementary extensions belong to D . This was rather easy. To
establish the equivalence between the two concepts of elementary homomorphism we
need a stronger connection between D and ι as follows. For any class D of representable
signature morphisms, the diagrams ι of an institution are D-normal if for each (χ : Σ→
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Σ′) ∈ D , represented by Mχ, there exists a signature morphism ϕ : Σ′ → ΣMχ
such that

the diagrams below commute:

Σ

ιΣMχ

!!

χ

��

Mχ/ModΣ Mod(ΣMχ
,EMχ

)
iΣ,Mχ

oo

forgetful
��

Σ′
ϕ
// ΣMχ

ModΣ′

iχ

OO

Mod(ΣMχ
)

Modϕ

oo

(5.5)

We can say that the D-normal signature morphisms are representable in such a way
that they can be ‘realised’ by the diagram of their representation. Each homomorphism
Mχ : N corresponds to a Σ′-model on the one hand, and to a model of the diagram of
Mχ on the other hand. These two representations are isomorphically related through the
canonical isomorphisms from the definitions of representability and of the diagrams and
this isomorphism can also be realised based on the model reduct corresponding to ϕ. The
following concrete example shows how this works in FOL . It illustrates a rather typical
actual situation in the sense that its main idea can be replicated in many other concrete
contexts.

Proposition 5.33. FOL has D-normal diagrams for D consisting of all (injective) sig-
nature extensions with constants.

Proof. Without any loss of generality, we treat only the case of the strict signature exten-
sions with constants. Let χ : Σ→ Σ′ extend the FOL signature Σ with a set of constant
symbols X . Then Mχ is the free (term) model TΣX , while ϕ is defined on each x ∈ X by x
(but regarded as a term in TΣX). The commutativity of the left-hand side triangle of (5.5)
is trivial.

To see that the corresponding condition on the model categories holds, let N be any
(ΣMχ

,EMχ
)-model. Let hN = iΣ,Mχ

N and g = iχ(N↾ϕ). The commutativity of the right-
hand side square of (5.5) is shown if we proved that hN = g:

1 for each t ∈Mχ, hNt = Nt definition of hN

For each x ∈ X :

2 gx = (N↾ϕ)x definition of iχ

3 ϕx = x definition of ϕ

4 (N↾ϕ)x = Nϕx definition of ϕ-reducts

5 gx = Nx 2, 3, 4

6 hNx = gx 1, 5.

From 6, since Mχ is free over X , it follows that hN = g. □

The following result shows that the general concept of D-normal diagram serves its
purpose.
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Proposition 5.34. In any institution with D-normal diagrams ι, any ι-elementary homo-
morphism is D-elementary.

Proof. Consider h : M→ N a ι-elementary Σ-homomorphism and let (χ : Σ→ Σ′) ∈D
and h′ : M′→N′ be a χ-expansion of h. We have to show that M′∗⊆N′∗. Because the dia-
grams are D-normal, χ is representable (represented by Mχ) and there exists ϕ : Σ′→ΣMχ

such that the diagrams of (5.5) commute. Let µ = iχM : Mχ→M and ν = iχN : Mχ→N.
We consider the diagrams below:

M/ModΣ

µ ; −
��

Mod(ΣM,EM)

Mod(ιΣµ)

��

iΣ,M
oo (h : 1M → h)

_

��

i−1
Σ,Mh�oo

_

��

Mχ/ModΣ

i−1
χ

��

Mod(ΣMχ
,EMχ

)
iΣ,Mχ

oo

forgetful

��

(h : µ→ ν)
_

��

(i−1
Σ,Mh)↾ιΣµ

ModΣ′ ModΣMχModϕ

oo (h′ : M′→ N′) (i−1
Σ,Mh)↾ιΣµ

�oo

The left-hand side diagram above is a categorical diagram that commutes because both
its constituent squares commute, the upper square because of the naturality of i and the
lower square by (5.5). Then we consider h as an arrow 1M → h in M/ModΣ. The right-
hand side diagram above shows how i−1

Σ,Mh (as a (ΣM,EM)-model homomorphism) gets
mapped through the functors of the left-hand side diagram. On the right hand side the
vertical and the upper horizontal mappings hold by the respective definitions, while the
lower horizontal mapping is proved by the commutativity of the left-hand side categorical
diagram. Hence

1 h′ = (i−1
Σ,Mh)↾ιΣµ

2 i−1
Σ,Mh : MM → Nh h : M→ N

3 (MM)∗ ⊆ (Nh)
∗ h ι-elementary

4 M′ = MM↾ϕ;ιΣµ, N′ = Nh↾ϕ;ιΣµ 1, 2

5 M′∗ ⊆ N′∗ 3, 4, Satisfaction Condition.

□

Corollary 5.35. In any institution with D-normal diagrams ι such that D contains all
elementary extensions, a homomorphism is D-elementary if and only if it is ι-elementary.

The following sums up the developments of this section.

Corollary 5.36. Let I be an institution with diagrams ι and a class D of signature mor-
phisms such that

• I is semi-exact,

• all elementary extensions of ι belong to D ,



142 Chapter 5. Internal Logic

• D is stable under pushouts,

• all signature morphisms in D are quasi-representable.

Then the elementary homomorphisms form a sub-institution E(I ) of I called the elemen-
tary sub-institution of I . Moreover E(I ) has diagrams such that its elementary extensions
are those of ι and for each Σ-model M its diagram in E(I ) is (MM)∗.

Corollary 5.36 can be instantiated to FOL as follows:

Corollary 5.37. In FOL the elementary embeddings form an institution.

Exercises
5.36. Taking the elementary sub-institution is an idempotent operation on institutions, i.e.,
E(E(I )) = E(I ).

Notes. The institution-independent semantics of Boolean connectives is rather folklore of institu-
tion theory, perhaps this was introduced first time in [226]. The institution-independent semantics of
quantifiers had been introduced first time by [228] and has been used intensively in [63]. Although
quantification by signature extensions is well-known in conventional mathematical logic [224, 150]
it is quite rare in the usual presentations of conventional logic or model theory. Quantification sys-
tems have been introduced in [72] under a slightly different terminology.

The institution-independent concept of substitution has been introduced in [65]. A rather
different approach has been developed within the framework of the ‘context institutions’ of [201].

The institution-independent approach to first order quantifiers via representable signature
morphisms have been developed in [63] which also introduced the concept of finitary representable
signature morphisms as an abstract categorical treatment for finitary first order quantification.
Quasi-representable signature morphisms have been introduced in [139]. In the jargon of more
advanced category theory that χ is quasi-representable is equivalent to saying that Modχ is a dis-
crete opfibration. Finitary quasi-representable signature morphisms are introduced here. Prop. 5.13
has been proved in [49].

Satisfaction by injectivity is a well-known concept in categorical universal algebra and it has
been intensively used in the general study of Birkhoff axiomatizability in arbitrary categories [9].
According to [197] injectivity was first used to represent satisfaction in [15]. In [9] the injectivity
is extended to arbitrary cones which cover the satisfaction of all first-order formulæ, however, this
leads to enormous conceptual and proof complexity without going beyond the boundaries of first-
order satisfaction. The same satisfaction power, and even much more, can be achieved only by basic
sentences, internal quantification and logical connectives, but in a much simpler framework. This
is due to the advantage of using the multi-signature framework based on institutions as opposed to
the other more rigid single-signature categorical abstract model-theoretic frameworks.

The institution-independent concept of elementary homomorphism, due to [139], unifies var-
ious concepts of model embeddings from the literature, such as elementary embeddings from con-
ventional model theory [42] for FOL , elementary embeddings of partial algebras [36], L∞,ω- and
Lα,ω-elementary embeddings from infinitary model theory [155, 168, 149], the existentially closed
embeddings of [149] for (Π∪Σ)0

1, the Σ0
n-extensions [42] for (Π∪Σ)0

n. D-elementary homomor-
phisms have been introduced by [139], which also proved their equivalence to (ordinary) elementary
homomorphisms under the normality condition on the diagrams.
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Chapter 6

Model Ultraproducts

The method of ultraproducts represents a true powerhouse of model theory as it has sig-
nificant applications in almost all branches of mathematics. For instance, it is the best
method to establish semantic compactness, compactness being one of the central themes
in logic. Some voices even consider the study of semantic compactness as the main pur-
pose of model theory. In other mathematical areas – such as algebra, especially fields
theory, algebraic geometry, combinatorics, etc. – through the method of ultraproducts a
multitude of new more elegant and simpler proofs of known results have been developed.
Moreover, in some cases, new important results have been obtained. Perhaps the most
famous application of ultraproducts is the theory of ‘hyperreals’ and its associated ‘non-
standard’ analysis of Abraham Robinson. This represents an elegant and fully rigorous
recovery of the original approach to analysis by Newton, Leibniz, and Euler based on
the calculus of infinitesimals. Whilst the ‘standard’ analysis of Cauchy, Weistrass, etc., is
based on the ε-δ calculus, which uses inequalities (for handling limits), the ‘non-standard’
analysis rather uses equalities (and no need for limits). In the face of the conceptual and
aesthetic superiority of the latter, one may be left wondering why ‘non-standard’ analysis
is not standard and vice versa. The answer to this is deceptively simple: because of intel-
lectual and educational inertia. Deep-rooted habits are difficult to uproot especially when
the (mathematical) education system worldwide does not encourage unconventionality.

The main purpose of this chapter is to develop the fundamentals of the method
of ultraproducts in an institution-independent manner, which liberates it from its tradi-
tional classical first-order logic context, thus making it easily available to a multitude of
non-conventional logic contexts. At the core of this enterprise lies the abstract category-
theoretic definition of ultraproducts.

Most applications of the method of ultraproducts rely on a famous theorem of the
Polish mathematician, logician, economist and philosopher Jerzy Łoś. Here we develop a
general institution-independent version of this crucial result. For this, we make explicit at
the level of abstract institutions a series of properties whose role is implicit in traditional
first-order logic.

The last parts of this chapter are devoted to several applications of the institution-
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independent version of Łoś Theorem. The most notable such application is a general
institution-independent semantic compactness result which can be applied easily to a mul-
titude of concrete logical systems.

The developments in this chapter require mostly familiarity with material from the
first four sections of Chap. 5. Only Sec. 6.5 involves material from the latter two sections
of Chap. 5.

6.1 Filtered products
Ultraproducts of models are a special kind of ‘filtered’ products of models. Results in
model theory may sometimes refer to various classes of filtered products that are more
general than ultraproducts, but in terms of applications, especially when negation is in-
volved, the ultraproducts are chief. In this section, we first illustrate the filtered products
construction for the particular example of the FOL models. Then we introduce the general
concept of filtered products in arbitrary categories.

Filters. For each non-empty set I, a filter F over I is defined to be a set F ⊆ P I (the set
of all subsets of I) such that

• I ∈ F ,

• X ∩Y ∈ F if X ∈ F and Y ∈ F , and

• Y ∈ F if X ⊆ Y and X ∈ F .

A filter F is proper when F is not P I, is principal if there exists Z ⊆ I such that F =
{X ⊆ I | Z ⊆ X}, and it is an ultrafilter when X ∈ F if and only if (I \X) ̸∈ F for each
X ∈ P I. Notice that ultrafilters are proper filters. We will always assume that all our filters
are proper.

Filtered products in FOL
Given a FOL signature Σ, let (Mi)i∈I be a family of Σ-models and let F be a filter over I.
Let M be the following Σ-model.

For each sort s of Σ, for each element m ∈Ms let m = (mi)i∈I with mi ∈ (Mi)s for
each i ∈ I. We let also

– For each sort s of Σ let Ms be the cartesian product of the sets (Mi)s.

– For each σ operation symbol and (m1, . . . ,mk) list of appropriate arguments for Mσ,
Mσ(m1, . . . ,mk) = (Mσ(m1

i , . . . ,m
k
i ))i∈I .

– For each π relation symbol in Σ and (m1, . . . ,mk) list of appropriate arguments for
Mπ, (m1, . . . ,mk) ∈Mπ if and only if (m1

i , . . . ,m
k
i ) ∈ (Mi)π for each i ∈ I.

Then we can establish easily that M together with the projections pi : M→ Mi (where
pim = mi) constitute a categorical product of the family (Mi)i∈I .
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By defining the equivalence ∼F on M by

m∼F m′ if and only if {i | mi = m′i} ∈ F

(which is correctly defined because F is a filter), we construct an F-product MF of (Mi)i∈I
by

– (MF)s = Ms/∼F for each sort s of Σ,

– (MF)σ(m/∼F ) = Mσ(m)/∼F for each operation σ of Σ and each list m of arguments
for Mσ, and

– (MF)π = {m/∼F | {i ∈ I | mi ∈ (Mi)π} ∈ F} for each relation π of Σ and each list m
of arguments for Mπ.

Routine calculations based on the filter property of F give the correctness of the definition
of MF .

Hyperreals. An emblematic example of the F-product construction is that of the or-
dered field of the hyperreals, ∗R. We take Σ to be the signature of the theory of ordered
fields, I = ω (the set of the natural numbers), each Mi = R (the ordered field of the real
numbers), and F any non-principal ultrafilter on ω. Then MF = ∗R. It has been shown
that the choice of F is immaterial if we assumed the Continuum Hypothesis, so, in this
case, the system of the hyperreal numbers is unique (up to isomorphism).

The categorical representation of FOL F-products. For each J ∈ F , let MJ be the
cartesian product of the models (Mi)i∈J and let µJ : MJ →MF be the model homomor-
phism such that µJm = m′/∼F for each m′ such that m = (m′i)i∈J . Because F is a filter, µJ
is well defined and is a model homomorphism. The reader is invited to check this.

Proposition 6.1. (µJ)J∈F is a co-limit of the directed diagrams of (canonical) projections
{pJ⊇J′ : MJ →MJ′ | J′ ⊆ J ∈ F}.
Proof. That µ is a co-cone for the respective diagram is obvious from its definition. Let
(νJ : MJ → N)J∈F be a co-cone over the same diagram.

MJ′
pJ′,J

//

µJ′

""

νJ′

��

MJ

µJ

||

νJ

��

M/∼F

h
��

N

There exists a unique many-sorted function h : MF → N such that hs m/∼F = νIm for
each m ∈Ms and for each sort s. Notice that the definition of h is correct because for each
m∼F m′,

νIm = (pI⊇J ;νJ)m = (pI⊇J ;νJ)m′ = νIm′
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where J = {i | mi = m′i}.
We prove that h is a model homomorphism MF → N.

• For each operation σ and each list of arguments m for Mσ, we successively have

h((MF)σ m/∼F ) = h((MF)σ(µIm)) definition of µI

= h(µI(Mσm)) µI homomorphism

= νI(Mσm) ν = µ ; h

= Nσ(νIm) νI homomorphism

= Nσ(h(µIm)) ν = µ ; h

= Nσ(h m/∼F ) definition of µI .

therefore h commutes with the interpretations of the operations.

• For each relation symbol π with arity w assume that m/∼F ∈ (MF)π for some m ∈
Mw. Then J = {i ∈ I | mi ∈ (Mi)π} ∈ F . We have that

h m/∼F = (µI ;h)m definition of µI

= (µJ ;h)(pI⊇Jm) µI = pI⊇J ;µJ

= νJ(pI⊇Jm) ∈ Nπ ν = µ;h, pI⊇Jm = (mi)i∈J ∈ (MJ)π, νJ homomorphism.

Therefore h preserves the interpretations of the relation symbols too.

□

Prop. 6.1 has the merit that it gives a purely categorical description of F-products
of FOL models. This indicates that F-products can be defined at the level of abstract
categories.

Categorical F-products

Consider a filter F over the set of indices I and a family of objects (Ai)i∈I in any category
C with small products. Then an F-filtered product of (Ai)i∈I (or F-product, for short)
is a co-limit {µJ : AJ → AF | J ∈ F} of the directed diagram of canonical projections
{pJ⊇J′ : AJ→ AJ′ | J′ ⊆ J ∈ F}, where for each J ∈ F , {pJ,i : AJ→ Ai | i ∈ J} is a direct
product of (A j) j∈J .

AJ
pJ,i

yy

pJ⊇J′

��

µJ

��

Ai AJ′pJ′,i
oo

µJ′
// AF
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Occasionally, by abuse of terminology, instead of the whole co-cone we will just
refer to the vertex AF as the F-product. Obviously, as co-limits of diagrams of products,
F-products are unique up to isomorphisms.

Note that the co-limits defining F-products are directed. Therefore a sufficient con-
dition for the existence of F-products, which applies to many institutions, is the existence
of small products and of directed co-limits of models. Note however that strictly speaking
the latter condition is not a necessary condition because only co-limits over diagrams of
projections are involved. We will see examples when directed co-limits of models do not
exist in general but some F-products do exist.

If F is an ultrafilter then F-products are called ultraproducts. When Ai = A for
all i ∈ I, then a F-product is called F-power. F-powers corresponding to ultrafilters are
called ultrapowers. The model of the hyperreals ∗R is such an ultrapower. Note that a
direct product of (Ai)i∈I is the same as the F-product A{I}, i.e. where F = {I}.

Filter reductions. Let F be a filter over I and I′ ⊆ I. The reduction of F to I′ is denoted
by F |I′ and defined as {I′∩X | X ∈ F}.

Fact 6.2. The reduction of any filter is still a filter.

A class F of filters is closed under reductions if and only if F |J ∈F for each F ∈F
and J ∈ F . Examples of classes of filters closed under reductions include the class of all
filters, the class of all ultrafilters, the class of the singleton filters {{I} | I set}, etc. The
following is a useful property of filter reductions which will be used in several situations.

Proposition 6.3. Let F be a filter over I and (Ai)i∈I a family of objects in a category C.
For each J ∈ F, the F-products AF |J and AF are isomorphic.

Proof. Note that the inclusion of posets (F |J ,⊇)⊆ (F,⊇) is a final functor since for each
J′ ∈ F we have that J′∩J ∈ F |J . Then the conclusion follows directly from Thm. 2.4. □

Exercises
6.1. Filtered products in PL
In PL , for any filter F over a set I, and for each family (Mi)i∈I of models, its F-product is⋃

J∈F
⋂

i∈J Mi.

6.2. Let Σ be the FOL signature having only one sort and only one binary relation symbol R. Let
(Mi)i∈I be a family of models and F be a filter over I. Prove that (MF )R is reflexive, symmetric, or
transitive when (Mi)R is reflexive, symmetric, respectively transitive for each i ∈ I.

6.3. The class of all ultrafilters is closed under reductions.

6.4. Borrowing F-products along institution comorphisms
For any persistently liberal institution comorphism I → I ′ the institution I has the limits and the
co-limits of models that I ′ has. This leads to the existence of F-products of models in several
institutions (such as POA , PA , AUT , MBA , LA , etc) via the examples of Ex. 4.88 and to the
existence of direct products of models in HN K via the comorphism of Ex. 4.12.
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6.5. [47] In general, HN K does not have directed co-limits of models. However, it has co-limits
of directed ‘injective’ diagrams, i.e., diagrams consisting of injective model homomorphisms.

6.6. IPL has direct products of models. Moreover, if we let IPL ′ be the sub-institution of IPL that
is determined by considering only complete Heyting algebras then IPL ′ has both direct products
and directed co-limits.

6.7. The categories ModWPL P (of WPL-models and model homomorphisms; see Ex. 4.48) have
directed co-limits but in general lack direct products.

6.8. Both MFOL∗ and MFOL♯ have F-products of models.

6.9. The categories of multialgebras (MA) do have direct products and directed co-limits.

6.10. [135] The categories of contraction algebras (CA) do have direct products and directed co-
limits.

6.2 Fundamental theorem
In this section, we develop an institution-independent version of Łoś Theorem. First, we
define some properties of signature morphisms regarding the interaction between model
reducts and F-products; these are required by the parts of the Łoś Theorem that deal with
quantified sentences.

Preservation / lifting / creation of filtered products. Consider a functor G : C′→ C
and F a filter over a set I. Then G preserves / lifts / creates F-products when

• it preserves / lifts / creates direct products, and

• it preserves / lifts / creates the directed co-limits defining the F-products.

The following fact gives the expected hierarchy of these three concepts.

Fact 6.4. If G creates F-products then it also lifts them. If G lifts F-products and C has
F-products then C′ has F-products which are preserved by G.

The following fact applies to many institutions when the role of G is played by
model reduct functors.

Fact 6.5. A functor G preserves / creates F-products if it preserves / creates direct prod-
ucts and directed co-limits.

Inventing filtered products. Let F be a class of filters closed under reductions. A func-
tor G : C′→C invents F -products when for each F ∈F , for each F-product {µJ : MJ→
MF | J ∈ F} of a family (Mi)i∈I in |C|, and for each N ∈ |C′| such that GN = MF ,

– there exists J ∈ F and (M′i)i∈J a family in |C′| such that G(M′i) = Mi for each i ∈ J
and such that
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– there exists an F |J-product {µ′J′ : M′J′ → M′F |J | J′ ∈ F |J} of (M′i)i∈J such that
M′F |J

∼= N.

When Gµ′J′ = µJ′ for each J′ ∈F |J we say that G invents strongly the respective F-product.
When J = I we say that G invents completely . (Note that in this case, the closure of F
under reductions is redundant.)

In essence, this inventing property means that each F -product construction of GN
can be established as the image by G of an F -product construction of B using a fil-
ter reduction. This is significantly more demanding than the lifting or preservation of
F -products and therefore in the actual institutions inventing of F-products holds for a
narrower class of signature morphisms than preservation. However, as will see below the
first-order quantifications are covered well by both properties.

The Fundamental Theorem
Sentences preserved by F-factors / products. Let F be a family of filters. The follow-
ing notions of preservation by F -factors and by F -products are dual to each other. For a
signature Σ in an institution, for each F ∈F , and each F-product {µJ : MJ→MF | J ∈F}
of any family (Mi)i∈I of Σ-models, a Σ-sentence e is

• preserved by F -factors if MF |=Σ e implies {i ∈ I |Mi |=Σ e} ∈ F , and

• preserved by F -products if {i ∈ I |Mi |=Σ e} ∈ F implies MF |=Σ e.

When F is the class of all ultrafilters, preservation by F -factors, respectively products,
are called preservation by ultrafactors, respectively ultraproducts.

Theorem 6.6 (Fundamental ultraproducts theorem). Consider any institution that has
appropriate filtered products of models. For any filter F:

1. The basic sentences are preserved by all F-products.

2. The finitary basic sentences are preserved by all F-products and all F-factors.

3. The sentences preserved by F-factors and the sentences preserved by
F -products are both closed under conjunction.

4. The sentences preserved by F-products are closed under infinite conjunctions.

5. If F is a proper filter, then for any sentence that is preserved by F-factors its negation
is preserved by F-products.

If F is an ultrafilter then:

6. If a sentence is preserved by F-products then any of its negations is preserved by
F-factors.

7. The sentences preserved by both F-products and F-factors are closed under nega-
tion.
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For any class F of filters closed under reductions (in particular the class of all ultrafil-
ters):

8. The sentences preserved by F -products are closed under existential χ-quantification,
when Modχ preserves F -products.

9. The sentences preserved by F -factors are closed under existential χ-quantification,
when Modχ invents F -products.

Proof. In this proof we let (Mi)i∈I denote an arbitrary family of Σ-models for a signature
Σ and {µJ : MJ →MF | J ∈ F} denote an F-product of this family.

1. Let e be a basic sentence. Let Me be a basic model for e. Consider
J = {i ∈ I |Mi |=Σ e}. There exists a model homomorphism Me→Mi for each i ∈ J,
therefore by the universal property of the products, there exists a model homomor-
phism Me→MJ . By composing this with µJ : MJ →MF , we get a model homomor-
phism Me→MF , which implies that MF |= e.

2. Consider a finitary basic Σ-sentence e. By 1. we have to prove only that e is preserved
by F-factors. If MF |= e, then there exists a model homomorphism Me→MF . Since
e is finitary basic we may consider that Me is finitely presented. Hence there exists a
model homomorphism Me → MJ for some non-empty J ∈ F , which, by the product
projections, means that Mi |= e for all i ∈ J. Therefore {i ∈ I |Mi |=Σ e} ∈ F because
J ⊆ {i ∈ I |Mi |=Σ e}.

3. Let e be the conjunction of Σ-sentences e′ and e′′. Let J = {i ∈ I |Mi |= e}, J′ = {i ∈
I |Mi |= e′} and J′′ = {i ∈ I |Mi |= e′′}. Then

1 J = J′∩ J′′ e conjunction of e′ and e′′

2 J ∈ F if and only if J′,J′′ ∈ F 1, F filter.

• Suppose that e′, e′′ are preserved by F-products and that J ∈ F . Then J′,J′′ ∈ F (cf.
2) which implies MF |= e′,e′′. Hence MF |= e.

• Now suppose that e′, e′′ are preserved by F-factors and that MF |= e. Then
MF |= e′,e′′, hence J′,J′′ ∈ F . Thus J ∈ F (cf. 2).

4. Let (eℓ)ℓ∈L be a family of Σ-sentences preserved by F-products and let e be a con-
junction of (eℓ)ℓ∈L. Suppose that {i ∈ I |Mi |= e} ∈ F . Then

1 {i ∈ I |Mi |= eℓ} ⊇ {i ∈ I |Mi |= e} for each ℓ ∈ L e conjunction of (eℓ)ℓ∈L

2 {i ∈ I |Mi |= eℓ} ∈ F for each ℓ ∈ L 1, F filter

3 MF |= eℓ for each ℓ ∈ L eℓ preserved by F-products

4 MF |= e 3, e conjunction of (eℓ)ℓ∈L.

5. Let e be a negation of a Σ-sentence e′ such that e′ is preserved by F-factors. Let us
assume that J = { j ∈ I |M j |= e} ∈ F . We have to prove that MF |= e. By Reductio ad
Absurdum we suppose MF ̸|= e. Then
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1 MF |= e′ e′ negation of e, MF ̸|= e

2 J′ = { j ∈ I |M j |= e′} ∈ F 1, e′ preserved by F-factors

3 J∩ J′ ∈ F J ∈ F , 2, F filter

4 there exists j ∈ J∩ J′ 3, F proper

5 M j |= e,e′ 4.

But 5 represents a contradiction.

6. Let e be a negation of a Σ-sentence e′ such that e′ is preserved by F -products. Let F
be any ultrafilter in F and assume that MF |= e. By Reductio ad Absurdum we suppose
J = { j ∈ I |M j |= e} ̸∈ F . Then

1 J′ = { j ∈ I |M j |= e′}= I \ J e′ negation of e

2 J′ ∈ F 1, F ultrafilter

3 MF |= e′ 2, e′ preserved by F-products.

But 3 and MF |= e are contradictory, hence J ∈ F .

7. From 5. and 6.

8. Let χ : Σ→ Σ′ be a signature morphism that preserves F -products. Let e′ be a Σ′-
sentence preserved by F -products, and let e be an existential χ-quantification of e′.
Consider a filter F ∈ F over a set I, and assume that J = {i ∈ I |Mi |=Σ e} ∈ F . We
have to prove that MF |=Σ e. For each i ∈ J let M′i be a χ-expansion of Mi such that
M′i |=Σ′ e′. Then

1 M′F |J |=Σ′ e′ J ∈ F , F |J ∈ F , e′ preserved by F -products

2 M′F |J ↾χ
∼= MF |J Modχ preserves F -products

3 MF |J
∼= MF Prop. 6.3

4 M′F |J ↾χ |=Σ e 1, e is existential χ-quantification of e′

5 MF |= e 2, 3, 4, satisfaction invariant with respect to model isomorphisms.

9. Under the same framework as in the item above, but assuming instead that χ invents
F -products, let us consider that MF |=Σ e. We have to prove that {i∈ I |Mi |=Σ e} ∈ F .
Let N be a χ-expansion of MF such that N |=Σ′ e′. Because Modχ invents F -products,
there exists J ∈ F such that for each i ∈ J there exists a χ-expansion M′i of Mi such
that M′F |J

∼= N. Then

1 M′F |J |= e′ N |= e′, M′F |J
∼= N, satisfaction invariant with respect to model isomorphisms

2 J′ = {i ∈ J |M′i |=Σ′ e′} ∈ F |J 1, F |J ∈ F , e′ preserved by F -factors

3 F |J ⊆ F J ∈ F , F filter, filter properties
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4 J′ ∈ F 2, 3

5 J′ ⊆ {i ∈ I |Mi |=Σ e} e is existential χ-quantification of e′

6 {i ∈ I |Mi |=Σ e} ∈ F 4, 5, F filter.

□

The result of Theorem 6.6 has been developed in a modular manner. This allows
for a great deal of flexibility in the applications, as one may invoke only the parts that
are required by a respective application. The last two parts of Theorem 6.6 are concerned
with quantifiers and these are the only ones that require some specific conditions. In the
remaining part of the section, we address these conditions.

Establishing the preservation and invention of filtered products
From these two properties, in the applications preservation is in general easier to estab-
lish that invention. Moreover the former can be treated as a combination of two separate
‘smaller’ problems, namely the preservation of direct products and preservation of di-
rected co-limits.

Preservation of direct products. Since right adjoint functors preserve all limits (see
Prop. 2.6), one way to see that model reducts preserve direct products is to invoke liber-
ality of the signature morphisms. According to Prop. 4.29 a sufficient set of conditions
for this is the existence of signature pushouts, semi-exactness, the existence of diagrams,
and the existence of initial models of presentations. At first glance the latter condition
might seem quite strong, however, it is not since we need only the sub-institution of those
sentences which are involved in the diagrams. As we know, in the case of the standard
concepts of model homomorphisms, these are the atomic sentences of the institution.
FOL is a typical case, since for the standard concept of model homomorphism we thus
need that only (sets of) atoms have initial models, a property which is easy to establish
(see Cor. 4.28).

Note that restricted concepts of model homomorphisms may break the argument
above. Consider for example the injective FOL-model homomorphisms. Recall that the
corresponding diagrams consist of (equational and relational) atoms plus negations of
equational atoms. Arbitrary sets of atoms and negations of equational atoms do not nec-
essarily have an initial model, even when homomorphisms are all injective. Moreover, in
this case even the existence of (direct) products of models is lost. This shows that cat-
egorical F-products require appropriate model homomorphisms which guarantee good
structural properties for the categories of models.

In most applications of Theorem 6.6 the quantifications are first-order, and in those
situations the following general simple result can be applied immediately, thus avoiding
the method discussed above.

Proposition 6.7. All model reduct functors corresponding to representable signature
morphisms create limits of models.
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Proof. Let χ : Σ→ Σ′ be a representable signature morphism. The proposition holds
by the general categorical argument that the forgetful functor from a comma category
to the base category creates all limits (Prop. 2.3) applied to the forgetful Mχ/ModΣ→
ModΣ. □

Preservation of directed co-limits. This problem can be approached in a similar way
to the preservation of direct products. Either establish preservation results for all model
reducts directly in concrete institutions, or else develop a general result for a restricted
class of model reducts that nevertheless covers concrete first-order quantifications. We
illustrate the first method with a FOL result, which can be replicated with superficial
adjustments to other concrete situations. For the second method, we provide a general
result in the style of Prop. 6.7.

Proposition 6.8. In FOL all model reduct functors lift directed co-limits. Moreover, for
the signature morphisms that are surjective on the sorts, the lifting is unique.

Proof. We first consider the simpler case, when the model reduct functor is the forgetful
functor from models to their underlying set carriers. Let h = (hi, j)(i≤ j)∈(J,≤) be a directed
diagram of (S,F,P)-model homomorphisms, and let µ be the co-limit of the corresponding
diagram of underlying many-sorted sets.

Mi
hi, j

//

µi
��

M j

µ j
��

(Mi)s
(hi, j)s

//

(µi)s
��

(M j)s

(µ j)s
��

M Ms

Then

• there exists a unique way one can interpret the operations of F on the sets (Ms)s∈S such
that µi become (S,F)-model homomorphisms. For each σ ∈ Fw→s and each tuple of
elements (m1, . . . ,mk) ∈Mw, we define

Mσ(m1, . . . ,mk) = µ j (M j)σ(m
j
1, . . . ,m

j
k)

where j and m j
1, . . . ,m

j
k are such that m1 = µ jm

j
1, . . . ,mk = µ jm

j
k. This is possible be-

cause µ is already the co-limit of the underlying set carriers – hence each mi can be
written as µ jim

ji
i for some ji ∈ J – and because the length k of the arity w is finite –

hence by the directedness of (J,≤) we can find j such that ji ≤ j, 1≤ i≤ k. Also, the
correctness of the definition is guaranteed by the homomorphism property of each h ji, j.
It is easy to check that under this definition of Mσ all µi’s are (S,F)-homomorphisms
and that µ also a co-limit in the category (S,F)-homomorphisms.

• There is also a minimal way one can interpret the relations P on the sets (Ms)s∈S such
that µi are (S,P)-model homomorphisms. For each π ∈ P,

Mπ =
⋃
{µi (Mi)π | i ∈ J}
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The fact that Mπ is the smallest with this property guarantees the co-limit property of
the co-cone µ in the category of (S,P)-homomorphisms.

Hence µ is a co-limit of h in ModFOL(S,F,P).
In the second part of the proof, we just extend the conclusion of the first part to the

case of any FOL-signature morphism χ : (S,F,P)→ (S′,F ′,P′). Let h′ = (h′i, j : M′i →
M′j)(i≤ j)∈(J,≤) be a directed diagram of (S′,F ′,P′)-model homomorphisms, and let h =
(hi, j : Mi→M j)(i≤ j)∈(J,≤) be its χ-reduct. Let µ be a co-limit of the later latter diagram.
By the first part of the proof we know that µ is a co-limit of h in the category of S-sorted
sets. Moreover without any loss of generality, we may assume that for each i∈ J and sorts
s1,s2 such that χs1 = χs2 we have that (µi)s1 = (µi)s2. This is because (Mi)s1 = (Mi)s2.

M′i
h′i, j

//

µ′i ��

M′j

µ′j��

Mi
hi, j

//

µi
��

M j

µ j
��

M′ M

Then for each i ∈ J we define (µ′i)χs = (µi)s for each s ∈ S. If χst is surjective then µ′ is
thus uniquely defined and it is a co-limit, if not then we can still extend µ′ thus defined
outside the image of χst such that µ′ is still a co-limit. Of course, in the non-surjective
case, µ′ thus defined is not unique. The final step is the application of the first part of the
proof for lifting µ′ from a co-limit of S′-sorted functions to a co-limit of (S′,F ′,P′)-model
homomorphisms. It remains to see that for each τ operation or relation symbol of (S,F,P)
we have that M′χτ = Mτ. This can be seen directly from the definition of M′χτ according to
the first part of the proof of this proposition. □

Note the reliance of the above result to the finiteness of the arities of the symbols of
the signatures; this may be typical in other concrete situations too.

The strength of the result of Prop. 6.8 is that it holds for all model reducts, its
weakness is that it lacks independence from the underlying institution. The following
result is rather complementary to these aspects as it holds for a restricted class of signature
morphisms but on the other hand, it is abstract. However, it applies effectively to first-
order quantifications situations.

Proposition 6.9. All model reduct functors corresponding to quasi-representable signa-
ture morphisms create directed co-limits of models.

Proof. Let χ : Σ→Σ′ be a quasi-representable signature morphism, let f ′=( f ′i, j)(i< j)∈(I,≤)
be a directed diagram of Σ′-models, and let f = ( fi, j)(i< j)∈(I,≤) be its χ-reduct. Consider
a co-limit µ of f .

M′i
f ′i, j

//

µ′i   

M′j

µ′j~~

Mi
fi, j

//

µi
��

M j

µ j
��

Ni = N j M
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Because χ is quasi-representable, for each i ∈ I, there exists a unique χ-expansion
µ′i : M′i → Ni of µi.

• If i≤ j then both µ′i and f ′i, j;µ′j are χ-expansions from M′i of µi = fi, j;µ j hence by the
quasi-representability of χ we get that µ′i = f ′i, j;µ′j. In particular, this means Ni = N j.
Moreover, because the diagram is directed, for any i,k we can establish that Ni = Nk
by considering j ≥ i,k. Hence we have a co-cone µ′ for f ′.

• Now we prove that µ′ is a co-limit for f ′. Let ν′ be a co-cone for f ′ and let ν be
its χ-reduct. Since µ is a co-limit there exists an unique h such that µ;h = ν. Let
M′ be the vertex of µ′. By the quasi-representability of χ let h′ be the unique χ-
expansion of h from M′. Then µ′i;h′ is a χ-expansion of µi;h = νi from M′i . By the
quasi-representability of χ it follows that µ′i;h′ = ν′i.

□

The following is a consequence of Prop. 6.9 and will be used later on.

Corollary 6.10. Let χ : Σ→ Σ′ be a finitary quasi-representable signature morphism
and M′ be a finitely presented Σ′-model. Then its reduct M′↾χ is finitely presented too.

Proof. Let us consider a Σ-model homomorphism h : M′↾χ → N to the vertex of a co-
limit µ of a directed diagram f = ( fi, j : Ni → N j)(i< j)∈(J,≤). We first prove that there
exists j ∈ J and g j : M′↾χ → N j such that g j;µ j = h. By the quasi-representability of χ

let h′ : M′→ N′ be the unique χ-expansion of h from M′.

Ni
fi, j

//

µi
��

N j

µ j
��

N M′↾χh
oo

g j
aa

• Because χ is finitary there exists i ∈ J and µ′i : N′i → N′ a χ-expansion of µi.

• By using the quasi-representability of χ we get a χ-expansion f ′ = ( f ′j,k : N′j →
N′k)(i≤ j<k)∈(J,≤) of ( f j,k : N j → Nk)(i≤ j<k)∈(J,≤) and also a co-cone µ′ for f ′ which
is a χ-expansion of (µ j)i≤ j∈J . Moreover µ′ is a co-limit co-cone of f ′ because

– by Thm. 2.4 (µ j)i≤ j∈J is a co-limit of ( f j,k : N j → Nk)(i≤ j<k)∈(J,≤) since this
is a final sub-diagram of f , and

– by Prop. 6.9 Modχ creates directed co-limits.

• Because M′ is finitely presented there exists i≤ j and g′j : M′→N′j such that g′j;µ′j =
h′. Then we define g j = g′j↾χ.

Now we prove that for any gi : M′↾χ→Ni and gk : M′↾χ→Nk such that h= gi;µi =
gk;µk there exists j ≥ i,k such gi; fi, j = gk; fk, j.
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• By the quasi-representability property for χ we let g′i : M′ → N′i / g′k : M′ → N′k /
µ′i : N′i → N′ / µ′k : N′k → N′ be the χ-expansions of gi / gk / µi / µk, respectively.
(That µ′i and µ′k share their codomain follows by the uniqueness of the χ-expansions
of gi;µi, gk;µk and also because gi;µi = gk;µk.)

• Because (Modχ)−1 preserves directed co-limits (Fact 5.15) it follows that (Modχ)−1µ
is a co-limit of (Modχ)−1 f . Hence since ((Modχ)−1µ)N′i = ((Modχ)−1µ)N′k(= N′)
there exists ℓ≥ i,k such that ((Modχ)−1 fi,ℓ)N′i = ((Modχ)−1 fk,ℓ)N′k; we denote this
by N′ℓ.

• By the quasi-representability of χ and the directedness of (J,≤), from N′ℓ we get an
unique χ-expansion ( f ′j1, j2)(l≤ j1< j2)∈(J,≤) of the final sub-diagram ( f j1, j2)(l≤ j1< j2)∈(J,≤)
together with a unique χ-expansion (µ′j)(l≤ j)∈(J,≤) of the co-limiting co-cone (µ j)(l≤ j)∈(J,≤).

M′g′i

��

g′k

��

N′i
f ′i,ℓ

//

µ′i
((

N′ℓ

µ′ℓ

��

f ′ℓ, j
��

N′k
f ′k,ℓ

oo

µ′k
vv

N′j
µ′j
��

N′

• Since M′ is finitely presented there exists j ≥ ℓ such that g′i; f ′i,l ; f ′l, j = g′k; f ′k,l ; f ′l, j.
From this, by reduction by χ, we obtain gi; fi, j = gk; fk, j.

□

Inventing F-products
With the following general result, we establish classes of signature morphisms for which
their model reduct functors invent filtered products. In the applications, these cover the
usual first-order quantifications. Both alternative conclusions of Prop. 6.11 below are
technically stronger than what is required by Thm. 6.6.

Proposition 6.11. In any institution, for any class F of filters, the model reduct functor
Modχ corresponding to a signature morphism χ

1. invents strongly F -products if χ is finitary representable and F is closed under re-
ductions, or

2. invents strongly and completely F -products if

• χ is projectively representable, i.e., χ is representable such that its representation
Mχ is projective, and

• all projections of model products are epis, i.e. for any model product MI of a family
(Mi)i∈I of models and for each J ⊆ I, the canonical projection MI →MJ is an epi.
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Proof. Let χ : Σ→ Σ′ and Mχ be a representation of χ. Consider a filter F ∈ F over a
set I and a χ-expansion M′ of MF where {µJ : MJ →MF | J ∈ F} is an F-product of a
family (Mi)i∈I of Σ-models. We first show that in any of the two hypotheses, there exists
J ∈ F and gJ : Mχ→MJ such that gJ ;µJ = iχM′. Moreover under the second hypothesis
J = I.

1. By Corollary 5.17 we know that Mχ is finitely presented. Then there exists J ∈ F and
gJ : Mχ→MJ such that gJ ; µJ = iχM′.

2. Let us prove that µI : MI → MF is epi. Let f ,g : MF → N such that µI ; f = µI ;g.
Because the projections pI⊇J are epis it follows that for each J ∈ F we have µJ ; f =
µJ ; g. Because µ is a co-limit, it is an epimorphic family, therefore f = g. By using
that µI is epi, by the projectivity of Mχ there exists gI : Mχ→MI such that gI ; µI =
iχM′.

For each J ⊇ J′ ∈ F let gJ′ = gJ ; pJ⊇J′ .

• By regarding filters as partially ordered sets, F |J ⊆ F is a final functor. Therefore,
by Thm. 2.4 it follows that (µJ′)J′∈F |J is an F |J-product of (Mi)i∈J .

MJ

µJ ##

pJ⊇J′
// MJ′

µJ′{{

i−1
χ gJ

i−1
χ µJ $$

i−1
χ pJ⊇J′

// i−1
χ gJ′

i−1µJ′zz

MF M′

Mχ

gJ

OO

gJ′

OO

iχM′
OO

• Since Modχ creates direct products (cf. Prop. 6.7) and directed co-limits (cf. Prop. 6.9)
it follows that (i−1

χ µJ′)J′∈F |J is an F |J-product of (i−1
χ pJ′⊇J′′)J′⊇J′′∈F |J .

□

Although in most situations Prop. 6.11 can be used effectively for inventing of F-
products, the representability of the signature morphism is not always a necessary con-
dition for this. Remarkable such situations can be found in the realm of the ‘stratified
institutions’ of Chapter 12, including institutions based on some form of Kripke seman-
tics.

Exercises
6.11. In FOL all model reduct functors lift small limits. Moreover, for the signature morphisms
that are surjective on the sorts, the lifting is unique. (Hint: Follow a similar route to the proof of
Prop. 6.8.)

6.12. In EQL all model reduct functors corresponding to signature morphisms that are surjective
on the sorts create small limits.
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6.3 Łoś institutions
In this section, we assume institutions that have all ultraproducts of models.

Łoś sentences. A sentence is a Łoś-sentence when it is preserved by all ultrafactors and
all ultraproducts. The following is a straightforward consequence of Thm. 6.6.

Corollary 6.12. In any institution I , the sentences accessible from the finitary basic
sentences by Boolean connectives and χ-quantification for which χ preserves and invents
ultraproducts, are Łoś-sentences.

Cor. 6.12 can be brought closer to concrete applications by using Prop. 6.9, 6.7 and 6.11:

Corollary 6.13. In any institution, any sentence which is accessible from the finitary
basic sentences by

– Boolean connectives,

– finitary representable quantification, and

– projectively representable quantification (assuming that the institution has epi model
projections)

is a Łoś-sentence.

Łoś-institutions. An institution is a Łoś-institution if and only if it has all ultraproducts
of models and all its sentences are Łoś-sentences. Note that the condition on the existence
of ultraproducts requires the existence of direct products but not necessarily of other F-
products. With this terminology the classical Łoś Ultraproducts Theorem can be thus
formulated as follows:

Corollary 6.14. FOL is a Łoś-institution.

Note that in the case of Cor. 6.14 we can use any of the two arguments referring to
finitary or projectively representable quantifications.

Filtered power embedding
Let F be a filter over a set I. In any institution with F-products of models, for each model
M and any F-power (µJ : MJ → MF)J∈F there is a canonical model homomorphism
dF

M : M→MF defined by

dF
M = (M

δI
M
//MI

µI
//MF )

where δI
M : M→MI is the ‘diagonal’ model homomorphism defined by δI

M ; pI,i = 1M
for each i ∈ I.

Proposition 6.15. In any institution with diagrams ι, for any filter F over an arbitrary
set I such that
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1. the institution has F-products of models which are preserved by the model reducts
corresponding to the elementary extensions, and

2. all sentences are preserved by F-products,

for any model M the canonical homomorphism dF
M : M→MF is ι-elementary.

Proof. Let MM be the initial model of the diagram (ΣM,EM) of a Σ-model M. We have to
prove that i−1

Σ,MdF
M |=(MM)∗. Let (µ′J : (MM)J→ (MM)F)J∈F be an F-power of MM . Then

1 (MM)F |= EM MM |= EM , EM are preserved by F-products

2 µ′↾ιΣM is F-power of M Mod(ιΣM) preserves F-products

3 there exists ϕ : MF → (MM)F↾ιΣM isomorphism s.th. dF
M;ϕ = dF

MM
↾ιΣM 2

4 iΣ,MdF
MM

: iΣ,MMM → iΣ,M(MM)F definition of dF
MM

5 dF
MM

↾ιΣM : 1M → iΣ,M(MM)F 4

6 iΣ,M(MM)F = dF
MM

↾ιΣM 5, property (4.1) of iΣ,M

7 i−1
Σ,M(dF

M;ϕ) = (MM)F 3, 6

8 i−1
Σ,Mϕ : i−1

Σ,MdF
M → i−1

Σ,M(dF
M;ϕ) ϕ : dF

M → dF
M ;ϕ in M/ModΣ

9 i−1
Σ,MdF

M
∼= (MM)F 7, 8, ϕ isomorphism

10 (MM)F |= (MM)∗ F-products preserves all sentences

11 i−1
Σ,MdF

M |= (MM)∗ satisfaction invariant under model isomorphisms.

□

The condition of preservation of F-products by the elementary extensions in the
above proposition is fulfilled immediately in all institutions for which all signature mor-
phisms preserve direct products and directed co-limits of models. We have seen in Sect. 6.2
that this is an expected situation. Alternatively, we may use the general argument that rep-
resentable signature morphisms preserve all F-products (cf. Prop. 6.7 and 6.9) and rely
on the fact that elementary extensions are usually representable.

By Cor. 6.14 we obtain the following instance of Prop. 6.15.

Corollary 6.16. Any FOL-model can be elementarily embedded in any of its ultrapowers.

This classic result in first-order model theory has many important applications. For
instance, it is the basis of the Transfer Principle of non-standard analysis.

Exercises
6.13. Several concrete institutions (such as HCL , POA , PA , AUT , MBA , LA , IPL , etc.) can be
established as Łoś institutions by virtue of Cor. 6.13.

6.14. Ultraproducts in HN K
HN K has ultraproducts of models. (Hint: Consider comorphism HN K → FOEQL th of Ex. 4.12
and use the fact that (cf. Ex. 6.4) HN K has direct products of models and that (cf. Cor. 6.14) FOL
is a Łoś institution.) But HN K does not necessarily have all F-products.
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6.15. Borrowing the Łoś property
For any persistently liberal institution comorphism (Φ,α,β) : I → I ′, for any I -sentence ρ, if
α(ρ) is a Łoś sentence then ρ is a Łoś sentence too. Apply this to the examples of comorphisms
of Ex. 4.88 for obtaining the Łoś property for several concrete institutions (such as POA , PA ,
AUT , MBA , IPL , LA , etc.). By this borrowing method HN K can also be established as a Łoś
institution. (Hint: Use the comorphism of Ex. 4.12 and refer also to the result of Ex. 6.14.)

6.16. Horn sentences are preserved by F-products
Let (∀χ)E ⇒ E ′ be a finitary universal Horn sentence for a signature Σ in an arbitrary institution
that has F-products of models. For each family of Σ-models (Mi)i∈I and filter F over I, show that
any F-product of the family of models satisfies (∀χ)E⇒ E ′ when Mi satisfies (∀χ)E⇒ E ′ for each
i ∈ I. Apply this for showing that in HCL any model can be elementarily embedded in any of its
F-powers.

6.17. Σ1
1-sentences

In any institution, e is a Σ11-sentence if it is an existential χ-quantification of a Łoś sentence, where
χ is any F-product preserving signature morphism. For instance any second-order existential quan-
tification of a FOL sentence is a Σ11-sentence. In any institution each Σ11-sentence is preserved by
ultraproducts.

6.4 Compactness
Compactness is a central theme in logic and model theory. It has two main variants.

1. A consequence theoretic version at the level of abstract institutions is as follows.
An institution is compact when for each signature Σ, each set E of Σ-sentences and
each single Σ-sentence e, if E |= e then there exists a finite subset E f ⊆ E such that
E f |= e.

2. A model-theoretic version which is based on the concept of consistency. In any
institution I a set E of Σ-sentences is consistent if E∗ ̸= /0. An institution is model
compact or m-compact for short, if each set of sentences is consistent when all its
finite subsets are consistent.

Although the definition of the former version of compactness also involves models (be-
cause the concept of semantic consequence relies on models) it can be defined more
abstractly for any relation on sets of sentences that satisfy the properties of semantic con-
sequence given in Prop. 3.7.

Consequence-theoretic compactness versus model compactness. The significance of
consistency and the distinction between compactness and m-compactness depends on the
actual institution. For example, consistency has real significance in FOL , while in EQL
or HCL it is a trivial property since each set of sentences is consistent. Therefore in
some institutions compactness and m-compactness are not necessarily the same concept.
For example, any institution in which each set of sentences is consistent is trivially m-
compact, but it is not necessarily compact. Below is a simple (counter)example.



6.4. Compactness 163

Proposition 6.17. HCL∞,ω (infinitary Horn clause logic) is model compact but it is not
compact.

Proof. That HCL∞,ω is m-compact follows from the fact that each theory in HCL∞,ω is
consistent since it has an initial model. This can be established in the same way as for
HCL since in Prop. 4.26 we have not used the fact that the Horn sentences are finitary.

Now let us show that HCL∞,ω is not compact. For this, we consider a signature
without sorts, consisting only of an infinite set P of relation symbols of empty arity. Recall
that the models of this signature consist of subsets of P. Obviously, each element of P is
an atom. Let us pick a π∈P and consider E =P\{π}. We have the semantic consequence
E ∪{∧E ⇒ π} |= π. We show that for any finite E f ⊆ E ∪{∧E ⇒ π}, E f ̸|= π. For this,
we define a model M of E f which does not satisfy π. This is M = E f \{∧E⇒ π}. □

The following establishes a general relationship between compactness and m-com-
pactness.

Proposition 6.18.

• Each compact institution having false is m-compact.

• Each m-compact institution having negations is compact.

Proof. Let E be any set of Σ-sentences.

• By Reductio ad Absurdum suppose that E∗= /0 whilst for each finite E f ⊆E, E∗f ̸= /0.
Since E∗ = /0 means E |= false, by the compactness hypothesis there exists a finite
E f ⊆ E such that E f |= false. But this means E∗f = /0 which is a contradiction.

• Conversely, by Reductio ad Absurdum we consider E |= e such that for each finite
E f ⊆ E we have E f ̸|= e. Then there exists a model M f |= E f ,e′ where e′ is a nega-
tion of e. This implies that E f ∪ {e′} is consistent which by the m-compactness
hypothesis implies that E ∪{e′} is consistent. Let M ∈ (E ∪{e′})∗. Then M |= E
and M ̸|= e thus E ̸|= e which is a contradiction.

□

Compactness by ultraproducts
There are two main ways to establish compactness properties as follows:

1. By defining a set of complete finitary proof rules for the institution. This means
that for each semantic consequence E |= e we can ‘prove’ e by a finite process of
applying rules starting with premises from E. This would be a syntactic process
as it would not involve models at all and it would use only a finite set E f ⊆ E of
premises. Furthermore, if the institution has false then we can also establish m-
compactness. There are two drawbacks to this method. It is usually very difficult to
establish complete systems of finitary proof rules as in general completeness is a
notoriously difficult property to establish. Moreover, if we aim for m-compactness
then we need false, which is a form of negation. About proof rules and proof theo-
retic compactness we will find out in Chap. 11.
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2. By using ultraproducts we can establish compactness and m-compactness indepen-
dently, without the need for a result that relates them, such as Prop. 6.18. This is
what we will do now at a fully general institution-independent level.

The following result is the root of establishing both compactness and m-compactness
in abstract institutions by model-theoretic means.

Theorem 6.19. In any institution with ultraproducts of models, let E be a set of sentences
preserved by ultraproducts of models. Let I be the set of all finite subsets of E. Consider
a model Mi ∈ i∗ for each finite subset i ∈ I. Then there exists an ultrafilter U over I such
that for each ultraproduct (µJ : MJ →MU )J∈U , MU |= E.

Proof. A set S ⊆ P I has the finite intersection property if J1 ∩ J2 ∩ ·· · ∩ Jn ̸= /0 for all
J1,J2, . . . ,Jn ∈ S. We will use the following classical Ultrafilter Lemma (its proof can be
found for example in [42]).

Lemma 6.20. If S⊆ P I has the finite intersection property, then there exists an ultrafilter
U over I such that S⊆U.

Now let S = {{i ∈ I | ρ ∈ i} | ρ ∈ E}. S has the finite intersection property because

{ρ1,ρ2, . . . ,ρn} ∈ {i ∈ I | ρ1 ∈ i}∩{i ∈ I | ρ2 ∈ i}∩ · · ·∩{i ∈ I | ρn ∈ i}.

By the Ultrafilter Lemma 6.20, let U be an ultrafilter such that S⊆U . For each ρ ∈ E we
have:

1 {i ∈ I | ρ ∈ i} ⊆ {i ∈ I |Mi |= ρ} Mi |= i

2 {i ∈ I |Mi |= ρ} ∈U {i ∈ I | ρ ∈ i} ∈ S⊆U , U filter, 1

3 MU |= ρ 2, ρ is preserved by ultraproducts.

Because ρ ∈ E is arbitrary, it follows that MU |= E. □

Corollary 6.21. Any institution in which each sentence is preserved by ultraproducts is
m-compact.

Corollary 6.22. Let E be a set of sentences preserved by ultraproducts, and let e be
a sentence preserved by ultrafactors such that E |= e. Then there exists a finite subset
E f ⊆ E such that E f |= e.

Proof. Let us assume the contrary, i.e., that for each finite E f ⊆ E, E f ̸|= e. Let I be the
set of all finite subsets of E. This means that for each i ∈ I there exist a model Mi such
that Mi |= i but Mi ̸|= e. Let (µJ : MJ →MU )J∈U be any ultraproduct of (Mi)i∈I . Then

1 MU |= E Thm. 6.19

2 MU |= e 1, E |= e

3 {i ∈ I |Mi |= e} ∈U e is preserved by ultrafactors

4 {i ∈ I |Mi |= e}= /0 definition of Mi, i ∈ I

5 /0 ∈U 3, 4.
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But the conclusion 5 comes in contradiction with the fact that U is ultrafilter. □

By putting together Corollaries 6.22 and 6.21 we obtain:

Corollary 6.23. Any Łoś-institution is both compact and m-compact.

Cor. 6.23 constitutes a great source of examples of compact and m-compact institu-
tions. The following well-known concrete result is obtained via Cor. 6.14.

Corollary 6.24. FOL is both compact and m-compact.

Alternatively, this result could be obtained as a direct instance of either of Corollar-
ies 6.21 or 6.22 by relying on the equivalence between compactness and m-compactness
in FOL given by Prop. 6.18.

A note on the hyperreals. In light of the compactness-by-ultraproducts developments
above let us have a look at the hyperreals. Let R be the ordered field of the real numbers
and let Σ be the signature of the ordered fields. Obviously

R ̸|= (∃x)(0 < x ∧
∧
n∈ω

x < 1
n ).

Let Σ′ be the extension of Σ with a new constant x. Let I be the set of the finite subsets of
{0 < x}∪{x < 1

n | n ∈ ω}. Evidently, for each i ∈ I there exists a Σ′-expansion Ri of R
such that Ri |= i. By the m-compactness of FOL there exists an ordered field R′ such that

R′ |= 0 < x ∧
∧
n∈ω

x < 1
n .

Then a model ∗R of the hyperreals is obtained a Σ-reduct of R′. Indeed
∗R |= (∃x)(0 < x ∧

∧
n∈ω

x < 1
n ).

This argument can be developed without any involvement of ultraproducts as compactness
of FOL can be established by proof theoretic means as described above. However, this
would not tell us much about the nature of the hyperreals. On the other hand, if we would
like to get hold of the hyperreals we may use the result of Thm. 6.19 and get R′ as an
ultraproduct of (Ri)i∈I and then by reducing it to Σ get ∗R as an ultrapower of R. By
Cor. 6.16 we also get that R is elementarily embedded into ∗R, which means two things:
any real number is indeed a hyperreal, and any first-order property of the hyperreals can
be transferred to the reals. Moreover according to Prop. 6.15 we can even do more than
that, any sentence that is preserved by ultraproducts is subject to this Transfer Principle.

Exercises
6.18. [161] Logical compactness versus topological compactness
Recall that a topology (X ,τ) is compact when for each family (Ui)i∈I such that Ui ∈ τ for each i ∈ I
and such that

⋃
i∈I Ui = X , there exists a finite subset J ∈ I such that

⋃
i∈J Ui = X . An institution

with negation is (m-)compact if all its semantic topologies (see Ex. 4.5) are compact. Moreover,
if the institution has finite conjunctions too, then it is (m-)compact if and only if all its semantic
topologies are compact.
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6.19. Maximally consistent sets
(a) We say that a set of sentences E for a signature Σ in an arbitrary institution is maximally con-
sistent if and only if for any other consistent set E ′, E ⊆ E ′ implies E = E ′. In any institution with
negation, a set E of sentences (for a given signature) is maximally consistent only if for each sen-
tence e exactly one of e and ¬e belong to E.
(b) By (a), in any institution with negation, for any signature morphism ϕ : Σ→ Σ′ and each max-
imally consistent set of Σ′-sentences E ′, ϕ−1E ′ is maximally consistent.

6.20. In any institution show that if E |= e where E is a set of Σ11-sentences and e is preserved by
ultrafactors, then there exists a finite subset E ′ ⊆ E such that E ′ |= e.

6.21. Finitely presented theories (alternative to the result of Ex. 4.23)
In any compact institution with signature morphisms that admit the model expansion property, a
theory (Σ,E) is finitely presented if Σ is a finitely presented signature and (Σ,E) can be presented
by a finite set of sentences.

6.5 Finitely sized models

The method of ultraproducts can be used to prove that elementary equivalence and the
finiteness of the size of the models is a sufficient condition for two models to be isomor-
phic. This is the main topic of this section.

Although saturated models (introduced in Chap. 7 below) provides a more gen-
eral framework for such types of results in which the finiteness condition on the size
of the models can be relaxed to a much softer condition, for finitely sized models this
isomorphism result can be achieved by using ultrapower embeddings within the much
simpler-minded framework of this section.

ι-finite models. We introduce a concept that captures abstractly the situation when the
carrier sets of models have only a finite set of elements. This is stronger than being finitely
presented and weaker than having a finite signature and a finite number of elements. In
the latter situation, it is rather easy to show that elementary equivalence implies for the
latter case (see Ex. 5.10).

In any institution with diagrams ι, a Σ-model M is ι-finite if and only if

– the elementary extension ιΣM is finitary, and

– it has a finite number of ιΣM-expansions.

Fact 6.25. Consider FOL with the standard system of diagrams ι. Then a model is ι-finite
if and only if it has a finite number of elements.

Note that under the assumption of non-emptiness of the sorts, having a finite num-
ber of elements implies also that the number of the sorts of the signature is also finite.
However, no other finiteness restriction is implied, such as on the number of operation or
relation symbols.



6.5. Finitely sized models 167

Dense signature morphisms. The following technical concept is required for the devel-
opments in this section. A quasi-representable signature morphism χ : Σ→ Σ′ is dense
when (Modχ)−1 : ModΣ→ Class is faithful. A typical example of a dense signature
morphism is as follows.

Proposition 6.26. In FOL any injective signature extension χ : Σ→ Σ′ with constants
such that χ adds at least one new element for each sort of Σ, is dense.

Proof. Let us consider Σ-homomorphisms f ,g : M→N such that (Modχ)−1 f =(Modχ)−1g.
By Reductio ad Absurdum suppose that f ̸= g. Then there exists a sort s and a ∈Ms such
that fsa ̸= gsa. Let M′ be any χ-expansion of M such that M′c = a from some constant c
of sort s which does not belong to Σ. Then ((Modχ)−1 f )M′ and ((Modχ)−1g)M′ inter-
pret c differently, as fsa and gsa, respectively. Hence (Modχ)−1 f ̸= (Modχ)−1g which
contradicts our assumption. □

Corollary 6.27. In FOL , considered with its standard system of diagrams ι, the elemen-
tary extension ιΣM corresponding to any model M without empty sorts is dense.

Proposition 6.28. Let us consider an institution with diagrams ι such that all elementary
extensions are quasi-representable dense. For any ι-finite model N, any ultrafilter U over
a set I and any ultrapower (µJ : NJ → NU )J∈U of N, the canonical homomorphism

dU
N = (N

δI
N
//NI

µI
//NU )

is epi.

Proof. Consider two model homomorphisms f ,g : NU → A such that dU
N ; f = dU

N ;g. We
have to prove f = g. Because ιΣN is quasi-representable and dense, it is enough to prove
that for each ιΣN-expansion NU of NU , both f and g expand to homomorphisms NU →M.

Because the ιΣN is finitary, there exists J ∈U and µJ : NJ → NU a ιΣN-expansion
of µJ .

NJ

µJ ��

NJ

µJ
��

pJ⊇K
// NK

µK
��

NU NU

Because ιΣN is quasi-representable, for each K ⊆ J in U let us denote

• by pJ⊇K the unique ιΣN-expansion of the projection pJ⊇K to a ΣN-homomorphism
NJ → NK , and

• by µK the unique ιΣN-expansion of µk from NK . By the uniqueness property of the
quasi-representability applied to µJ = pJ⊇K ; µK we have that µK : NK → NU .

Let us assume that

1 there exists K ∈U such that K ⊆ J and δK
N : N→ NK a ιΣN-expansion

of δK
N : N→ NK .
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Then because dU
N = δI

N ; µI = δK
N ; µK and ιΣN is quasi-representable,

2 δK
N ; µK is the unique ιΣN-expansion of dU

N from N.

By the quasi-representable of ιΣN we let f : NU → M f , g : NU → Mg be the unique
ιΣN-expansions from N of f ,g, respectively. We have only to prove that M f = Mg.

3 (δK
N ; µK ; f )↾ιΣN = dU

N ; f , (δK
N ; µK ; g)↾ιΣN = dU

N ; g definitions of δK
N , µK , f , g

4 dU
N ; f = dU

N ;g by assumption

5 δK
N ; µK ; f = δK

N ; µK ; g 3, 4, ιΣN quasi-representable

6 M f = Mg 5.

Modulo the gap represented by the assumption 1 we have just proved the conclusion
of the proposition. In order to prove 1, for each i ∈ J we let pJ,i : NJ → Ni be the
unique ιΣN-expansion from NJ of pJ,i : NJ → N. For each ιΣN-expansion N of N we let
J(N) = {i ∈ J | Ni = N}. Let us prove that

7 there exists N such that J(N) ∈U .

By Reductio ad Absurdum we assume that 7 is false. Then

8 for each N, I \ J(N) ∈U 7 false, U ultrafilter

9
⋂

N(I \ J(N)) ∈U 8, N has a finite number of ιΣN-expansions, U (ultra)filter

10 I \
⋃

N J(N) ∈U 9, DeMorgan laws

11
⋃

N J(N) = J definition of J(N)

12 I \ J ∈U 10, 11.

But 12 represents a contradiction with J ∈U because U is ultrafilter. Hence 7 does hold.
Let K = J(N) from some N given by 7. We let δK

N : N→ P be the unique ιΣN-expansion
from N of δK

N . If we show that P = NK then 1 is proved. This goes as follows. For each
i ∈ K:

13 pJ⊇K↾ιΣN = pJ⊇K = pJ,i ; δK
N = pJ,i↾ιΣN ; δK

N↾ιΣN = (pJ,i ; δK
N)↾ιΣN Ni = N

14 pJ⊇K = pJ,i ; δK
N 13, ιΣN quasi-representable

15 NK = P 14.

□

The following consequence of Prop. 6.28 represents the goal of this section and can
be applied easily in actual institutions.

Corollary 6.29. Consider an institution with diagrams ι such that

1. the elementary extensions are quasi-representable and dense,

2. it has ultraproducts of models which are preserved by the elementary extensions,
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3. each sentence is preserved by ultraproducts of models, and

4. each elementary homomorphism which is an epi is an isomorphism.

Then any finitely sized model is isomorphic to any of its ultrapowers. Moreover, if in
addition the institution

5. has finite conjunctions, and

6. has existential D-quantification (for a class D of signature morphisms) such that

7. each finitary elementary extension belongs to D ,

then any two elementary equivalent finitely sized models are related by a ι-elementary
homomorphism.

Proof. The first part follows immediately from 6.28 and the filtered power embedding
result of Prop. 6.15.

For the second part, let M ≡ N be finitely sized models. For each finite E ⊆ (MM)∗

we have

1 M |= (∃ιΣM)∧E MM |= E

2 N |= (∃ιΣM)∧E 1, M ≡ N

From 2 we obtain the existence of a ιΣM-expansion NE of N such that NE |= E.
By Thm. 6.19, there exists an ultrafilter U on the set I of all finite subsets E of M∗M

and an ultraproduct (µJ : NJ → NU )J∈U of (NE)E∈I such that NU |= (MM)∗. Then

1 NU |= EM EM ⊆ (MM)∗

2 iΣ,MNU : M→ NU↾ιΣM is ι-elementary 1, NU |= (MM)∗

3 µ↾ιΣM is ultrapower of N ιΣM preserves ultraproducts, NE↾ιΣM = N

4 N ∼= NU↾ιΣM 3, first part of this proposition

From 2 and 4 we get a ι-elementary homomorphism M→ N. □

A typical concrete application of Cor. 6.29 is the following.

Corollary 6.30. Any FOL any finite1 model with non-empty sorts is isomorphic to any of
its ultrapowers. Any two elementary equivalent finite FOL-models with non-empty sorts
are isomorphic.

Proof. First recall that according to Fact 6.25 in FOL , considered with the standard sys-
tem of diagrams ι, a ι-finite model means a model having a finite number of elements.
Then only two points may need a bit of additional explanation.

• The first one concerns the fact that in FOL , the elementary embedding homomor-
phisms which are also epis are in fact isomorphisms. In FOL the elementary em-
beddings are injective and closed, and the injective closed epis are isomorphisms.

1With a finite number of elements.
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• The second point concerns how to derive the isomorphism between two elementary
equivalent finite models from the final conclusion of Cor. 6.29. This follows easily
by cardinality reasons because the FOL elementary embeddings are injective.

□

Exercises
6.22. Derive results similar to Cor. 6.30 in actual institutions that have been presented in this book,
other than FOL .

Notes. The F-product construction from conventional model theory (see Chap. 4 of [42]) has been
introduced in [163] and probably defined categorically for the first time in [171]. Categorical F-
products have been intensively used in categorical logic and model theory works such as [9] or
[166, 167]. The equivalence between the category-theoretic and the set-theoretic definitions of the
F-products appears in [134]. Filtered products are sometimes known under the name of reduced
products, such as in [42].

The fundamental ultraproducts theorem is the foundation for the method of ultraproducts in
conventional model theory [42] and has been stated for the first time in [163]. [18] is an expo-
sition of that part of conventional model theory that can be reached using only ultraproducts. A
rather different abstract model-theoretic approach to the fundamental ultraproducts theorem based
on satisfaction by injectivity is given in [8]. Our approach originates from [63] and contrasts [8]
by making essential use of concepts central to institution theory, such as signature morphisms and
model reducts. This multi-signature framework, very characteristic of institution theory, leads to
higher generality and simpler proofs. The notion of ‘inventing’ of F-products was formulated first
time in [63] under the name ‘lifting’, a terminology that clashes with the well-established concept
of the lifting of (co-)limits.

The institution-independent results on compactness by ultraproducts essentially constitute
a generalization of similar ultraproduct-based compactness results from conventional model the-
ory [42]. The ι-finite models have been introduced in an institution-independent setting and their
isomorphism criterion has been developed in [202].

The original reference on the hyperreals and their associated non-standard analysis is [209].
An excellent exposition on this subject, which is also more recent is [132].



Chapter 7

Saturated Models

A lot of deep results in model theory can be reached by the method of saturated models.
Two of the most useful properties of saturated models are their existence and their unique-
ness. The existence means that each model can be elementarily extended to a saturated
model, while uniqueness holds when the model is ‘sufficiently’ small. The main topic of
this chapter is the axiomatic investigation of general frameworks supporting these two
properties, and of some important applications.

The existence property of saturated models requires that directed co-limits of di-
agrams of elementary homomorphisms are still elementary. This is treated in the first
section of this chapter. This important preservation property of elementary homomor-
phisms, which is due to Tarski in the conventional concrete setting of FOL , will be used
for several results in other chapters too.

An important class of applications can be developed in conjunction with the method
of ultraproducts. In the last section, we show that for certain ultrafilters, the correspond-
ing ultraproducts of models are always saturated. Assuming the Generalized Continuum
Hypothesis, this leads to one of the most beautiful applications of saturated models in
first-order model theory, namely the Keisler-Shelah isomorphism theorem saying that
“two models are elementary equivalent if and only if they have isomorphic ultrapowers”.
Apart from its theoretical significance this has several important applications, such as to
axiomatizability and interpolation. We develop a general institution-independent version
of this result.

7.1 Elementary co-limits

For this section, we assume an arbitrary institution with a designated (sub-)category D of
quasi-representable signature morphisms.
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Sentences preserved (reflected) by directed co-limits of D-elementary
homomorphisms
The preservation and the reflection of sentences by directed co-limits of D-elementary
homomorphisms have the flavour of dual properties. Both constitute auxiliary concepts
that enable the development of the institution-independent version of Tarski’s elementary
chain theorem. We say that a Σ-sentence ρ is preserved (reflected) by directed co-limits
of D-elementary homomorphisms if for each directed diagram of D-elementary Σ-model
homomorphisms ( fi, j)(i< j)∈(I,≤) with co-limit µ,

Mi

µi
��

fi, j
// M j

µ j
��

M

(7.1)

Mi |= ρ implies M |= ρ (M |= ρ implies Mi |= ρ) for each i ∈ |I|. Note that in the case of
preservation the mere existence of an i such that Mi |= ρ guarantees that M j |= ρ for each
j≥ i and that M |= ρ. On the other hand, in the case of reflection if M |= ρ then all models
Mi of the diagram satisfy ρ.

Theorem 7.1. The set of sentences D-elementary preserved by directed co-limits of D-
elementary homomorphisms:

1. contains all basic sentences,

2. is closed under (possibly infinite) conjunctions and disjunctions,

3. is closed under existential D-quantifications, and

4. is closed under finitary universal D-quantifications.

Proof. Without any loss of generality, we can fix a co-limit µ of a directed diagram of
D-elementary Σ-homomorphisms like in (7.1).

1. Consider ρ a basic Σ-sentence having Mρ as a basic model. If Mi |= ρ from some
i ∈ |I| then there exists a homomorphism Mρ→Mi, which implies that there exists a

homomorphism Mρ→ Mi
µi
//M . Hence M |= ρ.

2. Consider E a set of Σ-sentences that are preserved by µ and e′ a conjunction of E. If
Mi |= e′ from some i ∈ |I| then

1 for each e ∈ E, Mi |= e e′ is a conjunction of E

2 for each e ∈ E, M |= e 1, e preserved by µ

3 M |= e′ 2, e′ is a conjunction of E.

The proof for disjunctions is similar.
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3. Consider (χ : Σ→ Σ′) ∈ D , e′ ∈ SenΣ′ which is preserved by directed co-limits of
D-elementary homomorphisms, and ρ an existential χ-quantification of ρ′. Assume
Mi |= ρ for some i ∈ I. We have to prove that M |= ρ.

1 there exists M′i s.th. M′i |= ρ′, M′i↾χ = Mi Mi |= ρ, ρ universal χ-quantification of ρ′

2 there exists f ′ χ-expansion of ( f j,k)i≤ j<k χ quasi-representable, (I,≤) directed

3 each f ′j,k D-elementary each f j,k D-elementary, Prop. 5.31(3.)

4 there exists µ′ χ-expansion of (µ j)i≤ j χ quasi-representable, (I,≤) directed

5 ( f j,k)i≤ j<k final sub-diagram of f
6 µ′ co-limit of f ′ 5, Thm. 2.4 (co-limit of final functors), Prop. 6.9 (creation of

directed co-limits by quasi-representable signature morphisms).

Let M′ be the vertex of µ′. Then

7 M′ |= ρ′ M′i |= ρ′, 3, 6, ρ′ preserved by µ′

8 M |= ρ M′↾χ = M, ρ existential χ-quantification of ρ′.

4. Consider (χ : Σ→ Σ′) ∈ D finitary, e′ ∈ SenΣ′ which is preserved by directed co-
limits of D-elementary homomorphisms, and ρ an universal χ-quantification of ρ′.
Assume that Mi |= ρ for some i ∈ I. In order to prove M |= ρ we consider any χ-
expansion M′ of M and prove that M′ |= ρ′.

9 ∃ j ≥ i, µ′j : M′j→M′, µ′j↾χ = µ j χ finitary quasi-representable, (I,≤) directed

10 M j |= ρ i≤ j, Mi |= ρ, fi, j D-elementary, 1Σ ∈D

11 there exists f ′ χ-expansions of ( f j,ℓ) j≤k<ℓ, µ′ of (µk) j≤k
s.th. µ′ co-limit of f ′

9; like in 2, 4, 5, 6

12 f ′ consists of D-elementary homomorphisms like in 3

13 M′j |= ρ′ 10, M′j↾χ = M j , ρ universal χ-quantification of ρ′

14 M′ |= ρ′ 13, µ′ directed co-limit of f ′ (11), 12, ρ′ preserved by µ′.

□

Negations turn preservations to reflection and vice versa as shown by the following
result that enables the extension of the result of Thm. 7.1 to institutions with negations.

Theorem 7.2. If the institution has negations, then

1. each finitary basic sentence is reflected by directed co-limits of D-elementary homo-
morphisms,

2. the set of sentences reflected by directed co-limits of D-elementary homomorphisms
are closed under (possibly infinite) conjunctions, and
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3. if a sentence e is preserved (reflected) by directed co-limits of D-elementary homo-
morphisms then any of its negations e′ is preserved (reflected) by directed co-limits of
D-elementary homomorphisms.

Proof. Like in the proof of Thm. 7.1 we fix a co-limit µ of a directed diagram ( fi, j)(i< j)∈(I,≤)
of D-elementary homomorphisms.

1. Consider a finitary basic Σ-sentence ρ and Mρ a basic model for ρ. Assume that M |=ρ

and consider any i ∈ I. We prove that Mi |= ρ.

1 there exists a homomorphism Mρ→M M |= ρ

2 there exists j ≥ i, h : Mρ→M j Mρ finitely presented, (I,≤) directed

3 M j |= ρ 2.

By Reductio ad Absurdum suppose that Mi ̸|= ρ. Because the institution has negations
there exists a sentence ρ′ which is a negation of ρ. Then

4 Mi |= ρ′ Mi ̸|= ρ, ρ′ negation of ρ

5 M j |= ρ′ 4, fi, j D-elementary, 1Σ ∈D .

Since 3 and 5 are contradictory we conclude that Mi |= ρ.

2. Straightforward by Reductio ad Absurdum and by using negation.

3. Straightforward by Reductio ad Absurdum.

□

Elementary co-limit theorem
The following institution-independent version of the corresponding Tarski’s result in first-
order model theory falls immediately from the concept of preservation alone. This means
that the concept of reflection is secondary to that of preservation, its role is to support
preservation in the presence of negations.

Proposition 7.3. Assume that all sentences of the institution are preserved by directed
co-limits of D-elementary homomorphisms. Then, for each signature Σ, any co-limit of a
directed diagram of D-elementary Σ-homomorphisms is D-elementary.

Proof. Let ( fi, j)(i≤ j)∈(I,≤) be a directed diagram of D-elementary Σ-homomorphisms and
let µ be its co-limit. For each k ∈ I, in order to prove that µk is D-elementary, let χ ∈ D
and let µ′k : M′k→M′ be a χ-expansion of µk. Let ρ′ be a Σ′-sentence such that M′k |= ρ′.
We have to show that M′ |= ρ′.

As in the proof of Thm. 7.1(3.) we can χ-expand the final sub-diagram ( fi, j)k≤i< j
of f to f ′ and µ to a co-limit µ′ of f ′. Also like there f ′ consists of D-elementary homo-
morphisms. Thus ρ′ is preserved by µ′, hence M′ |= ρ′. □
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Altogether Prop. 7.3 and Thm.s 7.1 and 7.2 lead to the following result that rep-
resents an institution-independent version of Tarski’s elementary chain theorem in first-
order logic. This is less abstract that Prop. 7.3 and can be applied almost without any
additional effort to actual institutions.

Corollary 7.4. Assume the institution satisfies one of the following:

1. each sentence is accessible from the basic ones by (possibly infinite) conjunctions, dis-
junctions, universal D-quantifications, and finitary existential
D-quantifications, or

2. the institution has negations and each sentence is accessible from the finitary basic
ones by (possibly infinite) conjunctions, negations, and finitary D-quantifications.

Then any co-limit of a directed diagram of D-elementary homomorphisms is D-elemen-
tary.

When in addition the institution has D-normal diagrams such that all elementary
extensions are in D , by Cor. 5.35, in the above Cor. 7.4 we may replace ‘D-elementary’
just by ‘ι-elementary’.

A typical concrete instance of Cor. 7.4 is obtained by taking D to the class of all
FOL-signature injective extensions with constants.

Corollary 7.5. In FOL , EQLN , FOL+, and EQL , the class of elementary homomor-
phisms is closed under directed co-limits.

Exercises

7.1. Develop a general consequence of Prop. 7.3 that establishes the existence of directed co-limits
in the category of D-elementary homomorphisms.

7.2 Existence of saturated models
In this section, we introduce the concept of a saturated model and develop the fundamental
existence theorem for saturated models. We start with a brief survey of some basic set-
theoretic notions required by the concept of saturated models.

Some set theory

For a gentle introduction to (axiomatic) set theory, we recommend [240]. In the remaining
part of this chapter, we will involve some concepts and results from set theory that are
beyond what is required in most mathematical works. The theory of saturated models
is ‘guilty’ of this. Especially the results stated in Prop. 7.6 below are non-trivial and we
cannot explain them here. We have to take them for granted, but of course, the keen reader
may go to the literature and study them.
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Ordinals. We skip the formal lists of axioms for set theories such as Zermelo, Zermelo-
Fraenkel, Bernays, or Bernays-Morse which can be found in the rather rich set theory
literature, and just recall the concept of ordinal from the point of view of formal set
theory:

• 0 = /0,

• n+1 = n∪{n} for each natural number n,

• ω = {0,1,2, . . .} the set of all natural numbers,

• ω+1 = ω∪{ω}= {0,1,2, . . . ,ω}, etc.

All these are examples of ordinals. Formally, an ordinal is a set X such that X and each
member of X is ∈-transitive, i.e., every member of x is a subset of x. Although this def-
inition might seem quite artificial, it has become fairly standard in the literature. The
underlying intuition is that an ordinal is a special kind of ordering (by the membership
relation ∈), its definition as a certain kind of set being just a trick.

One of the important properties of ordinals is that they are well ordered, i.e., totally
ordered and any non-empty class of ordinals has a least element. Ordinals support the
following Principle of Transfinite (or Ordinal) Induction:

[(∀α)((∀β < α)P(β))⇒ P(α)]⇒ (∀α)P(α)

for each property P on ordinals.
For each ordinal α, let α+ 1 = α∪{α} be its successor ordinal. If α is neither a

successor ordinal nor 0, we say that α is a limit ordinal.

Cardinals. Cardinal numbers are essentially equivalence classes, or representatives of
equivalence classes, of sets under the bijection relation. For each set X , let card(X) denote
its cardinality. An ordering between cardinals can be defined by card(X) ≤ card(Y ) if
and only if there exists an injective function X → Y .

When we take the point of view of cardinals as representatives of equivalence
classes, we can formally define cardinals as the smallest ordinals α which are in bijec-
tive correspondence to card(α). For example, ω is a cardinal while ω+1 is not. Infinite
cardinals are always limit ordinals.

Basic arithmetic operations on cardinals can be defined by

• α+β = card(α⊎β),

• α ·β = card(α×β), and

• αβ = card{ f function | f : β→ α}.

For each ordinal α the least cardinal greater than α is denoted by α+. The Generalized
Continuum Hypothesis (abbreviated GCH) states that for every infinite cardinal α, 2α =
α+. The ordinary Continuum Hypothesis represents the particular case of GCH when
α = ω. Since card(R) = 2ω this means that between ω and card(R) there is no other
cardinal. The following is a list of well-known cardinal arithmetic properties which will
be used in this chapter. More on cardinal arithmetic can be found in [151].
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Proposition 7.6 (Cardinal arithmetic).

• if ω≤ α then α ·α = α,

• if 2≤ α≤ β and ω≤ β then αβ = 2β,

• if α≤ β+ then αβ ≤ β+ (requires GCH).

Saturated models
Now we introduce the institution-independent concept of saturated model as an abstrac-
tion of the corresponding concept from classical first-order model theory.

Chains. In any category C, for any ordinal λ, a λ-chain f is a (commutative) diagram,
or functor, λ→ C, written ( fi, j : Ai → A j)i< j≤λ, such that for each limit ordinal ζ ≤ λ,
( fi,ζ)i<ζ is the co-limit of ( fi, j)i< j<ζ. Note that the commutativity of the chain, which is
implicit by functoriality, just means that fi, j; f j,k = fi,k for all i < j < k ≤ λ.

For any class of arrows D ⊆ C, a (λ,D)-chain is any λ-chain ( fi, j)i< j≤λ such that
fi,i+1 ∈ D for each i < λ. We say that an arrow h is a (λ,D)-chain if there exists a
(λ,D)-chain ( fi, j)i< j≤λ such that h = f0,λ. In that case we may denote fi, j by hi, j, for any
i < j ≤ λ.

The definition of the concrete concept of saturated model from the first-order model
theory uses extensions of signatures with sequences of variables that are not necessarily
countable. Our (λ,D)-chains realize that in the abstract institution-independent context
by abstracting (an extension by a) single variables by signature morphisms of D . From
this perspective, it is clear that gradually we will have to assume some properties for
D that will get this closer to the first order variables, such as quasi-representability and
finiteness. The following technical result represents a trivial situation in first-order model
theory, but at the abstract level is not only far from being trivial but it also reveals a
dependence on the amalgamation properties of the institution.

Proposition 7.7. Consider an institution I which has inductive co-limits of signatures
and which is inductive-exact. Let D be a class of quasi-representable signature mor-
phisms. Then each signature morphism ϕ which is a (λ,D)-chain is quasi-representable.

Proof. Let ϕ = ϕ0,λ where (ϕi, j : Σi→ Σ j)i< j≤λ is a (λ,D)-chain. We prove by Ordinal
Induction that for any α≤ λ, ϕ0,α is quasi-representable. Let us asume that for each β<α,
ϕ0,β is quasi-representable. We have two cases:

• α is a succesor ordinal, i.e., α = β+1. Then ϕ0,α = ϕ0,β ; ϕβ,β+1. Since both ϕ0,β and
ϕβ,β+1 are quasi-representable (the former by the induction hypothesis and the latter
by hypothesis), by Prop. 5.12 (1.) we get that their composition is quasi-representable
too.

• α is a limit ordinal. Since ϕ is a (λ,D)-chain, (ϕi,α)i<α is a co-limit of (ϕi, j)i< j<α.
By the induction hypothesis ϕ0,i and ϕ0, j, i < j < α, are quasi-representable, hence
by Prop. 5.12 (4. applied to the situation ϕ0,i ; ϕi, j = ϕ0, j) we obtain that ϕi, j is
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quasi-representable too. The last part of this argument relies on the hypothesis that
I is inductive-exact. Then by Prop. 5.12(3.) it follows that each ϕi,α, i < α, is quasi-
representable, hence in particular ϕ0,α is quasi-representable.

□

λ-small signature morphisms. This concept represents a sort of generalisation of the
concept of finitary signature morphism to infinite cardinals. In any institution a signature
morphism ϕ : Σ→ Σ′ is λ-small for a cardinal λ when for each λ-chain ( fi, j : Mi →
M j)i< j≤λ of Σ-homomorphisms and each ϕ-expansion M′ of Mλ, there exists i < λ and a
ϕ-expansion f ′i,λ : M′i →M′ of fi,λ. The following is an obvious example:

Fact 7.8. Finitary signature morphisms are λ-small for each infinite cardinal λ.

The following result constitutes one of the causes of the existence of saturated mod-
els.

Proposition 7.9. Consider an institution I which has inductive co-limits of signatures
and which is inductive-exact. Let D be a class of finitary quasi-representable signature
morphisms. Then for each infinite ordinal λ, each (λ,D)-chain of signature morphisms is
λ+-small.

Proof. Consider a (λ,D)-chain of signature morphisms ϕ : Σ → Σ′ and consider a
λ+-chain of Σ-model homomorphisms hi, j : Mi→M j)i< j≤λ+ . Let Mλ

λ+
be a ϕ-expansion

of Mλ+ . For each 0≤ i < j ≤ λ, let ϕi, j : Σi→ Σ j denote the segment in the (λ,D)-chain
ϕ determined by i and j.

By Ordinal Induction on α≤ λ we define an increasing sequence of ordinals (iα)α≤λ,
strictly bounded by λ+, and an inductive diagrams (hα

j,k : Mα
j →Mα

k )iα≤ j<k≤λ+ in ModΣα

such that Mα

λ+
↾ϕβ,α

= Mβ

λ+
and hα

j,k↾ϕβ,α
= hβ

j,k for all 0≤ β < α≤ λ and iα ≤ j < k.

Σβ

ϕβ,α

��

Mβ

iβ

hβ

i
β
,iα
// Mβ

iα

hβ

iα, j
// Mβ

j

hβ

j,k
// Mβ

k

hβ

k,λ+
// Mβ

λ+

Σα Mα
iα hα

iα, j

//

_

OO

Mα
j hα

j,k

//

_

OO

Mα

k hα

k,λ+

//

_

OO

Mα

λ+

_

OO

If we achieved that then our problem is solved because hλ

λ,λ+
: Mλ

λ
→ Mλ

λ+
is a ϕ-

expansion of hλ,λ+ : Mλ→Mλ+ . The construction goes as follows.

• i0 = 0 and h0
j,k = h j,k for all j < k ≤ λ+.

• Assume that α = β+1 is a successor ordinal. Then

1 (hi,λ+)iβ≤i<λ+ co-limit of (h j,k)iβ≤ j<k<λ+ [iβ,λ+) final sub-poset of [0,λ+), Thm. 2.4

2 ϕ0,β quasi-representable Prop. 7.7
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3 hβ

j,k↾ϕ0,β = h j,k induction hypothesis

4 (hβ

i,λ+)iβ≤i<λ+ co-limit of (hβ

j,k)iβ≤ j<k<λ+ 1, 2, 3, Prop. 6.9.

We define Mα

λ+
= Mλ

λ+
↾ϕα,λ

. Then

5 Mα

λ+
↾ϕβ,α

= Mλ

λ+
↾ϕα,λ

↾ϕβ,α
= Mλ

λ+
↾ϕβ,λ

= Mβ

λ+
definition of Mα

λ+
, induction hypothesis

6 ϕβ,α finitary ϕβ,α ∈D because α = β+1

7 there exists iβ ≤ iα < λ+, hα

iα,λ+
: Mα

iα →Mα

λ+
s.th. hα

iα,λ+
↾ϕβ,α

= hβ

iα,λ+
4, 5, 6.

By the quasi-representability of ϕβ,α, by Ordinal Induction, hα

iα,λ+
determines an

unique ϕβ,α-expansion (hα

j,k)iα≤ j<k<λ+ of (hβ

j,k)iα≤ j<k<λ+ .

• Assume that α is a limit ordinal. It is straightforward to check that
⋃

β<α iβ is an
ordinal. We define iα =

⋃
β<α iβ. Then

8 forall β < α, card iβ ≤ card λ iβ < λ+ (induction hypothesis)

9 card iα ≤ cardα · cardλ definition of iα, 8

10 cardλ · cardλ = cardλ < λ+
λ infinite, Prop. 7.6

11 card iα < λ+ 9, 10, α≤ λ.

Hence iα < λ+. Now for all iα ≤ j < k≤ λ+, by inductive-exactness we define hα

j,k to

be the amalgamation of (hβ

j,k)β<α.

□

(λ,D)-saturated models. For each signature morphism χ : Σ → Σ′, a Σ-model M
χ-realizes a set E ′ of Σ′-sentences (denoted M |= [∃χ]E ′), if there exists a χ-expansion
M′ of M which satisfies E ′. It χ-realizes E ′ finitely (denoted M |= [∃χ] f E ′) if it realizes
every finite subset of E ′.

A Σ-model M is (λ,D)-saturated for λ a cardinal and D a class of signature mor-
phisms when for each ordinal α < λ and each (α,D)-chain of signature morphisms
(ϕi, j : Σi → Σ j)i< j≤α with Σ0 = Σ, for each (χ : Σα → Σ′) ∈ D , each ϕ0,α-expansion
of M χ-realizes any set of Σ′-sentences if it χ-realizes it finitely.

Σ
ϕ0,α

// Σα

χ
// Σ′

M Mα
�

Modϕ0,α

oo Mα |= [∃χ]E ′ if Mα |= [∃χ] f E ′.

An immediate example of saturated models is given by the finite FOL-models
(which according to Fact 6.25 are the ι-finite models in FOL).



180 Chapter 7. Saturated Models

Proposition 7.10. Let D be the class of FOL injective signature extensions with a finite
number of constants, and let λ be an infinite cardinal.

1. Any FOL model with non-empty sorts which has a finite number of elements is
(λ,D)-saturated.

2. For each (λ,D)-saturated FOL-model M and for each sort s, if Ms is infinite then
card(Ms)≥ λ.

Proof. 1. Let ϕ : Σ0→ Σα be a (α,D)-chain for α< λ, and let Mα be a ϕ-expansion of a
Σ0-model M with non-empty sorts. Let (χ : Σα → Σ′) ∈ D . Assume that
Mα |= [∃χ] f E ′ for E ′ ⊆ SenΣ′ and for each finite i ⊆ E ′ let Mi be a χ-expansion of
Mα such that Mi |=Σ′ i. By Thm. 6.19, there exists an ultrafilter U on the set PωE ′ of
the finite subsets of E ′ and an ultraproduct (µJ : MJ → MU )J∈U of (Mi)i∈PωE such
that MU |= E ′. Then

1 µ↾χ is ultrapower of (Mα)i∈PωE Modχ pres. ultraproducts (Prop. 6.7, 6.9), Mi↾χ = Mα

2 MU↾χ
∼= Mα 1, Mα finite, Cor. 6.30

3 there exists M′, M′↾χ = Mα, MU ∼= M′ 2, χ quasi-representable

4 Mα |= [∃χ]E ′ 3, MU |= E ′, satisfaction invariant under model isomorphisms.

2. Let Σ be the signature of M. By Reduction ad Absurdum let us assume that card(Ms)<
λ for some sort s for which Ms is infinite. Then we take the (card(Ms),D)-chain given
by the signature extension with constants Σ ↪→ Σ+Ms, and let χ be the extension of
Σ+Ms with one new constant x. Consider

• E ′ = {x ̸= m | m ∈Ms} and

• M′ the (Σ+Ms)-expansion of M such that M′m = m for each m ∈Ms.

Then M′ |= [∃χ] f E ′ but M′ ̸|= [∃χ]E ′, which contradicts the fact that M is (λ,D)-
saturated.

□

Existence theorem
Let us say that an institution has D-saturated models if for any cardinal λ and for each
Σ-model M there exists a Σ-homomorphism M → N such that M ≡ N and N is (λ,D)-
saturated.

Thm. 7.11 below on the existence of saturated models comes up with a rather long
set of conditions of mixed degrees of difficulty in the applications. While some of these
are straightforward in actual institutions of interest, others require some more substantial
justification. After Thm. 7.11 we will discuss in detail its underlying hypotheses, one by
one.

Theorem 7.11 (Existence of saturated models). Consider an institution I with a des-
ignated sub-category D of signature morphisms that contains all isomorphisms. Let us
assume that:
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1. M ≡ N if there exists a model homomorphism M→ N.

2. I has finite conjunctions and existential D-quantifications.

3. I has inductive co-limits of signatures and is inductive-exact.

4. For each I -signature Σ, the category of Σ-models has inductive co-limits.

5. For each signature morphism (χ : Σ → Σ′) ∈ D and set E ′ of Σ′-sentences, if
M |= [∃χ] f E ′ then there exists a model homomorphism M → N such that
N |= [∃χ]E ′.

6. For each signature morphism (χ : Σ→ Σ′) ∈D and each Σ-model M, the class of
the χ-expansions of M form a set.

7. Each signature morphism from D is quasi-representable.

8. The category SigI is D-co-well-powered.

9. For each ordinal λ there exists a cardinal α such that each signature morphism that
is a (λ,D)-chain is α-small.

Then I has D-saturated models.

Proof. We develop a stepwise proof.

• First we prove that for each Σ-model M

1 There exists a Σ-homomorphism h : M→ N such that for each (λ,D)-chain
ϕ : Σ→ Σ′, each (χ : Σ′→ Σ′′) ∈D , each ϕ-expansion M′ of M, and each set
E ′′ of Σ′′-sentences such that M′ |= [∃χ] f E ′′ then N′ |= [∃χ]E ′′, where
h′ : M′→ N′ is the unique ϕ-expansion of h from M′ (as given by Prop. 7.7).

Σ

ϕ
��

M h
// N

Σ′

χ
��

M′ h′
// N′

Σ′′ M′′ h′′
// N′′

– For fixed Σ and M, by (ϕ,M′,χ,E ′′) let us denote tuples where ϕ : Σ→ Σ′ is a
(λ,D)-chain, M′ is a ϕ-expansion of M, (χ : Σ′ → Σ′′) ∈ D , and E ′′ is a set of
Σ′′-sentences such that M′ |= [∃χ] f E ′′. Two such tuples (ϕ1,M′1,χ1,E ′′1) and
(ϕ2,M′2,χ2,E ′′2) are isomorphic when there exists an isomorphism θ : ϕ1;χ1 ⇒
ϕ2;χ2 of (λ+1)-chains

Σ = Σ1
0 . . .

//

1Σ=θ0

��

. . .Σ1
i

ϕ1
i, j
//

θi

��

Σ1
j

θ j

��

// . . . // Σ1
λ
= Σ′1

χ1
//

θλ=θ′

��

Σ′′1

θ′′

��

Σ = Σ2
0 . . .

// . . .Σ2
i

ϕ2
i, j

// Σ2
j

// . . . // Σ2
λ
= Σ′2

χ2
// Σ′′2
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such that M′2↾θ′ = M′1 and θ′′(E ′′1) = E ′′2. By the conditions of the theorem (Sig
being D-co-well-powered and all χ-expansions of a model forming a set), the iso-
morphism classes of tuples (ϕ,M′,χ,E ′′) form a set; let us denote this by Lλ(M). If
k is the cardinal of Lλ(M), we may consider {(ϕi,M′i,χi,E ′′i) | i < k} a complete
system of independent representatives for Lλ(M).

– The homomorphism h : M→ N of claim 1 will be now obtained as h = h0,k where
(hi, j : Mi→M j)i< j≤k is a chain of Σ-homomorphisms (thus in particular N = Mk)
constructed inductively as follows.
. M0 = M

. For each successor ordinal j+1 let h′0, j : M′ j→M′j be the unique ϕ j-expansion

of h0, j : M→M j from M′ j. Then for any E ′′ jf ⊆ E ′′ j finite:

2 there exists Σ′′ j-model M′′ j s.th. M′′ j↾χ j = M′ j,M′′ j |= E ′′ jf M′ j |= [∃χ j] f E ′′ j

3 there exists h′′0, j : M′′ j→M′′j s.th. h′′0, j↾χ j = h′0, j χ j quasi-representable

4 M′′j |= E ′′ jf M′′ j |= E ′′ jf , hypothesis 1. applied to h′′0, j

5 M′j |= [∃χ j] f E ′′j 4, E ′′ jf was considered arbitrary

Σ

ϕ j
��

M
h0, j

// M j
hi, j

// M j+1

Σ′ j

χ j
��

M′ j
_

OO

h′0, j

// M′ j
f ′

//

_
OO

P′
_
OO

Σ′′ j M′′ j
_

OO

h′′0, j

// M′′j
_

OO

6 there exists f ′ : M′j→ P′ s.th. P′ |= [∃χ j]E ′′ j 5, hypothesis 5.

Then we define M j+1 = P′↾ϕ j and h j, j+1 = f ′↾ϕ j .

. For each limit ordinal j we take the co-limit of the chain before j.

– Now we prove that h satisfies the property claimed at 1. Keeping the above nota-
tions, consider (ϕ,M′,χ,E ′′). If j < k is the isomorphism class of (ϕ,M′,χ,E ′′), we
may assume without any loss of generality that (ϕ,M′,χ,E ′′) = (ϕ j,M′ j,χ j,E ′′ j).
We have to show that N′ |= [∃χ j]E ′′ j.

7 there exists Σ′′-model M′′j+1 s.th. M′′j+1↾χ j = M′j+1, M′′j+1 |= E ′′ j 6, P′ = M′j+1

8 ϕ j ; χ j quasi-rep. ϕ j quasi-rep. (cf. Prop. 7.7), χ j quasi-rep. (hyp. 7.), Prop. 5.12(1.)

9 there exists h′′j+1,k : M′′j+1→ N′′ s.th. h′′j+1,k↾(ϕ j ;χ j) = h j+1,k 8

10 N′′ |= E ′′ j 9, hypothesis 1.

11 N′′↾χ j = N′ 9, ϕ j quasi-representable
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12 N′ |= [∃χ j]E ′′ j 10, 11.

• In the final part of the proof we exploit property 1 for showing that for each Σ-model
M and for each cardinal λ′ there exists a Σ-homomorphism M → N such that N is
(λ′,D)-saturated. By hypothesis 9. there exists a cardinal α such that each (λ′,D) is
α-small. By Ordinal Induction we construct an α-chain ( fi, j : Ni → N j)i< j≤α such
that N0 = M and each f j, j+1 play the role of h of property 1. We want to show that
Nα is (λ′,D)-saturated, therefore the desired model homomorphism M→ N would be
f0,α : M→ Nα. Let λ be any ordinal such that λ < λ′. Since any (λ,D)-chain can be
completed trivially to a (λ′,D)-chain just by considering only identities beyond λ, we
have that each (λ,D)-chain is α-small too.

Assume N′α |= [∃χ] f E ′′, where (ϕ,N′α,χ,E
′′) ∈ Lλ(Nα). We have to prove that

N′α |= [∃χ]E ′′.

13 there exists j < α, f ′j,α : N′j→ N′α such that f ′j,α↾ϕ = f j,α ϕ α-small

14 there exists f ′j, j+1 : N′j→ N′j+1 s.th. f ′j, j+1↾ϕ = f j, j+1 13, ϕ quasi-rep. (Prop. 7.7)

15 there exists f ′j+1,α : N′j+1→ N′α s.th. f ′j+1,α↾ϕ = f j+1,α 13, 14, ϕ quasi-rep. (Prop. 7.7)

By hypotheses 1. and 2., for any finite E ′′f ⊆ E ′′ there exists ρ(E ′′f ) ∈ SenΣ′ and exis-
tential χ-quantification of a conjunction of the sentences of E ′′f . Then:

16 N′α |= ρ(E ′′f ) N′α |= [∃χ]E ′′

17 N′j |= ρ(E ′′f ) 13, 16, hypothesis 1. applied to f ′j,α

18 N′j |= [∃χ] f E ′′ 17, E ′′f has been considered arbitrary

19 N′j+1 |= [∃χ]E ′′ 18, f j, j+1 has property 1 by definition / construction, 14

20 there exists N′′j+1 s.th. N′′j+1↾χ = N′j+1, N′′j+1 |= E ′′ 19

21 there exists f ′′j+1,α : N′′j+1→ N′′α s.th. f ′′j+1,α↾χ = f ′j+1,α 20, χ quasi-representable

Σ

ϕ
��

N0 = M
f0, j

// N j
f j, j+1

// N j+1
f j+1,α

// Nα

Σ′

χ

��

N′j
_

OO

f ′j, j+1

// N′j+1

_

OO

f ′j+1,α

// N′α
_

OO

Σ′′ N′′j+1 f ′′j+1,α

//

_

OO

N′′α
_

OO

22 N′′α |= E ′′ 20, 21, hypothesis 1. applied to f ′′j+1,α

23 N′α |= [∃χ]E ′′ N′α = N′′α↾χ (21), 22.

□
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Existence of saturated models, concretely
In what follows we discuss the applicability of Thm. 7.11 by analyzing its hypotheses,
what they mean in concrete situations. We will take FOL as a benchmark example.

1. This is a strong hypothesis that is not satisfied by FOL or by many other standard
institutions. When the respective institution has negations this hypothesis amounts to
all model homomorphisms being elementary. When the institution does not have nega-
tions the hypothesis is stronger than elementariness. To develop the existence of satu-
rated models in FOL we consider I = E(FOLq), which means the sub-institution of
FOL such that

• its signature morphisms are the FOL injective signature extensions with constants;
this specific sub-institution is called FOLq, and

• its model homomorphisms are the elementary homomorphisms.

While the latter restriction represents the obvious way to satisfy hypothesis 1., the
reason for the former one will become apparent in what follows. The parameter D
is taken to be the class of the injective signature extensions with a finite number of
constants.

2. The availability of finite conjunctions and of existential D-quantifications does not
require any further comments, perhaps only that evidently FOL has them.

3. Generally speaking, the inductive co-limits are a special case of directed co-limits
which are a special case of small general co-limits. In the case of E(FOLq), due to
the very particular signature morphisms, inductive co-limits are straightforward, the
only interesting aspect here is that having infinitely large signatures is crucial. The
inductive-exactness hypothesis has two aspects of different weight as follows:

• On the models any exactness property in E(FOLq) is inherited from FOL , which
is exact for any kind of co-limit of signature morphisms (Prop. 4.7).

• On the model homomorphisms the situation is less straightforward because of the
elementariness condition. Let us consider a λ-chain of signature morphisms
(ϕi, j : Σi→ Σ j)i< j≤λ of FOLq signature morphisms and a family (hi ∈ModΣi)i≤λ

of FOL model homomorphisms such that h j↾ϕi, j = hi when i < j. In this case, the
inductive-exactness means that hλ is elementary when hi is elementary for each
i < λ. This is solved by Prop. 5.31(3.); in fact it is enough one i < λ such that hi is
elementary (N.B. when applied to FOLq, the ‘D’ of Prop. 5.31 is not the same with
the ‘D’ in Thm. 7.11, the former representing injective signature extensions with
any number of constants while the latter allows only such extensions with a finite
number of constants.).

4. This hypothesis relies on Tarski’s Elementary Chain Theorem, Cor. 7.4 representing
its institution-independent version, while the more concrete Cor. 7.5 includes the FOL
case. However this is not quite enough, it is also required that the mediating ho-
momorphisms from the elementary co-limits to elementary co-cones are elementary
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too. This is achieved as follows. Let (hi, j : Mi → M j)i< j<λ be a chain of elemen-
tary homomorphisms and let (µi : Mi → M)i<λ be a co-limit of this chain in FOL .
Let (νi : Mi→ N)i<λ be a co-cone consisting of elementary homomorphisms and let
f : M→ N be the unique mediating homomorphism given by the co-limit property.
Let χ ∈D and f ′ : M′→ N′ be any χ-expansion of f . Since any signature morphism
in D is finitary, and χ in particular, there exists j < λ and a corresponding χ-expansion
µ′j of µ j, which determines an expansion ν′j of ν j defined by ν′j = µ′j; f ′. By the ele-
mentariness of µ j and ν j we get that M′∗ = M′∗j = N′∗, hence f is elementary.

5. This can be regarded as a form of compactness. It can be addressed successfully at the
general level by some results from Chapter 6 in a similar way we did in the proof of the
first part of Prop. 7.10. Thus for each finite i⊆ E ′, let M′i be the χ-expansion of M such
that M′i |= i. By compactness Thm. 6.19, there exists an ultrafilter U on PωE ′ (the set
of all finite subsets of E ′) and an ultraproduct (µJ : M′J→M′U )J∈U such that M′U |=E ′.
We define N = M′U↾χ. Since Modχ preserves ultraproducts (cf. Prop. 6.7 and 6.9),
M′U↾χ

∼= MU , an ultrapower of M. By Cor. 6.16, M can be elementarily embedded into
MU , hence into N too. This solved hypothesis 5. in E(FOLq). Most of this argument
consists of institution-independent facts, so it can be easily replicated in situations
when the role of FOL is played by any other Łoś institution such that the model reducts
preserve the ultraproducts.

6. In FOL / E(FOLq), with D being the class of the finitary injective signature extensions
with constants, this is an obvious fact. Moreover, this property holds in any institution
where models consist of interpretations of the symbols of the signatures in set-theoretic
universes, for those signature morphisms which do not add new sorts.

7. From Prop. 5.13 / Cor. 5.14 we know that in FOL all injective signature extensions
with constants are quasi-representable.

8. For each FOL signature Σ there exists only a set of isomorphism classes of finitary
signature extensions of Σ with constants, its cardinal being ω. If D consisted of ex-
tensions with arbitrarily large sets of constants the D-co-well-powered property of the
category of the signatures would have been lost.

9. This can be addressed at the general institution-independent level by Prop. 7.9. Note
that in the case of E(FOLq) the conditions of Prop. 7.9 are included in the set of
the hypotheses of Thm. 7.11 that have already been discussed for this particular con-
crete case, with only one exception: that D contains only finitary signature morphisms.
However the setup of D in the definition of E(FOLq) guarantees this via Cor. 5.18
(each injective signature extension with a finite number of constants is finitary in the
institution-independent sense).

Based on the above analysis of the conditions underlying Thm. 7.11 we obtain the
classical standard existence of saturated models in FOL . Below we formulate this using
the concepts of this chapter.

Corollary 7.12. FOL has D-saturated models for D the class of the injective signature
extensions with a finite number of constants.
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Let us now sum up the development of the result of the existence of saturated mod-
els. We have a general theorem which comes with a list of hypotheses. The theorem itself
is not easy, but it can be applied relatively easily to concrete institutions by addressing its
hypotheses in the respective context. However both the proof of the general theorem and
solving the hypotheses require a significant quantity of concepts and results that have been
previously developed in this book. In most cases these belong to the ‘basic stuff’, but in
a few cases they are more advanced than that. It is important that the process of concrete
validation of the hypotheses of Thm. 7.11 does not involve any particular difficulties.

This result is emblematic of the institution-independent method of developing model
theory. First, there is a clarification of the concepts at an appropriate level of abstraction.
Then there is a clarification of the causes for a certain result to happen which leads to
the formulation of hypotheses. Then there is a proof of the result at the abstract level.
Finally, we have to address the issue of the applicability of the result, when and how its
causes arise. The application stage should involve a relatively straightforward technical
validations, or at least these should have a degree of difficulty that is significantly lower
than that of the main result itself.

Borrowing saturated models along institution comorphisms

Perhaps the most limiting hypothesis of Thm. 7.11 is the requirement on conjunctions
and on existential quantifications. We can get rid of this by the following general borrow-
ing result and thus obtain the existence of saturated models in sub-institutions with less
expressive power of the sentences.

Proposition 7.13. Let (Φ,α,β) : I → I ′ be an institution comorphism and D ⊆ Sig,
D ′ ⊆ Sig′ be classes of signature morphisms such that

1. (Φ,α,β) has the model expansion property and has weak model amalgamation,

2. Φ preserves inductive co-limits, and

3. ΦD ⊆D ′.

Then I has D-saturated models whenever I ′ has D ′-saturated models.

Proof. We first show that

1 β maps (λ,D ′)-saturated models to (λ,D)-saturated models.

Consider M′ a (λ,D ′)-saturated ΦΣ-model. Let M = βΣM′ and consider a
(k,D)-chain ϕ : Σ→ Σk for k < λ, (χ : Σk → Σ) ∈ D , Mk a ϕ-expansion of M, and
E a set of Σ-sentences such that Mk |= [∃χ] f E.

2 Φϕ is a (k,D)-chain hypotheses 2., 3.

3 ∃M′k ∈ |Mod′(ΦΣk)| s.th. M′k↾Φϕ = M′, βΣk M′k = Mk (Φ,α,β) has model amalgamation
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M′_

βΣ

��

M′k
�Mod′(Φϕ)

oo

_
βΣk
��

N′ |= αΣE f
�Mod′(Φχ)

oo

_
β

Σ

��

M Mk
�

Modϕ

oo N |= E f
�

Modχ

oo

4 ∀N,N↾χ = Mk, ∃N′ s.th. N′↾Φχ = M′k, β
Σ
N′ = N (Φ,α,β) has model amalgamation

5 M′k |= [∃Φχ] f α
Σ
E Mk |= [∃χ] f E, M′k↾Φϕ = M′, 3, 4, Satisfaction Condition of (Φ,α,β)

6 M′k |= [∃Φχ]α
Σ
E M′ (λ,D ′)-saturated, M′k↾Φϕ = M′, 5

7 there exists M′ s.th. M′↾Φχ = M′k, M′ |= α
Σ
E 6

8 β
Σ
M′ |= E 7, Satisfaction Condition of (Φ,α,β)

9 (β
Σ
M′)↾χ = Mk β natural, 3

10 Mk |= [∃χ]E 8, 9.

Now that we have established 1 we may proceed to the final part of the proof. Let
M be any Σ-models.

11 there exists a ΦΣ-model M′ s.th. βΣM′ = M (Φ,α,β) has model expansion

12 there exists h′ : M′→ N′ s.th. M′ ≡ N′, N′ (λ,D)-saturated I ′ has D ′-saturated models

13 βN′ (λ,D)-saturated 1

14 βh′ : M→ βN′ h′ : M′→ N′ (12), M = βM′

15 M ≡ βN′ M′ ≡ N′, M ≡ βM′, Satisfaction Condition of (Φ,α,β)

The conclusions 14 and 15 say that I has (λ,D)-saturated models. □

A concrete application of Prop. 7.13 is the following.

Corollary 7.14. EQL and HCL have D-saturated models for the usual D consisting of
the injective signature extensions with a finite number of constants.

Exercises
7.2. Lindenbaum Theorem
We say that an institution has the Lindenbaum Property if and only if each consistent set of sen-
tences can be extended to a maximal consistent set of sentences. Each m-compact institution has
the Lindenbaum Property. (Hint: Let β be the cardinal of SenΣ and arrange SenΣ = (eα)α<β. Define
E0 = E, and for each successor ordinal α+1 define Eα+1 = Eα ∪{eα} if Eα ∪{eα} is consistent,
otherwise Eα+1 = Eα, and for each limit ordinal α′ define Eα′ =

⋃
α<α′ Eα. Then Eβ =

⋃
α<β Eα is

the desired maximally consistent set.)

7.3. Let D be the class of F OL1 signature extensions with a finite number of constants. Consider
the F OL1 signature having only one binary relation symbol <. The model Q of the rational numbers
interpreting < as the ‘strictly less than’ relation is (ω,D)-saturated but it is not (λ,D)-saturated for
cardinals λ>ω. (Hint: For each finite n the elementary equivalence relation between the expansions
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of Q with n constants determines a finite partition, i.e., has a finite number of equivalence classes,
whose cardinal is less than n!. Each such equivalence class is determined by the mutual position of
the constants concerning <.)

7.4. In any semi-exact institution, the model reduct functors preserve the (λ,D)-saturated models
if D is stable under pushouts. (Hint: (λ,D)-chains are stable under pushouts.)

7.5. Establish the existence of saturated models in several concrete institutions presented as ex-
amples in this book (such as PA , POA , etc.) as instances of the general institution-independent
Thm. 7.11.

7.6. Saturated models for theories
For any class D of signature morphisms in an institution I , let D th denote the class of the presen-
tation morphisms χ : (Σ,E)→ (Σ′,E ′) for which χ ∈D .

1. Any model of the institution I th is (λ,D th)-saturated if it is (λ,D)-saturated in I .

2. I th has D th-saturated models if I has D-saturated models.

3. The following two institutions have D-saturated models which are ‘borrowed’ through Prop. 7.13:
(a) HN K has D-saturated models for D the class of the injective signature extensions with a

finite number of constants (Hint: use the comorphism HN K → FOEQL th of Ex. 4.12.)

(b) IPL has D-saturated models for D the class of the injective signature extensions with a
finite number of symbols (Hint: use the comorphism IPL → FOEQL th of Ex. 4.11.)

7.3 Uniqueness of saturated models
The uniqueness property of saturated models is subject to a set of conditions which are
introduced and discussed in the first part of this section. The most important one, in the
sense that it is the only one with a special significance is a limit to the ‘size’ of the models.
A general concept of size may be defined when the institution has diagrams. Another
condition is that the diagrams satisfy a certain rather natural property. Another property
required is that sentences are finitary; in concrete terms this means that they can contain
only a finite number of symbols.

For this section, we assume an institution endowed with a system ι of diagrams and
with a designated class D of signature morphisms.

Simple diagrams. By the functoriality property of ι, we know that for all Σ-models M
and N and for each ιΣN-expansion M′ of M the following square of signature morphisms
commutes:

Σ
ιΣN

//

ιΣM

��

ΣN

ιΣN M′

��

ΣM
ιιΣN 1M

// (ΣN)M′

(7.2)
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(In the explanation of the functoriality of ι in Sec. 4.4 take ϕ = ιΣN and h = 1M : M→
M′↾ιΣN .) Then the diagrams ι are simple when the commutative squares (7.2) are pushout
squares.

Despite the frightening formulae in the definition of simple diagrams above, in com-
mon concrete situations this concept is almost trivial. When the elementary extensions just
add the elements of the model as new constants to its signature, the diagrams ι are simple
because the squares (7.2) are of the form

Σ //

��

Σ+ |N|

��

Σ+ |M| // Σ+ |N|+ |M|

where |M|, |N| denote the underlying carrier sets of M and N, respectively.

Sizes of models. In Sect. 6.5 we have introduced a concept of ‘finite’ size for abstract
models based on the categorical finiteness property of the associated elementary exten-
sion. Now we take this idea further for infinite cardinals. For any cardinal number λ, we
say that a model M has D-ι-size λ when ιΣM = ϕ0,λ for some (λ,D)-chain (ϕi, j)i< j≤λ.
When there is no ambiguity about ι we may say ‘D-size’ rather than ‘D-ι-size’. Note that
this concept of ‘size’ is a relation between models and cardinals rather than a function
from models to cardinals.

Fact 7.15. Let D be the class of the FOL injective signature extensions with a finite
number of constants. An infinite FOL-model M has D-size λ if and only if card|M| ≤ λ

(where |M| =
⊎

s∈S Ms, with S being the set of the sorts of Σ). Moreover any finite FOL-
model has D-size λ for any cardinal λ.

By Prop. 7.10 we can further establish the following:

Corollary 7.16. For any infinite cardinal λ, for each (λ,D)-saturated FOL model M of
D-size λ such that Ms is infinite for at least one sort, card|M|= λ.

Finitary sentences. In any institution a Σ-sentence ρ is finitary if and only if it can
be written as ϕρ0 where ϕ : Σ0 → Σ is a signature morphism such that Σ0 is a finitely
presented signature and ρ0 is a Σ0-sentence. An institution has finitary sentences when
all its sentences are finitary. This concept is a categorical expression of the fact that a
sentence contains only a finite number of symbols. This is illustrated by the following
typical example.

Fact 7.17. A FOL signature (S,F,P) is finitely presented if and only if S, F, and P are
finite. (Here F ‘finite’ means that {(w,s) | Fw→s ̸= /0} is finite and each non-empty Fw→s
is also finite. The same applies to P.) Consequently, FOL has finitary sentences.

Here we have to warn the reader about some possible terminology confusion which
may arise in relation to the term ‘finitary’ when used in conjunction with basic sentences.



190 Chapter 7. Saturated Models

Therefore by ‘finitary basic’ set of sentences E we will always mean that at least one of its
basic models ME is finitely presented (like in Sect. 5.5) and not that the set of sentences
is ‘finitary’ and ‘basic’.

Uniqueness theorem

Theorem 7.18. Assume that the institution

1. has pushouts and inductive co-limits of signatures,

2. is semi-exact and inductive-exact on models,

3. has simple diagrams ι,

4. has existential D-quantification for a (sub)category D of signature morphisms
which is stable under pushouts,

5. has negations and finite conjunctions, and

6. has finitary sentences.

Then any two elementary equivalent (λ,D)-saturated Σ-models of D-size λ are isomor-
phic.

Proof. Let M,N be (λ,D)-saturated Σ-models of D-size λ such that M ≡ N. For any
pushout square of signature morphisms as follows:

Σ
ιΣM
//

ιΣN
��

ΣM

φM
��

ΣM

ιιΣN 1M

��

ΣN
φN

// Σ′′

ΣN
ιΣN M′

// (ΣN)M′

let us assume that

1 there exists Σ′′-models M′′,N′′ s.th. M′′↾φM = MM , N′′↾φN = NN , M′′ ≡ N′′.

Under this assumption, we can prove the theorem as follows. Define M′ = M′′↾φN and
N′ = N′′↾φM . Because the diagrams are simple and pushouts are unique up to isomor-
phism, we may assume without any loss of generality that Σ′′ = (ΣN)M′ ,φM = ιιΣN1M and
φN = ιΣN M′. Then

2 M′M′↾φN = M′ φN = ιΣN M′

3 M′M′↾φM = MM φM = ιιΣN1M , naturality of i applied to M′M′ (see the diagram below)
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Mod((ΣN)M′ ,EM′)

Mod ιΣN 1M

��

i
ΣN ,M′

// M′/ModΣN

Mod ιΣN
��

Mod(ΣM,EM)
iΣ,M

// M/ModΣ

4 M′′ = M′M′ definition of M′, 1, 2, 3, hypothesis 2. (semi-exactness)

5 M′′ |= EM′ 4

6 N′′ |= EM′ M′′ ≡ N′′

7 there exists h : M′′→ N′′ 4, 6, M′M′ initial.

Now, by the symmetry between M and N we can swap their role in all of the above
reasoning steps and get that

8 there exists h′ : N′′→M′′.

Then

9 h;h′ = 1M′′ and h′;h = 1N′′ 7, 8, M′′,N′′ are initial (see 4)

10 M ∼= N 9, M = M′′↾ιΣM;φM , N = N′′↾ιΣN;φN , ιΣM;φM = ιΣN;φN .

Thus under assumption 1 we have proved the theorem. It remains to prove 1. We do that
in two steps as follows:

• Since both M,N have D-size λ there are (λ,D)-chains (ϕ
i, j
M : Σi

M → Σ
j
M)i< j≤λ and

(ϕ
i, j
N : Σi

N → Σ
j
N)i< j≤λ such that ιΣM = ϕ

0,λ
M and ιΣN = ϕ

0,λ
N . By Ordinal Induction we

define

1. a (λ,D)-chain (φi, j : Σi→ Σ j)i< j≤λ such that Σ0 = Σ, Σλ = Σ′′, and

2. two natural transformations θM : ϕM⇒ φ, θN : ϕM⇒ φ such that θλ
M = φM , θλ

N =
φN and for each j ≤ λ the commutative square

Σ
ϕ

0, j
M

//

ϕ
0, j
N
��

Σ
j
M

θ
j
M
��

Σ
j
N

θ
j
N

// Σ j

(7.3)

is a pushout square.

– For each successor ordinal j+ 1 we construct the following system consisting of
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four pushout squares in three steps:

Σ
j+1
M

θ′ jM

!!

θ
j+1
M

��

Σ
j
M

ϕ
j, j+1
M

>>

θ
j
M

!!

Σ′ jM
ψ

j
M

""

Σ

ϕ
0, j
M
@@

ϕ
0, j
N
��

Σ j φ j, j+1
//

γ
j
M
<<

γ
j
N
""

Σ j+1

Σ
j
N

ϕ
j, j+1
N

  

θ
j
N

==

Σ′ jN
ψ

j
N

<<

Σ
j+1
N

θ′ jN

==

θ
j+1
N

NN

The left side square is given as a pushout square by the induction hypothesis. Then
the upper and the lower squares are defined as pushout squares. In the third step,
we define the right square as a pushout square. Thus θ

j+1
M , θ

j+1
N , φ j, j+1 are defined

and the outer square is a pushout square by composition of pushout squares, which
represents the pushout property for (7.3) for j+1.
To establish that φ will be a (λ,D)-chain we show at this stage that φ j, j+1 ∈ D .
Since D is stable under pushouts (hypothesis 4.), by following the stepwise con-
struction of φ j, j+1 we successively obtain that γ

j
M,γ

j
N ∈D , then that ψ

j
M,ψ

j
N ∈D ,

and finally that φ j, j+1 ∈D .

– For each limit ordinal k≤ λ, by using that (θ j
M;φ j,k) j<k is a co-cone for (ϕi, j

M )i< j<k,
we define θk

M : Σk
M → Σk as the unique signature morphism such that ϕ

j,k
M ; θk

M =

θ
j
M ; φ j,k for each j < k. (Note that φ

j,k
M are already available as the components of

the inductive co-limit at k.) θk
N is defined similarly.

Σ
ϕ

0, j
M
//

ϕ
0, j
N
��

Σ
j
M

θ
j
M
��

ϕ
j,k
M
// Σk

M

θk
M

��

Σ
j
N

θ
j
N

//

ϕ
j,k
N
��

Σ j

φ j,k
$$

Σk
N

θk
N

// Σk

That the outer square of the above diagram is a pushout square ((7.3) for k) can be
established as follows. Consider

. f k
M : Σk

M →Ω, f k
N : Σk

N →Ω such that ϕ
0,k
M ; f k

M = ϕ
0,k
N ; f k

N .

. For each j < k we let f j
M = ϕ

j,k
M ; fM , f j

N = ϕ
j,k
N ; fN and

. f j : Σ j→Ω be the unique morphism such that θ
j
M ; f j = f j

M and θ
j
N ; f j = f j

N
(by the pushout property of (7.3)).
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Then the unique mediating morphism f k : Σk → Ω such that θk
M; f k = f k

M and
θk

N ; f k = f k
N , is given by the co-limit property of the k-chain (φi, j)i< j≤k.

• In the second part of the proof, by Ordinal Induction we define for each j ≤ λ,
Σ j-models M j ≡ N j such that M j↾φi, j = Mi, N j↾φi, j = Ni for each i ≤ j, and
M j↾

θ
j
M
= MM↾

ϕ
j,λ
M

and N j↾
θ

j
N
= NN↾

ϕ
j,λ
N

. Then 1 gets proved by taking M′′ = Mλ and

N′′ = Nλ.

– Let M0 = M and N0 = N.

– Let j+1 be a successor ordinal.
. By semi-exactness applied to the pushout square below we define M′ j as the amal-

gamation of M j and MM↾
ϕ

j+1,λ
M

.

Σ
j
M

ϕ
j, j+1
M

//

θ
j
M
��

Σ
j+1
M

θ
′ j
M��

MM↾
ϕ

j+1,λ
M

Σ j

γ
j
M

// Σ
′ j
M M′ j

_

OO

M j M′ j�oo

. Now we find a γ
j
M-expansion N′ j such that N′ j ≡M′ j.

11 M j |= (∃γ j
M)∧E ′f for each finite

E ′f ⊆ (M′ j)∗
M′ j↾

γ
j
M
= M j , γ

j
M ∈D , I has conjunctions and

existential D-quantification

12 N j |= (∃γ j
M)∧E ′f M j ≡ N j , 11

13 N j |= [∃γ j
M] f (M′ j)∗ 12, E ′f arbitrary

14 N j |= [∃γ j
M](M′ j)∗ 13, φ0, j ( j,D)-chain, γ

j
M ∈D , N (λ,D)-saturated

15 ∃N′ j, N′ j↾
γ

j
M
= N j, N′ j |= (M′ j)∗ 14

16 N′ j ≡M′ j 15, I has negations.

. By semi-exactness applied to the pushout square below we define N j+1 as the
amalgamation of N′ j and NN↾

ϕ
j+1,λ
N

.

Σ
j
N

θ
j
N ;γ j

M
//

ϕ
j, j+1
N
��

Σ
′ j
M

ψ
j
M
��

N′ j

Σ
j+1
N

θ
′ j
N ;ψ j

N

// Σ j+1 N j+1
_

OO

NN↾
ϕ

j+1,λ
N

N j+1�oo

. We can replicate the reasoning that ‘produced’ N′ j on the basis of M′ j in order to
‘produce’ M j+1 on the basis of N j+1. For this we use that M is (λ,D)-saturated,
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that M′ j is the φ0, j;γ
j
M-expansion of M (and φ0, j;γ

j
M is a ( j + 1,D)-chain), and

that ψ
j
M ∈D . This gets us a ψ

j
M-expansion M j+1 of M′ j such that M j+1 ≡ N j+1.

– Let k be a limit ordinal. By the inductive-exactness hypothesis let Mk,Nk be the
unique Σk-models such that Mk↾

φ j,k = M j and Nk↾
φ j,k = N j for each j < k. We have

to prove that Mk ≡ Nk. Let ρk ∈ SenΣk.

17 there exists Ω finitely presented signature,
ζk : Ω→ Σk, ρ ∈ SenΩ s.th. ρk = ζkρ

I has finitary sentences

18 there exists j < k, ζ j : Ω→ Σ j s.th. ζ j;φ j,k = ζk
Ω finitely presented

19 (Mk |= ρk) = (M j |= ζ jρ) 18, ρk = ζkρ (17), Satisfaction Condition

20 (Nk |= ρk) = (N j |= ζ jρ) 18, ρk = ζkρ (17), Satisfaction Condition

21 (Mk |= ρk) = (Nk |= ρk) 19, 20, M j ≡ N j (induction hypothesis).

Finally, we prove that Mk↾
θk

M
= MM↾

ϕ
k,λ
M

and Nk↾
θk

N
= NN↾

ϕ
k,λ
N

. As both equalities

get similar proofs, we do it for one of them only.

22 Mk↾
θk

M
↾

ϕ
j,k
M

= Mk↾
φ j,k↾

θ
j
M
= M j↾

θ
j
M

ϕ
j,k
M ;θk

M = θ
j
M ;φ j,k (naturality of θ), Mk definition

23 M j↾
θ

j
M
= MM↾

ϕ
j,λ
M

induction hypothesis

24 Mk↾
θk

M
↾

ϕ
j,k
M

= MM↾
ϕ

j,λ
M

= MM↾
ϕ

k,λ
M
↾

ϕ
j,k
M

22, 23

25 Mk↾
θk

M
= MM↾

ϕ
k,λ
M

24, (ϕ j,k
M ) j<k co-limit, inductive-exactness.

□

The well-known uniqueness property of saturated models in FOL is a concrete in-
stance of the general uniqueness Thm. 7.18.

Corollary 7.19. In FOL , any two elementarily equivalent (λ,D)-saturated models of
cardinality λ are isomorphic.

Because finitely sized FOL models are saturated (cf. Prop. 7.10) the above conse-
quence of our general uniqueness result can be further applied to obtain that in FOL for
any two finite models with non-empty sorts being elementary equivalent is the same as
being isomorphic (Cor. 6.30).

Exercises
7.7. Establish the uniqueness of saturated models in several concrete institutions presented as ex-
amples in this book (such as PA , POA , etc.) as instances of the general institution-independent
Thm. 7.18.

7.8. In FOL any two elementary equivalent models admit a common elementary extension.
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7.4 Saturated ultraproducts
For this section, we assume the Generalized Continuum Hypothesis. We also need some
more set-theoretic concepts and results.

Good ultrafilters. Let (P,≤) and (P′,≤), respectively, be partial orders with binary
least upper bounds ∨ and greatest lower bounds ∧, respectively. A function f : P→ P′ is

– contra-monotonic if x < y implies f x > f y, and

– contra-additive if f (x∨ y) = f x ∧ f y.

For any functions f ,g : P→ P′, f ≤ g if f x≤ gx for all x ∈ P.
An ultrafilter U is λ-good for a cardinal λ if for each α < λ and each contra-

monotonic function f : Pωα→U there exists an contra-additive function g : Pωα→U
such that g≤ f .

Countably incomplete ultrafilters. An ultrafilter U over I is countably incomplete if
there exists an ω-chain I = I0 ⊃ I1 ⊃ ·· · ⊃ In ⊃ . . . such that In ∈U and Iω =

⋂
n∈ω In = /0.

The proof of the following theorem consists of combinatorial set-theoretic argu-
ments, and can be found in [42].

Theorem 7.20. For any set I of cardinality λ, there exists a λ+-good countably incom-
plete ultrafilter over I.

Stable sentence functors. In any institution endowed with a designated class D of sig-
nature morphisms, its sentence functor Sen is D-stable when card(SenΣ′)≤ card(SenΣ)
for each χ : Σ→ Σ′ in D . The stability of sentence functors is a rather common property
of institutions, the following being a typical example.

Proposition 7.21. The FOL sentence functor is D-stable for D the class of all injective
signature extensions with a finite number of constants.

Proof. Let (χ : Σ→ Σ′) ∈D . The function SenΣ′→ SenΣ which maps each Σ′-sentence
ρ′ to (∃χ)ρ′ is an injection, hence card(SenΣ′)≤ card(SenΣ). □

The following shows that the stability of the sentence functor guarantees a limit
to the growth of the cardinality of the sets of sentences. It also constitutes an important
technical step in the proof of the main result of this section.

Proposition 7.22. Consider an institution endowed with a designated class D of signa-
ture morphisms such that

1. it has finitary sentences, and

2. the sentence functor Sen is D-stable.

Then for each (α,D)-chain ϕ : Σ→ Σ′, card(SenΣ′)≤ cardα · card(SenΣ).
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Proof. Let us denote the segment of the chain ϕ between i and j by ϕi, j : Σi→ Σ j. Then
Σ = Σ0 and Σ′ = Σα. We prove the proposition by Ordinal Induction on α.

• If α+1 is a successor ordinal we successively have that

card(SenΣα+1)≤ card(SenΣα) Sen D-stable

≤ cardα · card(SenΣ) induction hypothesis

≤ card(α+1) · card(SenΣ).

• If α is a limit ordinal it is infinite and α =
⋃

β<α β. Let us assume

1 card(SenΣα)≤ card(
⊎

β<α SenΣβ)

and prove this case as follows.

2 for each β < α, card(SenΣβ)≤ cardβ · card(SenΣ) induction hypothesis

3 for each β < α, cardβ < cardα β < α, α limit ordinal

4 for each β < α, card(SenΣβ)≤ cardα · card(SenΣ) 2, 3

5 card(SenΣα)≤ cardα · cardα · card(SenΣ) 1, 4

6 card(SenΣα)≤ cardα · card(SenΣ) cardα · cardα = cardα (Prop. 7.6).

It remains to prove 1. We do this by defining an injection f : SenΣα→
⊎

β<α SenΣβ.
Because the institution has finitary sentences, like in the proof of Thm. 7.18, for each
ρ ∈ SenΣα there exists β < α and ρ′ ∈ SenΣβ such that ϕβ,αρ′ = ρ. We define f ρ = ρ′.
In order to prove the injectivity of f we consider ρ1,ρ2 ∈ SenΣα such that f ρ1 = f ρ2.
Then there are βk < α, k = 1,2, such that f ρk ∈ SenΣβk and ϕβk,α( f ρk) = ρk. Since
in

⊎
β<α SenΣβ, SenΣβ1 and SenΣβ2 are taken disjointly when β1 ̸= β2, we necessarily

have that β1 = β2 hence ρ1 = ρ2.

□

Ultraproducts that are saturated
The following gives sufficient conditions for ultraproducts to be saturated.

Theorem 7.23. Consider a Łoś institution endowed with a designated class D of signa-
ture morphisms such that

1. its sentences are finitary,

2. it has finite conjunctions and existential D-quantifications,

3. the sentence functor Sen is D-stable,
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4. the model reduct functors corresponding to signature morphisms in D preserve ul-
traproducts of models and lifts isomorphisms (i.e. if χ ∈D and M ∼= N′↾χ then there
exists M′ ∼= N′ such that M′↾χ = M), and

5. each (α,D)-chain invents completely ultraproducts of models.

For any infinite cardinal λ and each countably incomplete λ-good ultrafilter U over I, for
any signature Σ such that card(SenΣ) < λ, for any ultraproduct (µJ : MJ →MU )J∈U of
any family (Mi)i∈I of Σ-models, MU is (λ,D)-saturated.

Proof. Consider an (α,D)-chain (ϕi, j : Σi → Σ j)i< j≤α with α < λ such that Σ0 = Σ, a
ϕ0,α-expansion Mα of MU , (χ : Σα → Σ′) ∈ D , and a set E ′ of Σ′-sentences such that
Mα |= [∃χ] f E ′. We have to find a χ-expansion M′ of Mα such that M′ |= E ′.

• We define a contra-monotonic function f : (PωE ′,⊂)→ (U,⊂) as follows:

– Since U is countably incomplete it contains a descending ω-chain I = I0 ⊃ I1 ⊃
. . .⊃ IN ⊃ . . . Iω = /0 with In ∈U for each n ∈ ω.

– Since ϕ0,α invents completely ultraproducts there are ϕ0,α-expansions Ni of Mi,
i ∈ I, and an ultraproduct (νJ : NJ → NU )J∈U such that NU = Mα.

– For each finite E ′0⊂E ′, we let f E ′0 = IcardE ′0
∩{i∈ I |Ni |=(∃χ)∧E ′0}. (By (∃χ)∧E ′0

we designate any existential χ-quantification of any conjunction of the sentences in
E ′0; these exist by hypothesis 2.)

Then f is well defined (i.e. f E ′0 ∈U) because

1 In ∈U for each n ∈ ω

2 NU |= (∃χ)E ′0 NU = Mα, Mα |= [∃χ] f E ′

3 {i ∈ I | Ni |= (∃χ)∧E ′0} ∈U 2, (∃χ)∧E ′0 preserved by ultrafactors

4 f E ′0 ∈U 1, 3, definition of f .

That f is contra-monotonic can be checked immediately.

• Now, by using the λ-good hypothesis on U we establish that there exists a contra-
additive function g : (PωE ′,⊂)→ (U,⊂) such that g ≤ f . For this, we have only to
establish that cardE ′ < λ. This goes as follows.

5 cardE ′ ≤ card(SenΣ′) E ′ ≤ SenΣ′

6 card(SenΣ′)≤ card(SenΣα) Sen D-stable, (χ : Σα→ Σ′) ∈D

7 card(SenΣα)≤ cardα · card(SenΣ) Prop. 7.22

8 cardE ′ ≤ cardα · card(SenΣ)< λ · λ = λ 5, 6, 7, α < λ, card(SenΣ)< λ, Prop. 7.6.

• For each i ∈ I we let E ′i = {ρ ∈ E ′ | i ∈ g{ρ}}. We establish that E ′i is finite by Re-
ductio ad Absurdum. Suppose that cardE ′i ≥ ω and consider any n ∈ ω. Thus consider
{ρ1, . . . ,ρn} ⊂ E ′i . We have that:
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9 for each k = 1,n, i ∈ g{ρk} definition of E ′i

10 i ∈
⋂

k≤n g{ρk}= g{ρ1, . . . ,ρn} ⊂
f{ρ1, . . . ,ρn} ⊂ In

9, g contra-additive, g≤ f , definition of f

11 i ∈
⋂

n∈ω In 10.

Since
⋂

n∈ω In = /0, 11 represents a contradiction, hence E ′i is finite.

• Since E ′i is finite we can consider an existential χ-quantification of a conjunction of
the sentences in E ′i ; let us denote it by (∃χ)∧E ′i . We have that:

12 i ∈
⋂

ρ∈E ′i
g{ρ}= g(

⋃
ρ∈E ′i
{ρ}) = gE ′i ⊂ f E ′i like at 10

13 Ni |= (∃χ)∧E ′i 12, definition of f

• Based on 13, let N′i be a χ-expansion of Ni such that N′i |=E ′i . Consider an ultraproduct
(µ′J : N′J → N′U )J∈U of (N′i )i∈I . Then

14 for each ρ ∈ E ′, g{ρ} ⊂ {i | N′i |= ρ} definition of E ′i

15 {i | N′i |= ρ} ∈U 14, g{ρ} ∈U

16 N′U |= ρ 15, ρ preserved by ultraproducts.

Hence N′U |=E ′. Since Modχ preserves ultraproducts it follows that N′U↾χ
∼= NU = Mα.

By the hypothesis of lifting isomorphisms, there exists a χ-expansion M′ of Mα such
that M′ ∼= N′U .

Thus we have found a χ-expansion M′ of Mα such that M′ |= E ′. □

As we have always done in similar situations, let us analyse the conditions of
Thm. 7.23 in terms of their applicability. We have to bear in minds that in common
concrete institutions, including FOL , D is usually taken to be the class of the injective
signature extensions with a finite number of constants.

• The first two hypotheses of Thm. 7.23 do not require further comments.

• The D-stability of the sentence functor has been already discussed in the context of
FOL (see Prop. 7.21). In general, it is expected that for infinite signatures but finitary
sentences the respective set of sentences has the same cardinality with the signature.

• Previously in the book we have discussed several times the preservation of ultraprod-
ucts (or filtered products, more generally); it is usually a mild condition and it is more
so under our choices for D . The lifting of isomorphisms condition has a mild appear-
ance. Since it refers only to signature morphisms from D , under our typical choices
for D it becomes almost trivial. At the general level when χ is representable this is
also the case.
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• For the last hypothesis Prop. 6.11 gives a general solution which applies well in con-
crete situations, such as in FOL . In FOL , the (α,D)-chains are just injective signature
extensions with constants, which means that both alternatives provided by Prop. 6.11
can be applied with only a minimal effort.

• In light of the previous points it seems that the heavy weight of Thm. 7.23 no refers
to the existence of countably incomplete λ-good ultrafilters, but this has nothing to do
with the application of the general result. Finally, the boundary on the cardinality of
SenΣ is very easy in the applications. As discussed above it typically follows from the
boundaries on the size of the signatures.

Another remark is that in some institutions Thm. 7.23 together with Prop. 6.15 (and
its FOL Cor. 6.16, saying that each model can be elementarily embedded in any of its
ultrapowers) may provide an alternative way to reach essentially the existence of saturated
models (Thm. 7.11). However, the mathematical effort in this case may be significantly
higher than that in Thm. 7.11: the Łoś property for the institution, and especially the rather
difficult result of the existence of good countably incomplete ultrafilters (Thm. 7.20).

Keisler-Shelah isomorphism theorem

The following is an amazing application of the uniqueness property of saturated models
and of the existence of saturated ultraproducts.

Corollary 7.24. Consider an institution which satisfies the hypotheses of Thm.s 7.18 and
7.23 and such that each model M has a D-size such that if M has a D-size λ, then each
ultrapower MU for an ultrafilter U over I has D-size λcard(I). Then any two elementarily
equivalent models have isomorphic ultrapowers (for the same ultrafilter).

Proof. Let M ≡ N be elementarily equivalent Σ-models. Consider a cardinal λ such that
both M and N have D-size λ+ and such that card(SenΣ) ≤ λ. We can do this because
once a model has a certain D-size it also has any bigger D-size. Cf. Thm. 7.20 let U
be a countably incomplete λ+-good ultrafilter over λ. We consider λ-ultrapowers MU ,
NU of M, N, respectively. Then both MU and NU have D-size (λ+)λ = λ+ (cf. Prop. 7.6
on cardinal arithmetic). By Thm. 7.23 both ultrapowers are (λ+,D)-saturated. By the
uniqueness Thm. 7.18 they are therefore isomorphic. □

The famous corresponding FOL result, due to Keisler and Shelah, comes now as an
instance of Cor. 7.24.

Corollary 7.25. In FOL , any two elementarily equivalent models have isomorphic ultra-
powers.

Proof. While hypotheses of Thm.s 7.23 and 7.18 in the framework of FOL have been
discussed above, if we define the sizes of models by their cardinality, then the specific
condition about sizes of Cor. 7.24 holds obviously as each ultrapower MU is the quotient
of the power MI . □
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Now we can take a breath and contemplate this result a bit. It is the pinnacle of a big
development effort which involved several important methods (diagrams, ultraproducts,
saturated models) and a lot of results, some of them mathematically difficult. Also, it says
something deep and perhaps surprising, that in a certain sense the first-order syntax ‘gets
evaporated’ by the ultraproduct construction, a merely algebraic construction. Models
satisfying the same first-order properties are characterized just by ‘convergence’ to the
same model.

Keisler-Shelah institutions. An institution with ultraproducts of models satisfying the
property that any two elementary equivalent models have isomorphic ultrapowers is called
a Keisler-Shelah institution.

Exercises
7.9. Establish the Keisler-Shelah property in concrete institutions presented as examples in this
book (such as PA , POA , etc.) by one of the methods below:

1. directly the general result of Cor. 7.24, or

2. by ‘borrowing’ it from FOL via various institution comorphisms presented in this book.

Which of the two methods suggested above does apply to HN K ?

Notes. The F OL1 special case of Cor. 7.5 for chains instead of any directed co-limit was proved
by Tarski and Vaught in [234] and received high notoriety in conventional model theory under the
name ‘Elementary Chain Theorem’, while Theorems 7.1 and 7.2 are due to [139].

The concept of a saturated model can be traced back to the ηα-sets of [144]. A good reference
for cardinal arithmetic is [151]. The theory of saturated models at the institution-independent level
was developed in [98] where both the existence and the uniqueness Theorems 7.11 and 7.18 appear.
The F OL1 instances of these results were proved in [180].

Our definition of countably incomplete ultrafilters is formulated slightly differently but equiv-
alently to the standard one in [42]. The existence of saturated ultraproducts (Thm. 7.23) is due to
[98] and generalizes the corresponding F OL1 result which can be traced back to [154]. The Keisler-
Shelah isomorphism theorem in F OL1 (Cor. 7.25) was proved in [223] without assuming GCH.



Chapter 8

Preservation and
Axiomatizability

Axiomatizability results express a rather subtle relationship between semantics and syn-
tax. They give complete characterizations of certain classes of theories in purely semantic
terms, formulated as closure properties of classes of models under some categorical op-
erators. Perhaps the most famous example is the Birkhoff Variety Theorem of equational
logic: a class of algebras for a signature is closed under products, sub-algebras, and ho-
momorphic images (i.e. quotients) if and only if it is the class of algebras of an equational
theory. This result is considered as one of the developments that represented the dawn of
model theory.

Axiomatizability results have been traditionally considered to have mostly theo-
retical significance. But this may not correspond to the truth as they do have important
applications such as interpolation and definability. Some of these applications have been
discovered and understood properly only relatively recently.

Preservation results are halfway to axiomatizability results in the sense that, as-
suming a theory, then it can be presented by a certain kind of sentences whenever it is
‘preserved’ by some semantic operators. Thus in the case of preservation results the re-
spective class of models is already axiomatised and a preservation result just says that it
can be axiomatised by using only a specific kind of sentences. A typical example is the
following: a FOL theory can be presented by a set of universal sentences if and only if
it is ‘preserved’ by sub-models. Some axiomatizability results can be obtained via their
preservation correspondents.

We start this chapter with the development of a general institution-independent
preservation result by using the saturated models of Chap. 7. Then we develop some
axiomatisability results by using ultraproducts. In another section, we develop the inter-
dependence between quasi-varieties and the existence of initial models of theories, a
result of great relevance for logic-based computing languages. In the next section, we
show that quasi-varieties are exactly the class of models of Horn sentences. Then we
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develop a general institution-independent replica of the Birkhoff Variety Theorem. The
chapter ends with an abstract formulation for Birkhoff-style axiomatizability; this cap-
tures uniformly all axiomatizability results of this chapter and much more. The current
institution-independent model theory literature covers only a relatively small subset of the
preservation and axiomatizability results that are known in first order model theory. It is
worth extending the collection of preservation and axiomatizability results of this chapter
with new ones, possibilities in this research direction being vast.

8.1 Preservation by saturation
In this section, we develop a general preservation result as an application of saturated
models. It can be regarded as a high generalisation of the FOL preservation example
mentioned in the introduction to this chapter.

The framework. For this section we consider

1. an institution with diagrams I = (Sig,Sen,Mod, |=, ι) together

2. with a sub-functor Sen0 ⊆ Sen (i.e., a natural transformation Sen0⇒ Sen such that all
its components are set inclusions),

Σ

ϕ

��

Sen0
Σ

Sen0ϕ

��

⊆
// SenΣ

Senϕ

��

Σ′ Sen0
Σ′

⊆
// SenΣ′

and

3. a sub-category D ⊆ Sig of signature morphisms,

such that

• for each Σ-model M, (the diagram) EM ⊆ Sen0
ΣM ,

• I 0 = (Sig,Sen0,Mod, |=) has finite conjunctions, finite disjunctions, and existential
D-quantification.

Universal and existential sentences in FOL . As a typical example for this framework,
we may take I to be FOL and Sen0

Σ to be the set of all existential Σ-sentences which
are existential quantifications of quantifier-free sentences. Note that the existential sen-
tences in FOL are indeed closed under conjunctions and disjunctions (Ex. 5.6 gave a
general institution-independent version of this). In this context recall from Sect. 3.2 that
universal sentences are the negations of the existential sentences, which means that they
are universal quantifications of quantifier-free sentences. While universal sentences are
closed under finite conjunctions and disjunctions they are not closed under existential
quantifications.
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Sen0-extensions. For any Σ-models M and N, let us establish the notation

M[Sen0]N if and only if M∗ ∩ Sen0
Σ ⊆ N∗ ∩ Sen0

Σ.

We say that M is a Sen0-submodel of N when there exists a Σ-model homomorphism
h : M→ N such that MM[Sen0]Nh. (Recall that by Nh we mean i−1

Σ,Mh, the mapping of h
by the canonical isomorphism M/Mod(Σ)→ Mod(ΣM,EM).) Alternatively we may say

that N is a Sen0-extension of M. Let us denote this relation by M Sen0
−→ N.

In particular situations, it is often possible to express the Sen0-extension relationship
in purely semantic terms. The following is a typical example.

Proposition 8.1. In FOL , let Exist ⊆ SenFOL be the sub-functor of the existential sen-
tences. Then M Exist−→ N if and only if there exists a closed injective model homomorphism
M→ N.

Proof. • Consider M Exist−→ N for a FOL-signature Σ. By definition, there exists a model
homomorphism h : M→ N such that MM[Exist]Nh. Then

– h is injective because for all m1 ̸= m2 ∈Ms we have that

1 MM |=¬(m1 = m2) m1 ̸= m2

2 Nh |=¬(m1 = m2) 1, (MM)∗ ∩ExistΣM ⊆ (Nh)
∗ ∩ExistΣM , ¬(m1 = m2) ∈ ExistΣM

3 hm1 ̸= hm2 2, (Nh)m1 = hm1, (Nh)m2 = hm2.

– h is closed because for each relation symbol π in Σ and each m an appropriate
sequence of arguments such that hm ∈ Nπ, if we assumed that m ̸∈ Mπ then we
reach a contradiction as follows:

4 m ̸∈ (MM)π m ̸∈Mπ, (MM)π = Mπ

5 MM |=¬πm 4

6 Nh |=¬πm 5, (MM)∗ ∩ExistΣM ⊆ (Nh)
∗ ∩ExistΣM , ¬πm ∈ ExistΣM

7 (Nh)m ̸∈ (Nh)π 6

8 hm ̸∈ Nπ 7, (Nh)m = hm, (Nh)π = Nπ.

Since 8 contradicts hm ∈ Nπ we necessarily have m ∈Mπ.

• Now we show that the existence of any closed injective model homomorphism h : M→
N implies that M Exist−→ N. We consider any sentence (∃X)ρ′ ∈ ExistΣM such that MM |=
(∃X)ρ′. Let us denote the extension of ΣM with X by χ : ΣM → ΣM +X . First, we
prove that

9 for each quantifier-free ΣM-sentence ρ, (MM |= ρ) = (Nh |= ρ).

We prove 9 by induction on the structure of the sentences as follows.

– First, we consider an atomic equation:
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(MM |= t = t ′) = ((MM)t = (MM)t ′) definition of satisfaction of equations

= (i−1
Σ,Mh)(MM)t = (i−1

Σ,Mh)(MM)t ′) i−1
Σ,Mh injective homomorphism

(property inherited from h)

= ((Nh)t = (Nh)t ′) homomorphisms preserve evaluation of terms

= (Nh |= t = t ′) definition of satisfaction of equations.

– Then we consider a relational atom:

10 MM |= π(t1, . . . , tn) = ((MM)t1 , . . . ,(MM)tn) ∈ (MM)π satisfaction of relations

11 (i−1
Σ,Mh)(MM)tk = (Nh)tk , k = 1,n homomorphisms preserve evaluation of terms

12 ((Nh)t1 , . . . ,(Nh)tn) ∈ (Nh)π =
((MM)t1 , . . . ,(MM)tn) ∈ (MM)π

11, i−1
Σ,Mh closed homomorphism (property

inherited from h)

13 Nh |= π(t1, . . . , tn) = ((Nh)t1 , . . . ,(Nh)tn) ∈ (Nh)π satisfaction of relations

14 MM |= π(t1, . . . , tn) = Nh |= π(t1, . . . , tn) 10, 12,13.

The two cases above proved the induction base. These were the interesting parts of
this induction proof as the induction step corresponding to the Boolean connectives is
completely straightforward. Thus 9 has been proved and we can proceed further with
our proof.

15 there exists M′ ∈ |Mod(ΣM +X)|, M′↾χ = MM , M′ |= ρ′ MM |= (∃X)ρ′

Let θ : χ→ 1ΣM be the ΣM-substitution defined by θx = M′x for each x ∈ X . (At this
point it may be worth recalling the concept of institution-independent substitution ap-
plied to FOL as presented in Sec. 5.3.) We have that:

16 (Modθ)MM = M′ definition of θ

17 MM |= (Senθ)ρ′ M′ |= ρ′, 16, Satisfaction Condition of θ

18 Nh |= (Senθ)ρ′ 9, (Senθ)ρ′ quantifier-free (ρ′ quantifier-free)

19 (Modθ)Nh |= ρ′ 18, Satisfaction Condition of θ

20 (Modχ)((Modθ)Nh) = Nh θ ΣM-substitution χ→ 1ΣM

21 Nh |= (∃χ)ρ′ 19, 20.

□

Preservation by saturation
We say that a set of sentences E is preserved by Sen0-extensions when for any two models

M and N such that M Sen0
−→ N, M |= E implies N |= E. Dually, E is preserved by Sen0-

submodels when N |= E implies M |= E.
The following notation will ease our presentation. For any set of sentences Γ we let

¬Γ denote the set of the negations of the sentences in Γ.
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Theorem 8.2 (Preservation by saturation). In addition to the framework of this section
let us also assume the following conditions:

1. I has inductive weak model amalgamation,

2. I is compact and Boolean complete,

3. Sen0 consists of finitary sentences,

4. each model has a D-size,

5. I has D-saturated models.

Then for any consistent Σ-theory E

• E is preserved by Sen0-extensions if and only if E∗∗∩Sen0
Σ |= E, and

• E is preserved by Sen0-submodels if and only if E∗∗∩¬Sen0
Σ |= E.

Proof. • First we will prove a Lemma:

Lemma 8.3. In any m-compact Boolean complete institution, for any consistent theory
E and set ∆ of sentences closed under finite disjunctions, the following are equivalent:

– E∗∗∩∆ |= E, and

– for all models M,N, M |= E and N |= M∗∩∆ implies N |= E.

– For the direct implication we consider models M,N such that M |= E and N |=
M∗∩∆. We have that:

1 E∗∗ ⊆M∗ E ⊆M∗, M∗ closed theory

2 E∗∗∩∆⊆M∗∩∆⊆ N∗ 1, M∗ ∩∆⊆ N∗

3 (E∗∗∩∆)∗∗ ⊆ N∗ 2, N∗ closed theory

4 E ⊆ (E∗∗∩∆)∗∗ hypothesis E∗∗ ∩∆ |= E

5 E ⊆ N∗ 3, 4.

Let us note that the proof of the direct implication has not used any of the hypothe-
ses of the Lemma, so it holds in general.

– For the inverse implication we consider N ∈ (E∗∗∩∆)∗ and prove that N |=E. First,
we show that

6 E∗∗∪ (N∗∩¬∆) consistent.

Consider any finite sets E0 ⊆ E∗∗, ∆0 ⊆ N∗∩¬∆.

7 ¬∆0∩N∗ = /0 ∆0 ⊆ N∗

8 ¬∆0 ⊆ ∆ ∆0 ⊆ ¬∆

9 E∗∗∩¬∆0 ⊆ N∗ 8, E∗∗ ∩∆⊆ N∗

10 E∗∗∩¬∆0 = /0 7, 9
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11 E∗∗0 ∩¬∆0 = /0 10, E0 ⊆ E∗∗

12 E∗∗0 ̸|=∨¬∆0 (the disjunction of the sentences of ¬∆0 ⊆ ∆) 11

13 E0∪∆0 consistent 12.

From 13 by the m-compactness of the institution we obtain 6, hence there exists M
a model such that M |= E∗∗∪ (N∗∩¬∆). Then

14 ¬M∗∩¬∆∩N∗ ⊆ ¬M∗∩M∗ = /0 N∗ ∩¬∆⊆M∗

15 ¬M∗∩¬∆⊆ ¬N∗ 14

16 M∗∩∆⊆ N∗ 15.

Then the conclusion that N |= E follows from 16, from M |= E∗∗, and by the hy-
pothesis (of the inverse implication).

We have thus proved both implications of the conclusion of Lemma 8.3.

• Let us now prove that for any Σ-models M and N

17 if M has D-size λ, N is (λ+,D)-saturated, and M[Sen0]N, then M Sen0
−→ N.

Let (ϕi, j : Σi→ Σ j)0≤i< j≤λ be a (λ,D)-chain such that ιΣM = ϕ0,λ. By Ordinal Induc-
tion we define (Ni)0≤i≤λ such that Mi[Sen0]Ni and Ni↾ϕ0,i = N, where Mi = (MM)↾ϕi,λ .

If this were achieved then M Sen0
−→ N because

– on the one hand MM[Sen0]Nλ as MM = Mλ, and

– on the other hand, by letting h = iΣ,MNλ (which is possible because Nλ |= EM as
EM ⊆ (MM)∗∩Sen0

ΣM ⊆ (Nλ)
∗∩Sen0

ΣM) we have Nλ = Nh.

Let us now do the promised Ordinal Induction construction.

– For any successor ordinal α+1≤ λ, we consider any finite set Γ⊆M∗
α+1∩Sen0

Σα+1.
Let γ be a conjunction of the sentences of Γ (as I 0 has finite conjunctions). Then:

18 γ ∈M∗
α+1∩Sen0

Σα+1 I 0 has finite conjunctions

19 let γ′ be an existential ϕα,α+1-quantification of γ ϕα,α+1 ∈D , I 0 has existential
D-quantifications

20 γ′ ∈M∗α∩Sen0
Σα 18, 19, Mα = Mα+1↾ϕα,α+1

21 Nα |= γ′ 20, Mα[Sen0]Nα (induction hypothesis)

22 Nα |= [∃ϕα,α+1] f (M∗α+1∩Sen0
Σα+1) 21, Γ arbitrary

23 Nα |= [∃ϕα,α+1](M∗α+1∩Sen0
Σα+1) 22, α+1 < λ+, N (λ+,D)-saturated

By 23 we obtain Nα+1 such that Nα+1↾ϕα,α+1 = Nα and Nα+1 |= M∗
α+1∩Sen0

Σα+1.

– For α a limit ordinal, by the inductive weak model amalgamation hypothesis, let Nα

be an amalgamation of (Nβ)0≤β<α. Let ρα ∈ M∗α ∩ Sen0
Σα. We have to prove that

Nα |= ρα. This goes as follows.
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24 there exists β < α, ρβ ∈ Sen0
Σβ such that

ϕβ,αρβ = ρα

like in the proof of Thm. 7.18 as Sen0

consists of finitary sentences

25 Mβ |= ρβ Mβ = Mα↾ϕα,α+1 , Mα |= ρα, 24, Satisfaction Condition

26 Nβ |= ρβ 25, Mβ[Sen0]Nβ (induction hypothesis)

27 Nα |= ρα 26, Nβ = Nα↾ϕβ,α
, 24, Satisfaction Condition.

• Now let us prove that

28 if M[Sen0]N then there exists N′ such that M Sen0
−→ N′ ≡ N.

Let λ be a D-size for M. Because I has D-saturated models there exists a homomor-
phism N→ N′ such that N′ is (λ+,D)-saturated and N′ ≡ N. By 17 we also have that

M Sen0
−→ N′.

• Now we proceed to the proof of the first conclusion of the theorem.

– For the direct implication we consider a consistent Σ-theory E preserved by Sen0-
extensions. By Lemma 8.3, with ∆ set to Sen0

Σ, because Sen0
Σ is closed under

finite disjunctions it is enough to show that for arbitrary Σ-models, M |= E and
N |= M∗∩Sen0

Σ imply N |= E. We do this as follows:

29 M[Sen0]N N |= M∗ ∩Sen0
Σ

30 there exists N′ such that M Sen0
−→ N′ ≡ N 29, 28

31 N |= E 30, E preserved by Sen0-extensions.

– For the reverse implication we consider models M,N such that M Sen0
−→ N (with

h : M→ N homomorphism) and M |= E. We prove that N |= E.

32 M |= E∗∗ M |= E

33 MM |= (ιΣM)E∗∗ 32, M = MM↾ιΣM , Satisfaction Condition

34 (ιΣM)(E∗∗∩Sen0
Σ)⊆ (MM)∗∩Sen0

ΣM 33, (ιΣM)Sen0
Σ⊆ Sen0

ΣM

35 (ιΣM)(E∗∗∩Sen0
Σ)⊆ (Nh)

∗∩Sen0
ΣM 34, MM [Sen0]Nh

36 Nh |= (ιΣM)(E∗∗∩Sen0
Σ) |= (ιΣM)E 35, hypothesis of the reverse implication,

‘translation’ property of |=

37 N |= E 36, Nh↾ιΣM = N, Satisfaction Condition.

The direct implication of the first conclusion may be considered as the important im-
plication, a true preservation result. In some sense the other implication is straightfor-
ward. This evaluation is consonant with what is required to obtain each of these results.
While the former implication uses Lemma 8.3 (in fact its hard implication) and all hy-
potheses of the theorem, the latter implication needs only the basic framework and
properties and the respective definitions.
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• The proof of the second part of the conclusion, that refers to preservation by Sen0-
submodels, is similar to the proof of the first part of the conclusion given above. In
this case the ∆ in Lemma 8.3 is set to ¬Sen0

Σ. Another helpful fact is that M[¬Sen0]N
means N[Sen0]M.

□

From the conditions of the preservation Thm. 8.2, except for the condition on the
existence of saturated models, all others are rather common conditions whose applica-
bility has already been discussed elsewhere in the book (for instance in Chap. 7). In
applications, the existence of saturated models is handled by Thm. 7.11. The following is
a typical concrete instance of the general result of Thm. 8.2.

Corollary 8.4. A FOL theory is preserved by closed sub-models, respectively extensions,
if and only if it is presented by a set of universal, respectively existential, sentences.

Proof. FOL has model amalgamation (Prop. 4.6), is compact (Cor. 6.24), has only fini-
tary sentences (Fact 7.17), each model has a D-size given by the cardinality of its carrier
sets (Fact 7.15) for D the class of the injective signature extensions with a finite number
of constants, and has D-saturated models (Cor. 7.12). The conclusion follows by Thm. 8.2
and by Prop. 8.1 when taking Sen0 to be Exist, the existential sentences. □

Exercises
8.1. The result of Prop. 8.1 can be changed in various ways by weakening the requirements on the
model homomorphisms as follows. Let Sen0 consist of the existential quantifications of sentences
accessible by disjunction and conjunction from a class of sentences B (which is a parameter of the

problem). For any FOL models M and N (of the same signature) M Sen0

−→N if and only if there exists
a homomorphism h : M→ N which is

• just plain, when B consists of all the atoms,
• injective, when B consists of all the atoms and the negations of equational atoms, and
• closed, when B consists of all the atoms and the negations of relational atoms.

By instantiating the general preservation Thm. 8.2, formulate variants of the preservation results of
Cor. 8.4 corresponding to the three situations above.

8.2. Preservation in PA
A PA sentence is existential, respectively universal, when it is an existential, respectively universal,
quantification of a sentence which is accessible by Boolean connectives from existence equations.
A PA theory is preserved by closed sub-algebras (see Ex. 4.68), respectively extensions, if and only
if it is presented by a set of universal, respectively existential, sentences. Provide variants of these
results which correspond to the three situations from Ex. 8.1.

8.2 Axiomatizability by ultraproducts
Recall that a class of models M for a signature is called elementary when it is closed,
i.e., M∗∗ =M. In other words, elementary classes of models are the classes of models of
theories.



8.2. Axiomatizability by ultraproducts 209

Theorem 8.5. Consider an institution with ultraproducts of models such that its sentences
are preserved by ultraproducts. Then

1. Any elementary class of models is closed under elementary equivalence and ultra-
products.

2. If the institution has finite conjunctions and negations then the reverse of the above
holds too: any class of models that is closed under elementary equivalence and ul-
traproducts is elementary.

Proof. 1. Follows immediately from the hypothesis.

2. This is the ‘interesting’ implication. Consider a class of Σ-models M closed under
ultraproducts and elementary equivalence. Let E =M∗. We have to prove that M=E∗,
i.e. that N ∈M whenever N ∈ E∗.

• First we show that

1 for all N ∈ E∗ and i ∈ PωN∗ there exists Mi ∈M ∩ i∗.

Let i′ be a negation of a conjunction of all sentences of i. Then

2 N ∈M∗∗ \ i′∗ N ∈ E∗ =M∗∗, N |= i

3 M\ i′∗ ̸= /0 2, M⊆ i′∗ implies M∗∗ ⊆ i′∗

4 M ∩ i∗ ̸= /0 3, i∗ ∩ i′∗ = /0, i∗ ∪ i′∗ = |ModΣ|

• From 1, by the compactness Thm. 6.19 there exists an ultrafilter over PωN∗ such
that for any ultraproduct (µJ : MJ→MU )J∈U of (Mi)i∈PωN∗ we have that MU |=N∗.
Thus

5 N∗ ⊆ (MU )
∗ MU |= N∗

6 (MU )
∗ ⊆ N∗ 5, the institution has negations

7 MU ≡ N 5, 6

8 MU ∈M (Mi)i∈PωN∗ ⊆M (1), M closed under ultraproducts

9 N ∈M 7, 8, M closed under elementary equivalence.

□

Finitely elementary classes. A class of models of a signature is finitely elementary
when it is the class of models of a finite theory.

Theorem 8.6. Let M be an elementary class of Σ-models in an arbitrary institution. Then

1. If the institution has negations and finite conjunctions and M is finitely elementary
then |ModΣ| \M is elementary.

2. If the institution has ultraproducts of models and its sentences are preserved by ul-
traproducts, and |ModΣ| \M is elementary then M is finitely elementary.
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Proof. 1. There exists a finite set E Σ-sentences such that E∗=M∗. Then the complement
of M is e′∗ where e′ is any negation of any conjunction of the sentences of E.

2. By Reductio ad Absurdum we show that M∗ is presented by a finite theory. Thus sup-
pose that for each finite i ∈M∗, M ̸= i∗. Then

1 i∗ \M ̸= /0 M ̸= i∗, M=M∗∗ ⊆ i∗

Let Mi ∈ i∗\M= i∗∩(ModΣ\M). By compactness Thm. 6.19 there exists an ultrafilter
U over PωM∗, an ultraproduct (µJ : MJ →MU )J∈U over (Mi)i∈PωM∗ such that MU |=
M∗. Then on the one hand:

2 M∗ ⊆ (MU )
∗ MU |=M∗

3 (MU )
∗∗ ⊆M∗∗ =M 2, M elementary

4 MU ∈M 3, MU ∈ (MU )∗∗.

On the other hand:

5 MU ∈ |ModΣ| \M (Mi)i∈PωM∗ ⊆ |ModΣ| \M, |ModΣ| \M closed under ultraproducts
(|ModΣ| \M elementary).

But 4 and 5 together represent a contradiction. Hence there exists a finite i⊆M∗ such
that M= i∗.

□

Axiomatizability in Keisler-Shelah institutions
Institutions admitting the Keisler-Shelah property allow for a purely algebraic character-
ization of elementary equivalence as a consequence of Thm. 8.5.

Ultraradicals. Let us say that a model M is an ultraradical of a model N if N is an
ultrapower of M.

Corollary 8.7. In any Keisler-Shelah institution with negations and finite conjunctions
and such that each sentence is preserved by ultraproducts, for any class M of Σ-models
the following are equivalent:

1. M is elementary.

2. M is closed under ultraproducts and ultraradicals.

3. M is closed under ultraproducts and its complementary is closed under ultraradi-
cals.

Moreover, M is finitely elementary if and only if both M and its complement are closed
under ultraproducts.
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Proof. Let N be any ultrapower of M. Then

1 M ≡ N M∗ ⊆ N∗ (each sentence is preserved by ultraproducts), the institution has negations.

• 1. implies 2.: The closure under ultraproducts follows from the hypothesis that each
sentence of the institution is preserved by ultraproducts. Let M be an ultraradical of a
model N ∈M. By 1 M ≡ N hence M ∈M.

• 2. implies 3.: Let M ∈ |ModΣ| \M and let MU be any ultrapower of M. By Reductio
ad Absurdum, if MU ∈M then since M is closed under ultraradicals it follows that
M ∈M, which contradicts M ∈ |ModΣ| \M. Hence MU ∈ |ModΣ| \M.

• 3. implies 1.: By Thm. 8.5(2.) it would suffice to prove that M is closed under ele-
mentary equivalence. Let M ∈M and N ≡M. By Reductio ad Absurdum we suppose
N ̸∈M. Then by the Keisler-Shelah property, there exists an ultrafilter U and ultrapow-
ers MU ,NU of M,N, respectively, such that MU ∼= NU . Then

2 NU ̸∈M N ̸∈M, |ModΣ| \M closed under ultrapowers

3 MU ̸∈M 2, MU ∼= NU

4 MU ∈M M ∈M, M closed under ultraproducts.

Since 3 and 4 together represent a contradiction, we conclude that N ∈M.

• For the last conclusion of the corollary, by Thm. 8.6 it follows that M is finitely ele-
mentary if and only if both M and |ModΣ| \M are elementary. From this, the conclu-
sion follows by the equivalence between 1. and 3. above, applied to both M and its
complement simultaneously.

□

Cor. 8.7 applies well to FOL .

Axiomatizability by universal sentences
The Keisler-Shelah property makes it possible to convert the general preservation result
of Thm. 8.2 into an axiomatizability result.

Corollary 8.8. Further to the framework of Sect. 8.1 and the conditions of the preserva-
tion Thm. 8.2 let us also assume that

1. the institution has ultraproducts of models which are preserved by the model reducts
corresponding to the elementary extensions,

2. all sentences of the institution are preserved by ultraproducts, and

3. the institution has the Keisler-Shelah property.

Then the following are equivalent for a non-empty class M of models of a signature:

• M is closed under ultraproducts and Sen0-submodels, and
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• M is the class of models of a ¬Sen0-theory.

Proof. • We prove the direct implication in two steps, first that M is elementary and then
that it can be axiomatized by a ¬Sen0-theory.

– By Thm. 8.5 it is enough to show that M is closed under elementary equivalence.
Let M ≡ N with N ∈M. We show that M ∈M too as follows:

1 M,N have isomorphic ultrapowers MU ∼= NU M ≡ N, Keisler-Shelah property

2 NU ∈M N ∈M, M closed under ultraproducts

3 MU ∈M 1, 2

4 there exists ι-elementary homomorphism h : M→MU Prop. 6.15

5 (MM)∗∩Sen0
ΣM ⊆ (Nh)

∗∩Sen0
ΣM (MM)∗ ⊆ (Nh)

∗ (4)

6 M ∈M 3, 6, M closed under Sen0-submodels.

– Now let E =M∗. Because M is elementary we have M=E∗ and thus E is preserved
by Sen0-submodels. Now we can apply the ‘hard’ implication of the second con-
clusion of the preservation by saturation Thm. 8.2 and get that E can be presented
only by sentences from ¬Sen0

Σ.

• The inverse implication falls immediately from the ‘easy’ part of the second conclusion
of Thm. 8.2.

□

By taking Sen0 to be the functor Exist of the existential sentences in FOL , we get
the following concrete ‘axiomatizability by universal sentences’ result.

Corollary 8.9. A class of FOL models is the class of models of a universal theory (i.e.,
a theory presented by universal sentences) if and only if it is closed under ultraproducts
and closed submodels.

Exercises
8.3. Develop instances of the universal axiomatizability Cor. 8.8 in FOL , different from Cor. 8.9,
based upon the preservation results of Ex. 8.1. Develop similar universal axiomatizability results in
PA and other concrete institutions presented in the book.

8.3 Quasi-varieties and initial models

In this section, we establish a mutual interdependency relationship between the existence
of initial models for theories and the closure of the class of models of the theory under
direct products and ‘sub-models’. This is very significant in the context of the so-called
‘initial semantics’ in computing science, especially in algebraic specification and in logic
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and functional programming. As initial models are usually associated with computabil-
ity properties this result is an important step for understanding the logical limits of com-
putability from an axiomatic model-theoretic perspective. We can understand what kind of
logical theories may serve the purpose of the above-mentioned computational paradigms.

In the first part of this section, we will introduce the concepts of ‘sub-model’ and
‘quotient model’ in the abstract context of categories endowed with inclusion systems,
and then we will establish the conditions for the equivalence between initial semantics and
quasi-varieties. In the process will notice the following asymmetric situation: while the
fact that quasi-varieties of models admit initial models holds at the very general level of
abstract categories, the other way around requires not only a substantial model-theoretic
infrastructure but also applies only to elementary classes of models.

Subobjects in categories with inclusion systems. We have already introduced and
used several notions of ‘submodel’, such as plain FOL submodels or closed FOL sub-
models (see Sect. 4.5). Both the simple and the closed concepts of FOL submodels are
examples of the following general concept of ‘subobject’.

In any category C with an inclusion system ⟨I , E⟩, we say that an object A is an
I -subobject of another object B if there exists an abstract inclusion (A ↪→ B) ∈ I . When
the inclusion system is fixed then we may simply say ‘subobject’ instead of ‘I -subobject’.

An object A of C is I -reachable if and only if it has no I -subobjects which are
different from A. The same as above, when ⟨I , E⟩ is fixed we may simply say ‘reachable’
rather than ‘I -reachable’. By varying the inclusion system of a category, one obtains
different notions of reachability. For example, in the category of the Σ-models for a FOL
signature, a reachable model in the strong inclusion system is reachable in the closed
inclusion system too, but the other way around is not true.

Fact 8.10. In any category C with a given inclusion system and which has an initial
object 0C the following hold:

• Each object A is reachable if and only if the unique arrow 0C → A is an abstract
surjection.

• Each object has exactly one reachable subobject.

Quotient objects in abstract categories with inclusion systems. The concept of quo-
tient object can be seen as dual to that of subobject. In any category C with an inclu-
sion system ⟨I , E⟩, an object B is an E-quotient representation of A if there exists an
abstract surjection A→ B. An E-quotient of A is an isomorphism class of E-quotient
representations. When the inclusion system is fixed we may simply say ‘quotient’ in-
stead of ‘E-quotient’. An inclusion system ⟨I , E⟩ is co-well-powered if the category C is
E-co-well-powered. Recall from Sect. 2.1 that this means the class of E-quotients of each
object is a set.

Quasi-varieties and varieties in abstract categories. In any category C endowed with
a designated inclusion system and with small products, a class of objects Q ⊆ |C|
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• is a quasi-variety when it is closed under small products and subobjects, and

• is a variety if it is a quasi-variety closed under quotient representations.

Note that from this definition we get that any quasi-variety is closed under isomorphisms
just by considering the direct products of one object.

Initial models of quasi-varieties
Proposition 8.11. Consider a category C with an initial object 0C, small products, and
with a co-well-powered epic inclusion system. Each quasi-variety Q of C has a reachable
initial object.

Proof. Let {Ai | i ∈ I} be the class of all reachable subobjects of all objects of Q . Then
we consider a subclass of indices I′ ⊆ I such that there are no isomorphic objects in
{Ai | i ∈ I′} and for each i ∈ I there exists j ∈ I′ such that Ai ∼= A j. I′ is a set because the
inclusion system of C is co-well-powered and because we know that for each reachable
object B the unique arrow 0C → B is abstract surjection (Fact 8.10). Let AI′ be a direct
product of (A j)i∈I′ . Let 0Q be the reachable subobject of the product AI′ (cf. Fact 8.10).
We prove that 0Q is initial in Q .

0C // 0Q // AI′
p j
// A j ∼= Ai // A.

1 for each A ∈ Q there exists i ∈ I s.th. Ai is reachable subobject of A definition of I

2 there exists j ∈ I′ s.th. Ai ∼= A j definition of I′

3 there exists arrow AI′ → A 2, 1, p j : AI′ → A j .

This gives an arrow 0Q → A.

4 the unique arrow 0C→ 0Q is abstract surjection 0Q reachable, Fact 8.10

5 0C→ 0Q epi 4, epic inclusion system.

The uniqueness of the arrow 0Q → A follows from 5. □

The initial object of a quasi-variety exists in dependence on the existence of an
initial object at the level of the whole category, which is the trivial quasi-variety. However
in the applications this condition is mild, a typical example being the initial models in the
categories of models of FOL signatures (Prop. 4.27).

Initial semantics of Horn theories in FOL . Prop. 8.11 provides a rather convenient
way of showing the existence of initial models of Horn theories. The example below
extends the corresponding FOL result of Cor. 4.28 to infinitary Horn sentences. Recall
that an infinitary universal Horn Σ-sentence is a sentence of the form (∀X)H⇒C where
X is a set of first-order variables for Σ (i.e., new constants), H is the conjunction of any
set of (Σ+X)-atoms and C is a (Σ+X)-atom.
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Corollary 8.12. For any FOL signature Σ, any set Γ of infinitary universal Horn Σ-
sentences has an initial model.

Proof. Because there exists the initial Σ-model (cf. Prop. 4.27), by Prop. 8.11 it is enough
to show that Γ∗ is a quasi-variety. For this, we consider the closed inclusion system for
the categories of FOL models in which the abstract surjections are the surjective homo-
morphisms and the abstract inclusions are the closed submodels (see Sect. 4.5).

• For the preservation of Γ∗ by direct products, unfortunately, we cannot use any of the
general results from Chap. 6, so we have to do this from scratch. Let MI be a direct
product of a family of Σ-models (Mi)i∈I ⊆ Γ∗. Let (∀X)H⇒C in Γ and let M′ be any
(Σ+X)-expansion of MI such that M′ |= H. Then

1 the product (pi : MI →Mi)i∈I lifts uniquely to a product (p′i : M′→M′i)i∈I
of (Σ+X)-models

2 for each i ∈ I, M′i |= H M′ |= H, p′i as homomorphism preserves sat. of conjunctions of atoms

3 for each i ∈ I, M′i |= H⇒C Mi |= (∀X)H⇒C, M′i↾Σ = Mi

4 for each i ∈ I, M′i |=C 3, 2

5 M′ |=C 4, atoms, as basic sentences are preserved by direct products (Thm. 6.6).

Hence MI |= Γ.

• For the preservation of Γ∗ by closed sub-models we consider M ∈ Γ∗ and N ↪→ M a
closed sub-model of M. Let (∀X)H ⇒C in Γ and let N′ be any (Σ+X)-expansion of
N such that N′ |=H. Let M′ be the (Σ+X)-expansion of M such that M′x = N′x for each
x ∈ X . Then

6 N′→M′ is a closed sub-model N→M is a closed sub-model

7 M′ |= H N′ |= H, satisfaction of conjunctions of atoms is preserved by homomorphisms

8 M′ |=C 7, M |= (∀X)H⇒C, M = M′↾Σ

9 N′ |=C satisfaction of atoms is preserved by closed sub-models.

Hence N |= Γ.

□

Note how the proof of the existence of initial models of Horn theories given by
Cor. 8.12 is simpler than the proof provided by Cor. 4.28 as it avoids the construction
of the congruence =Γ and of the quotient of the initial Σ-model by =Γ. However, this is
heavily disguised in the abstract construction of 0Q as the image of the arrow 0C→ AI′ . In
general, obtaining initial semantics via quasi-varieties is technically easier than construct-
ing it concretely, although in some areas (such as in specification and in programming)
the concrete construction of initial models matters a lot.
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Liberality via quasi-varieties. Cor. 4.30 showed that the existence of initial models of
theories is the essential factor for the liberality of institutions. By using Prop. 8.11 it can
be reformulated as follows:

Corollary 8.13. Consider a semi-exact institution with pushouts of signatures and with
diagrams such that for each signature its category of models has an initial model, small
direct products, and a co-well-powered epic inclusion system. If the class of models of
each theory is a quasi-variety, then the institution is liberal.

The equivalence between quasi-varieties and existence of initial models. In essence,
Thm. 8.14 below represents the reverse of the result of Prop. 8.11. Together they provide
adequate conditions for the equivalence between the class of the models of a theory be-
ing a quasi-variety and having an initial model. This equivalence represents a crucial
intermediate step for a general syntactic characterisation of the theories that admit initial
semantics.

Theorem 8.14. Consider an institution with diagrams ι such that

1. for each signature Σ the category of Σ-models has an initial object 0Σ, small products,
and a co-well-powered epic inclusion system, and

2. the model reduct functors corresponding to the elementary extensions preserve the
abstract inclusions and the abstract surjections.

In this institution, all theories have reachable initial models if and only if the class of
models of each theory is a quasi-variety.

Proof. Because of Prop. 8.11 we have to prove only one implication, namely that the class
E∗ of the models of any theory (Σ,E) that has reachable initial models, is a quasi-variety.

• We first show the preservation by submodels. Consider N ↪→ M a sub-model of a
(Σ,E)-model M. We prove that N |=Σ E.

– Let h : NN →MN be the (ΣN ,EN)-homomorphism i−1
Σ,N(N ↪→M).

NN

h
��

N
1N
//

⊆
��

N

⊆
��

MN M

– Let E ′ = (ιΣN)E. Then

1 MN |= E ′ Satisfaction Condition (MN↾ιΣN = M, definition of E ′)

2 MN |= EN ∪E ′ 1, MN ∈ |Mod(ΣN ,EN)|.

Thus we may factor h = e ; f as shown in the diagram below

0ΣN
// NN e

//

h

))
0ΣN ,EN∪E ′ f

//

e f ((

MN

• i f

88
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where 0ΣN ,EN∪E ′ denotes the initial reachable model of (ΣN ,EN ∪E ′). Let us also
factor f = e f ; i f in the inclusion system of ModΣN with e f abstract surjection and
i f abstract inclusion.

– Then

3 e abstract surjection NN , 0ΣN ,EN∪E ′ reachable, Fact 8.10

4 N ↪→M = e↾ιΣN ; e f ↾ιΣN ; i f ↾ιΣN definition of h, h = e;e f ; i f

5 e↾ιΣN isomorphism Mod ιΣN preserves abstract surjections and inclusions, N ↪→M
abstract inclusion, epic inclusion systems

6 e isomorphism e = i−1
Σ,N(e↾ιΣN)

7 NN |= E ′ 4, 0ΣN ,EN∪E ′ |= E ′

8 N |= E E ′ = (ιΣN)E, NN↾ιΣN = N, Satisfaction Condition.

• For the preservation by direct products, consider (pi : N→Mi)i∈I a direct product of
Σ-models such that Mi |= E for each i ∈ I. We have to prove that N |= E.

– For each i ∈ I we let (pi)N = i−1
Σ,N(pi : 1N → pi).

9 (pi : 1N → pi)i∈I direct product in
N/ModΣ→ModΣ

N/ModΣ→ModΣ reflects direct products

10 ((pi)N = i−1
Σ,N pi)i∈I direct product in

Mod(ΣN ,EN)
iΣ,N : Mod(ΣN ,EN)→ N/ModΣ isomorphism

– Let E ′ = (ιΣN)E and 0ΣN ,EN∪E ′ be a reachable initial model of EN ∪E ′. Then

11 (Mi)N |= E ′ for each i ∈ I (Mi)N↾ιΣN = Mi, definition of E ′, Mi |= E, Satisfaction Cond.

12 (Mi)N |= EN ∪E ′ 11, (Mi)N ∈ |Mod(ΣN ,EN)|

13 let hi : 0ΣN ,EN∪E ′ → (Mi)N homomorphism 12, initiality of 0ΣN ,EN∪E ′

14 let h : 0ΣN ,EN∪E ′ → NN s.th. h;(pi)N = hi 13, ((pi)N)i∈I direct product
(10)

NN
(pi)N

// (Mi)N

0ΣN ,EN∪E ′

∼= h

OO

hi

99

15 let h′ : NN → 0ΣN ,EN∪E ′ initiality of NN

16 h ; h′ = 10
ΣN ,EN∪E′ initiality of 0ΣN ,EN∪E ′

17 h′ ; h = 1NN initiality of NN

18 NN ∼= 0ΣN ,EN∪E ′ 16, 17

19 NN |= E ′ 18, 0ΣN ,EN∪E ′ |= E ′

20 N |= E NN↾ιΣN = N, E ′ = (ιΣN)E, Satisfaction Condition.

□
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Exercises
8.4. Any intersection of quasi-varieties is a quasi-variety. Any intersection of varieties is a variety.

8.5. Consider an institution I with small direct products of models and inclusion systems for each
category of models. Let χ : Σ→ Σ′ be a signature morphism and ρ′ be a Σ′-sentence.

1. If χ is representable and ρ′ is preserved by direct products then (∀χ)ρ′ is also preserved by
direct products.

2. We say that χ lifts inclusions when for any inclusion of Σ-models M ↪→ N and M′ any χ-
expansion of M, there exists an inclusion M′ ↪→ N′ with N′↾χ = N. We say that ρ′ is preserved
by submodels when for any inclusion of Σ′-models M′ ↪→ N′ if N′ |= ρ′ then M′ |= ρ′. If χ lifts
inclusions and ρ′ is preserved by submodels then (∀χ)ρ′ is also preserved by submodels.

Apply the results above to show that the models of the sentences of the form (∀χ)H ⇒C where C
is a basic sentence preserved by submodels, H is accessible from basic sentences by conjunctions
and disjunctions, and χ is representable, form a quasi-variety. Develop instances of this result in
FOL and PA .

8.6. In MVL♯ the class of models of any set of sentences of the form ((∀X)H⇒C,x) (where H is
any pre-sentence formed from (relational) atoms by ∧, ∨, and ∗ and C is a single (relational) atom)
forms a quasi-variety, and consequently has initial models. (Hint: Apply Ex. 8.5.)

8.7. Find a FOL theory that has a reachable initial model but whose class of models is not a quasi-
variety.

8.4 Quasi-variety theorem
In Cor. 8.12 we have seen that the FOL-models of infinitary Horn sentences form quasi-
varieties. In this section, we will see that this holds more generally in abstract institutions.
But the main purpose of this section is to address the reverse implication, to establish gen-
eral conditions when quasi-varieties of models can be axiomatised by Horn theories. The
full consequences of such a result can be understood in connection with the equivalence
between initial semantics and quasi-varieties developed in Sect. 8.3. Put in simple terms,
on the one hand, Horn theories guarantee initial semantics, and on the other hand, in
general, initial semantics cannot go beyond Horn theories. In computing science, this res-
onates with the fact that the logics of both executable algebraic specifications and logic
programming (both being based on initial semantics) are forms of Horn logic.

Both results in the section, namely that models of Horn theories form quasi-varieties
and that quasi-varieties are axiomatizable by Horn theories are obtained based on the sat-
isfaction by injectivity of Sect. 5.5. In both cases, we develop results at the very general
level of abstract categories, in the style of Prop. 8.11, by simulating the satisfaction rela-
tion by categorical injectivity. These very general results constitute the backbone of the
developments of this section as we can give them an institution theoretic form in which
Horn theories appear. This Horn theoretic shape is obtained simply by invoking the re-
lationship between satisfaction of Horn theories and categorical injectivity developed in
Sect. 5.5.
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The framework. The general concept of a Horn sentence as a sentence of the form
(∀χ)E⇒ E ′ with χ being a representable signature morphism from a designated class D
of signature morphisms, E being a set of epi basic sentences, and E ′ being a set of basic
sentences, is too lax for the purpose of this section mainly because basic sentences capture
significantly more than the atoms of the institutions (recall that existentially quantified
atoms are also basic in FOL and other institutions). Although epi basic sentences might
constitute a better abstract capture for the atoms of concrete institutions, we do not have
any guarantee that in each situation each epi basic sentence is ‘atomic’. The solution to
this problem is to consider an abstract-designated sub-class of the class of general Horn
sentences as a parameter for our framework. Therefore for this section, we introduce a
framework consisting of the following additional data for an institution:

• a designated class D of representable signature morphisms,

• a system of diagrams ι for the institution such that each elementary extension ιΣM
belongs to D ,

• a sub-functor Horn of Sen, such that each sentence of Horn is semantically equiva-
lent to a D-universal Horn sentence, and

• for each signature Σ, a designated co-well-powered inclusion system for the cate-
gory ModΣ of the Σ-models.

We also assume that

• each category ModΣ has small direct products.

A typical example is to consider D the class of all FOL-signature injective exten-
sions with constants and for each FOL-signature Σ the set HornΣ to be the set of all
infinitary Horn sentences (∀X)H ⇒C (with X being a set of variables, H [the conjunc-
tion of] a set of FOL-atoms, and C a FOL-atom). The finitary variant of this, i.e., when
H is a finite conjunction of atoms, is also an example.

Models of Horn sentences form quasi-varieties
Proposition 8.15. For each abstract surjection h of an inclusion system in a category
with direct products, the class Inj(h) of the objects that are injective with respect to h
form a quasi-variety.

Proof. Let h : B→C.

• Consider a family of objects (A j) j∈J ⊆ Inj(h) and let (p j : A→ A j) j∈J be their direct
product. We prove that A ∈ Inj(h). Let f : B→ A. Then

1 for each j ∈ J, there exists g j such that h;g j = f ; p j A j ∈ Inj(h)

2 there exists g s.th. for each j ∈ J, g; p j = g j (p j) j∈J direct product (existence property)

3 for each j ∈ J, h ; g ; p j = f ; p j 1, 2

4 h ; g = f 3, (p j) j∈J direct product (uniqueness property).
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C

g

��

g j

��

B

h
@@

f
// A p j

// A j

• Now consider a subobject i : A ↪→ D of D ∈ Inj(h). We prove that A ∈ Inj(h) too. Let
f : B→ A. Then

5 there exists k such that h ; k = f ; i D ∈ Inj(h)

6 there exists g such that h ; g = f (and g; i = h) 5, Diagonal-fill Lemma 4.16.

B

f
��

h
// C

∃k
��

g

��

A
i
// D

□

Theorem 8.16. Consider any institution endowed with the structure specified in the be-
ginning of the section and such that

(QP1) the abstract surjections are preserved by the model reducts corresponding to sig-
nature morphisms of D , and

(QP2) for each Horn-sentence (∀χ)E ⇒ E ′, for some basic models ME ,ME∪E ′ for E
and E ∪E ′, respectively, the canonical model homomorphism ME → ME∪E ′ is an
abstract surjection.

Then the models of any Horn-sentence form a quasi-variety. Consequently the models of
any Horn-theory form a quasi-variety.

Proof. From Prop. 5.27 we know that for each Horn sentence (∀χ)E ⇒ E ′ there exists a
model homomorphism h such that for each model M,

M |= (∀χ)E⇒ E ′ if and only if M |=inj h (i.e., M is injective with respect to h).

Moreover, the above model homomorphism h is a χ-reduct of the canonical model ho-
momorphism ME →ME∪E ′ , hence by QP1-2 it is an abstract surjection. The conclusion
follows by Prop. 8.15. □

Examples in FOL . Let us apply Thm. 8.16 to FOL . We have to fix two parameters,
Horn and the inclusion systems for the categories of the models. Because of QP2 the
choice of these two parameters cannot be done independently. The easiest way to do this
is first to fix the inclusion system and then to look at possibilities for Horn.
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1. When we chose the closed inclusion system, QP2 leaves us more freedom in choos-
ing Horn because the abstract surjections are just the surjective homomorphisms.
Then Horn can be many things, such as the standard Horn sentences of the form
(∀X)H ⇒ C where H is a finite conjunction of atoms and C is a single atom or
the set of the infinitary Horn sentences (H is allowed to be infinite), or we may
even allow H to be a conjunction of existentially quantified atoms. Note that be-
cause of QP2, C cannot be an existentially quantified atom as the surjectivity of
MH →MH∪{C} may be lost.

2. When we chose the strong inclusion system, QP2 constraints us more than in the
other case because the abstract surjections, in addition to being surjective homomor-
phisms, should also be strong. This rules out C being a relational atom, it can only
be an equational atom. For H we have all the possibilities like in the other case.

So we can formulate many instances of Thm. 8.16 in FOL , Cor. 8.12 being just one of
them.

Each quasi-variety is axiomatizable by a Horn theory

The axiomatizability of quasi-varieties by Horn theories require conditions that in the
applications are more stringent than those required in Thm. 8.16. Like in the case of
Thm. 8.16, this result is obtained on the basis of a very general category-theoretic corre-
spondent in the style of Prop. 8.15. This follows now.

Proposition 8.17. In any category with direct products and with a co-well-powered epic
inclusion system, for each quasi-variety Q there exists a class E of abstract surjections
such that Q = Inj(E).

Proof. Let us define E = {h abstract surjection | Q ⊆ Inj(h)}. We notice immediately
that Q ⊆ In j(E), therefore we have to prove only that Inj(E) ⊆ Q. Consider A ∈ Inj(E).
We prove that A ∈ Q.

• Because the inclusion system is co-well-powered we can choose a ‘complete’ set
(h j : A→M j ∈ Q) j∈J of quotient representatives of A in Q in the sense that for each
quotient representative h : A→ B ∈ Q there exists an isomorphism γ and some j ∈ J
such that h;γ = h j. Then

1 M ∈ Q M j ∈ Q, Q closed under direct products

2 there exists unique h : A→M s.th. h; p j = h j, j ∈ J (p j) j∈J direct product

3 let h = eh ; ih be the factoring of h through the inclusion system.
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• We prove that Q⊆ Inj(eh).

gA
ig

��

Mℓ

γ

>>

A
hℓ
oo

eg

OO

g
//

eh

��

h

~~

B

M

pℓ

OO

hA
ih

oo

ih ; pℓ ; γ ; ig

??

(8.1)

Consider any B ∈ Q and any g : A→ B. Let g = eg ; ig be the factorisation of g in the
inclusion system. Then

4 gA ∈ Q ig : gA→ B, B subobject, B ∈ Q, Q closed under subobjects

5 there exists ℓ ∈ J, γ iso s.th. eg = hℓ;γ 4, (h j) j∈J complete set of quotient repr.

6 eh ; (ih; pℓ;γ; ig) = g chase diagram (8.1)

7 B ∈ Inj(eh) 6.

• We continue with the proof of A ∈ Q.

8 eh ∈ E Q⊆ Inj(eh), definition of E

9 A |=inj eh 8, A ∈ Inj(E)

10 there exists m s.th. eh ; m = 1A apply 9 to 1A : A→ A

11 eh isomorphism 10, eh epi (epic inclusion system)

12 hA ∈ Q M ∈ Q (1), Q closed under subobjects

13 A ∈ Q 11, 12.

□

Theorem 8.18 (Quasi-variety). Consider any institution endowed with the structure spec-
ified in the beginning of the section and such that

(QA1) the inclusion systems of the model categories are epic,

(QA2) each abstract surjection (of models) is ι-conservative, and

(QA3) for any abstract surjection (of models) h : M → N, the ‘internal’ sentence
(∀ιΣM)EM ⇒ (ιΣh)−1E∗∗N is semantically equivalent to a set of Horn-sentences,

any quasi-variety is the class of models of a set of Horn-sentences.

Proof. From Prop. 5.29 we know that for each ι-conservative model homomorphism h,

M |=inj h if and only if M |= (∀ιΣM)EM ⇒ (ιΣh)−1E∗∗N .

From Prop. 8.17 and QA1-3 we obtain the conclusion. □
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Now we can put together both implications given by the Thm.s 8.16 and 8.18 and
formulate an equivalence relationship between quasi-varieties and Horn theories.

Corollary 8.19. In any institution institution endowed with the structure specified at the
beginning of the section and satisfying QP1-2 and QA1-3 a class of models of a signature
is a quasi-variety if and only if it is the class of models of a set of Horn-sentences.

While the conditions QA1-2 do not narrow the applicability of Quasi-variety Thm. 8.18
and its Cor. 8.19, the conjunction between QA3 and QP2 may eliminate some apparent
possible applications as illustrated by the following example.

Quasi-varieties in FOL . In FOL , the conjunction between QA3 and QP2 eliminates
the strong inclusion systems for the categories of models. The condition QP2 restricts
E ′ to a set of equations in the Horn sentences (∀χ)E ⇒ E ′ which prevents the condition
QA3 from holding because diagrams contain also relational atoms (see also Lemma 8.20
below). Hence the only possible choice remains that of the closed inclusion systems. Note
that the condition QA3 holds by the semantical equivalence given by the result below (its
proof is left to the reader).

Lemma 8.20 (QA3 in FOL). Let Σ be a signature in FOL , which is considered with its
the standard system of diagrams (see Sect. 4.4), and h : M→ N be a surjective Σ-model
homomorphism. Then

(∀ιΣM)EM ⇒ (ιΣh)−1E∗∗N |=| {(∀ιΣM)EM ⇒ ρ | NN |= (ιΣh)ρ, ρ atom}.

Therefore the FOL instance of Cor. 8.19 is as follows.

Corollary 8.21. For any FOL signature a class of models is a quasi-variety for the closed
inclusion system if and only if it is the class of models of a set of infinitary Horn sentences.

The results of Cor. 8.19 and of Thm. 8.14 can be put together to identify the subin-
stitutions of a given institution that enjoys the property that all its theories admit initial
reachable models. For example in the case of the infinitary extension of FOL (possibly
infinite quantifiers and conjunctions) these results say that one cannot go beyond the in-
finitary Horn sentences.

Exercises
8.8. Prove Lemma 8.20.

8.9. Axiomatizability for quasi-varieties of partial algebras

1. As an instance of Cor. 8.19, a class of partial algebras is
axiomatizable by iff it is closed under
QE2-sentences products and (plain) subalgebras
QE-sentences products and closed subalgebras

(Hint: Use Ex. 4.68.)

2. A result similar to 1. for QE1 fails on the condition QP2.

3. In PA each morphism between theories of universal quasi-existence equations is liberal.



224 Chapter 8. Preservation and Axiomatizability

8.5 Birkhoff variety theorem
On the one hand, if we consider a set of unconditional Horn sentences, (i.e. the set H of
the hypotheses is empty, which is the same with considering it as absolutely true) then its
quasi-variety of models has an additional property: it is also closed under ‘homomorphic
images’ or, otherwise said, under ‘quotients’. Such quasi-varieties are called varieties.
On the other hand, a variety of models admits an axiomatization by unconditional Horn
sentences. This is the essence of Birkhoff Variety Theorem, which originally has been
developed for EQL .

In this section, we develop an institution-independent version of this result as a re-
finement of the results on quasi-varieties and Horn axiomatizability of Sect. 8.4. The ‘ho-
momorphic images’ are handled at the institution-theoretic level by abstract surjections
like in the definition of varieties given in Sect. 8.3. Concerning sentences we impose the
unconditionality restriction on the subfunctor Horn. Therefore we consider

• a sentence subfunctor UA : Sig→ Set such that each UA-sentence is semantically
equivalent to a sentence of the form (∀χ)E ′ with χ ∈D and E ′ being a set of basic
sentences.

A typical example for UA is given by the universally quantified FOL-atoms.

Models of ‘universal atoms’ form varieties
Proposition 8.22. Consider any institution that in addition to all conditions of Thm. 8.16
also satisfies that

(VP) for any (χ : Σ→ Σ′) ∈ D , any abstract surjection h : M → N in ModΣ, any χ-
expansion N′ of N, there exists a χ-expansion h′ : M′→ N′ of h.

Then the models of any UA-sentence form a variety.

Proof. • The models of any UA-sentence form a quasi-variety because the sub-functor
UA is a Horn sub-functor.

• Let h : M→N be an abstract surjection and M |=(∀χ)E ′ where χ∈D and E ′ is basic.
For any χ-expansion N′ of N, by (V P) we get a χ-expansion h′ : M′→ N′ of h. Then

1 M′ |= E ′ M′↾χ = M, M |= (∀χ)E ′

2 for ME ′ basic model for E ′, there exists a homomorphism ME ′ →M′ 1, E ′ basic

3 there exists homomorphism ME ′ → N′ 2, h′ : M′→ N′

4 N′ |= E ′ 3, E ′ basic

5 N |= (∀χ)E ′ 4, N′ arbitrary χ-expansion of N.

□

The condition (V P) is easy to check in the applications as shown by the following
example.
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Examples in FOL . Let us consider any of the closed or strong inclusion systems for
the categories of FOL models, and D the class of the injective signature extensions with
constants. For both inclusion systems considered, the abstract surjections are surjective as
functions. For each (χ : Σ→ Σ′) ∈D , each surjective Σ-model homomorphism h : M→
N, for any χ-expansion N′ of N, each constant x in Σ′− χ(Σ), for M′x let us pick any
element of h−1N′x. This lifts h to a Σ′-homomorphism M′→ N′. Note how the surjectivity
of h is crucial for this lifting.

Based on the situation of quasi-varieties of models for Horn-sentences in FOL
(analysed and discussed in Sect. 8.4), we can formulate the following:

Corollary 8.23. For any FOL signature the models of any set of universally quantified
atoms (equations) form a variety for the closed (strong) inclusion systems in the cate-
gories of models.

Each variety is axiomatizable by a theory of ‘universal atoms’
The development of the axiomatizability of varieties by unconditional Horn theories
follows the same scheme as the axiomatization of quasi-varieties by Horn theories of
Sect. 8.4. The core of this result is developed at the highest level of generality, that of
abstract categories, and then this gets instantiated to institutions with adequate additional
structure and conditions to obtain a more explicit form of the result.

Given a class K ⊆ |C| of objects in a category C with an inclusion system, f is a
K -surjection when it is an abstract surjection and dom( f ) ∈K .

Proposition 8.24. In a category C with direct products and a co-well-powered inclusion
system, let K be a class of objects such that for each object A of the category there exists
an abstract surjection A′→ A with A′ ∈ K . Then for each variety V ⊆ |C| there exists a
class E of K -surjections such that V = Inj(E).

Proof. Let us define E = {e K -surjection | V ⊆ In j(e)}. We notice immediately that
V ⊆ In j(E), therefore we have to prove only that In j(E)⊆V . Consider A ∈ In j(E). We
will prove that A ∈V .

• There exists an object A′ ∈ K and an abstract surjection hA such that hA : A′ → A.
Similarly to the argument in the proof of Prop. 8.17 we get h : A′→M ∈V .

• Also like in Prop. 8.17 we factor h = eh ; ıh through the inclusion system and can prove
that eh ∈ E.

M j

A′

h j
==

eh
//

hA
!!

h

((
h(A′)

m
��

ih
// M

p j
aa

A
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• Then

1 there exists m such that hA = eh ; m eh ∈ E, A ∈ Inj(E)

2 m abstract surjection eh, hA abstract surjections

3 h(A′) ∈V M ∈V , ih : A′→M subobject, V variety

4 A ∈V 3, m abstract surjection, V variety.

□

Theorem 8.25 (Birkhoff variety). In any institution institution endowed with the structure
specified at the beginning of Sect. 8.4 and satisfying QA2 (of Thm. 8.18) and such that

(VA1) for each model M, iιΣM : ModΣM → MιΣM/ModΣ maps the initial (ΣM,EM)-
model MM to an abstract surjection MιΣM →M, and

(VA2) for any abstract surjection (of models) h : M → N, the ‘internal’ sentence
(∀ιΣM)(ιΣh)−1E∗∗N is semantically equivalent to a set of UA-sentences.

Then any variety is the class of models of a set of UA-sentences.

Proof. For a given signature Σ in the role of K ⊆ |ModΣ| let us consider the class of all
representations of the signature morphisms Σ→ Σ′ which belong to D , i.e.,

K = {Mχ | (χ : Σ→ Σ
′) ∈D}.

• The condition VA1 allows for the application of Prop. 8.24. Therefore for each variety
V there exists a class E of abstract surjections with domains in K such that V = Inj(E).

• Let (h : Mχ→ N) ∈ E. We have that:

1 h ι-conservative h K -surjection, QA2

2 (ιΣh)−1E∗∗N basic with NN↾ιΣh basic model 1, proof of Prop. 5.29

3 NN↾ιΣh↾ιΣMχ
= N ‘functoriality’ of ι.

From 2 and 3 we get easily that:

M |=inj h if and only if M |=Σ (∀ιΣMχ)(ιΣh)−1E∗∗N .

Now by VA2 we obtain the conclusion of the theorem. □

Now we can put together both implications given by Prop. 8.22 and Thm. 8.25.

Corollary 8.26. In any institution institution endowed with the structure specified at the
beginning of Sect. 8.4 and satisfying QP1-2, QA2, VP, and VA1-2 a class of models of a
signature is a variety if and only if it is the class of models of a set UA-sentences.

Conditions VA1-2 can be checked rather easily in concrete applications as suggested
by the following example.
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Varieties in FOL . For each Σ-model M, iιΣMMM : MιΣM→M is just the Σ-homomorphism
0ΣM↾ιΣM → M that maps each element of M to itself. This is surjective but not strong,
hence it is an abstract surjection only for the closed inclusion system for models. This
eliminates the FOL variant corresponding to the strong inclusion systems from the pos-
sible instances of Cor. 8.26.

Condition VA2 is fulfilled in FOL with UA being the universally quantified atoms
because of the semantic equivalence below (its rather simple proof is left as an exercise
to the reader).

Lemma 8.27. Let Σ be a signature in FOL , which is considered with the standard system
of diagrams (see Sect. 4.4), and h : M→N be a surjective Σ-model homomorphism. Then

(∀ιΣM)(ιΣh)−1E∗∗N |=| {(∀ιΣM)ρ | NN |= (ιΣh)ρ, ρ atom}.

Therefore we can now formulate the following:

Corollary 8.28. For any FOL signature a class of models is a variety for the closed
inclusion system if and only if it is the class of models of a set of universally quantified
atoms.

Exercises
8.10. Prove Lemma 8.27.

8.11. Axiomatizability of varieties of partial algebras
As an instance of the general Birkhoff Variety Theorem 8.25, we establish that for any PA signature
each class of models that is closed under products, closed submodels, and epi homomorphic images
(see also Ex. 4.68) is the class of models of a set of universally quantified existence equations. How-
ever, the corresponding preservation result fails because not every universally quantified existence
equation is preserved by any epi homomorphism. At the general level, this failure is reflected as a
failure of the condition (VP) for the epi homomorphisms of partial algebras.

8.6 General Birkhoff axiomatizability
In EQL Cor. 8.28 says that any variety is (an) elementary (class of algebras). This can
be presented in a different way in which the closure of any class of models M is given in
terms of applying semantic operators on M. So in the case of a class M of Σ-models in
EQL we have that

M∗∗ = HSPM. (8.2)

where PM / SM / HM means taking all direct products / sub-models / homomorphic
images of models from M. On the one hand, it is quite clear that equation (8.2) represents
a strengthening of the axiomatizability of varieties from Cor. 8.28 because from (8.2)
we deduce immediately that if M is a variety then M = M∗∗, so M is axiomatizable by
M∗. On the other hand to derive from (8.2) the other side of Cor. 8.28, namely that the
class E∗ of the models of an equational theory E is a variety, is equally trivial: by letting
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M=E∗ we have M=M∗∗=HSPM, which implies HM⊆M, SM⊆M, PM⊆M. When
looking into the proof of Prop. 8.24 we can see exactly this order when establishing that
an object A belongs to the variety we first consider a product, then a subobject of that
product, and finally a homomorphic image of that subobject. Without equation (8.2) it is
not obvious why HSPM should be a variety. An explanation for this is that there are some
commutativity-like relations between the three semantic operators. These constitute the
additional technical step for moving from the axiomatizability already obtained to their
‘HSP’ versions.

In this final section of the chapter, we will refine the axiomatizability results previ-
ously developed to the ‘HSP’ style of equation (8.2) and then formulate a general concept
of axiomatizability that captures uniformly all these results and much more. This will be
used later on in the book in the context of abstract institution-independent treatments of
other model-theoretic topics, when axiomatizability properties constitute a cause for other
model theoretic properties.

Application of relations. Given a binary relation R⊆ A×B, for each A′ ⊆ A let

R(A′) = {b | ⟨a, b⟩ ∈ R,a ∈ A′}.

Let us also recall

• that the composition of binary relations R⊆ A×B and R′ ⊆ B×C is a relation R;R′ ⊆
A×C defined by

R;R′ = {⟨a, c⟩ | there exists b such that ⟨a, b⟩ ∈ R and ⟨b, c⟩ ∈ R′}

and

• that the inverse R−1 of a binary relation R ⊆ A×B is a relation R−1 ⊆ B×A defined
by

R−1 = {⟨b, a⟩ | ⟨a, b⟩ ∈ R}.

Relations induced by classes of arrows. Any class of arrows H in a category C deter-
mines a (class) relation H→⊆ |C|× |C| by

a H→ b if there exists an arrow h : a→ b ∈ H.

The inverse (
H→)−1 is denoted by H←.

Axiomatizability revisited
Now we refine in the ‘HSP style’, one by one, the main four axiomatizability results
already developed in this chapter. We will do this in a different order from the order
they have originally been developed. In some cases, a few more axioms are needed, but
in the applications they represent rather common sense properties. The need for these
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new axioms is not surprising if we consider that the new axiomatizability results come
in a stronger format than their original correspondents. But in all cases, the former are
obtained from the latter, so this is the sense in which we talk about a refinement of the
original axiomatizability results.

For any class M of objects in a category (usually the category of the models of a
signature in an institution) let P M (Up M) denote the class of all objects that are direct
products (ultraproducts) of objects from M.

Quasi-variety theorem revisited. The refinement of the conclusion of Thm. 8.18 re-
quires the following commutativity-like property.

Proposition 8.29. Consider a category with small direct products and an inclusion sys-
tem such that the class of inclusions I is weakly stable under isomorphisms. Then for any
class M of objects

P( I←M) ⊆ I← (PM).

Proof. Let (hi : Ni → Mi)i∈I ⊆ I such that (Mi)i∈I ⊆M and (pi : N → Ni)i∈I be any
direct product. We will find a direct product (qi : M→Mi)i∈I such that N ⊆M.

1 Let (q′i : M′→Mi)i∈I be any direct product.

2 There exists an unique h : M→M′ such that h ; q′i = pi ; hi 1.

Let h = eh ; ih be the factorisation of h through the inclusion system. Then

3 for each i ∈ I there exists p′i : N′→Mi s.th.
eh; p′i = pi, ih;q′i = p′i;hi

hi abstract inclusion, eh abstract surjection,
Diagonal-fill Lemma 4.16.

N
eh

  

pi
//

g∈I

~~

h

��

Ni

hi∈I

��

M

f

∼=

  

qi

;;

N′
p′i

>>

ih~~

k

``

M′
q′i

// Mi

We show that

4 (p′i : N′→ Ni)i∈I is a direct product.

Let k : N′→ N be the unique homomorphism such that k; pi = p′i (since (pi)i∈I is direct
product). Then

5 eh ; k ; pi = eh ; p′i = pi k; pi = p′i, definition of p′i
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6 eh ; k = 1N 5, (pi)i∈I direct product

7 eh ; k ; eh = eh 6

8 k ; eh = 1N′ 7, eh epi (epic inclusion system)

9 eh isomorphism 6, 8.

Since the abstract inclusions are weakly stable under isomorphisms there exists an inclu-
sion g : N→M and an isomorphism f : M→M′ such that h = g ; f . Since (q′i)i∈I is a
direct product and f is isomorphism we also have that (qi = f ;q′i : M→Mi)i∈I is a direct
product. □

The new condition involved, namely that the abstract inclusions are weakly stable
under isomorphisms, is rather trivial in the concrete examples. In common categories of
models this is very much like in Set considered with the standard inclusion system.

Theorem 8.30 (Quasi-variety). Consider an institution that satisfies the conditions of
Theorems 8.16 and 8.18 and such that

(QA4) the class of model inclusions I are weakly stable under isomorphisms.

For any class of Σ-models M,

(M∗∩HornΣ)∗ =
I← (PM).

Proof. The proof relies on the results of Theorems 8.16 and 8.18, on the result of Prop. 8.29,
and on the fact that PP = P, which is straightforward to check in any category.

• First we prove that I← (PM) is the least quasi-variety that contains M.

1 P( I← (PM)) ⊆ I← (PPM) =
I← (PM) QA4, Prop. 8.29, PP = P

2
I← I← (PM) =

I← (PM) 1, I→; I→=
I→ (I sub-category).

1 and 2 show that I← (PM) is a quasi-variety. It obviously contains M. To show that it
is the least one containing M let us consider any quasi-variety Q such that M⊆Q. We
have that:

3 PM ⊆ P(Q) = Q M⊆ Q, P monotone, Q quasi-variety

4
I← (PM) ⊆ I← Q = Q 3, I← monotone, Q quasi-variety.

• The final part of the proof goes as follows:

5
I← (PM) ⊆ (M∗∩HornΣ)∗ (M∗ ∩HornΣ)∗ q.-variety (Thm. 8.16), M⊆ (M∗ ∩HornΣ)∗, 4

6 let E ⊆ HornΣ such that I← (PM) = E∗ I← (PM) quasi-variety, Thm. 8.18

7 M⊆ E∗ 6, M⊆ I← (PM)
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8 E ⊆M∗ 7, Galois connection property

9 E ⊆M∗∩HornΣ 8, E ⊆HornΣ (from the definition of E)

10 (M∗∩HornΣ)∗ ⊆ E∗ =
I← (PM) Galois connection property, 6

11 (M∗∩HornΣ)∗ =
I← (PM) 5, 10.

□

Birkhoff variety theorem revisited. We continue our refinement of the axiomatizabil-
ity results with the Variety Theorem.

Theorem 8.31 (Birkhoff variety). Consider any institution endowed with the structure
specified at the beginning of Sect. 8.4, that satisfies the axioms QP1-2, QA1-4, VP, VA1-
2, and the following additional axiom also:

(VA3) for any signature Σ, in ModΣ the abstract surjections are stable with respect to
direct products in the sense that if (ei : Mi→Ni)i∈I is any family of abstract surjec-
tions then for any direct products (pi : M→Mi)i∈I and (qi : N→Ni)i∈I the unique
homomorphism e : M→ N such that e ; qi = pi ; ei, i ∈ I, is an abstract surjection
too.

M
pi
//

e∈E
��

Mi

ei∈E
��

N qi
// Ni

Then for class M of Σ-models

(M∗∩UAΣ)∗ =
E→ (

I← (PM))

(where ⟨I , E⟩ is the inclusion system of ModΣ).

Proof. • First we prove the following commutativity-like property of the semantic op-
erators ‘homomorphic image’ and ‘sub-model’.

1 For any Σ-model M, I← (
E→M) ⊆ E→ (

I←M).

Consider (e : M→ A) ∈ E , (i : B→ A) ∈ I . We prove that B ∈ E→ (
I←M).

2 ιΣB representable ιΣB ∈D , morphisms of D are representable

3 let A′ = i−1
ιΣB( iιΣB(BB) ; i ) 2

4 let e′ : M′→ A′ be ιΣB-expansion of e e ∈ E , VP

5 let f = iιΣBM′( : MιΣB→M)
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6 f ; e = iιΣB(BB) ; i e = iιΣBe′ : iιΣBM′→ iιΣBA′

B i
// A A′

•
g

ee

i f ""

MιΣ(B)

iιΣB(BB)

OO

e f
99

f
// M

e

OO

M′

e′

OO

Let f = e f ; i f be the factorisation of f through the inclusion system ⟨I , E⟩.

7 there exists g such that e f ;g = iιΣB(BB), g; i = i f ;e 6, Diagonal-fill Lemma 4.16

8 g ∈ E 7, e f ∈ E , iιΣB(BB) ∈ E (cf. VA1)

Since i f ∈ I and g ∈ E we obtain that B ∈ E→ (
I←M).

• Now we prove that E→ (
I← PM) is a variety:

9
E→ (

E→ (
I← PM)) =

E→ (
I← PM) E sub-category

10
I← (

E→ (
I← (PM))) ⊆ E→ (

I← (
I← (PM))) 1

=
E→ (

I← (PM)) I subcategory

11 P( E→ (
I← (PM))) ⊆ E→ (P( I← (PM))) VA3

⊆ E→ (
I← (PPM)) Prop. 8.29, E→ monotone

=
E→ (

I← (PM)) PP = P.

• The final part of this proof replicates the ideas of the final part of the proof of Thm. 8.30
and that E→ (

I← PM) is the least variety that contains M, that M∗ ∩UAΣ |= E, where

E is the axiomatization of E→ (
I← PM) as given by Thm. 8.25.

□

This refined version of the Birkhoff Variety Theorem introduces the new axiom
VA3. This condition is rather trivial in concrete applications. For example in the case
of the FOL models, VA3 holds for the closed inclusion system, and luckily this is the
inclusion system for which the FOL Cor. 8.28. It can be established by the simple fact
that products of surjective functions are still surjective.
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Axiomatizability by ultraproducts revisited. With Thm. 8.32 below we refine the ax-
iomatizability results of Thm. 8.5 and its Cor. 8.7 in the ‘HSP’ style. For any class M of
models let Ur can be the ultraradical relation on models defined by ⟨M, N⟩ ∈ Ur if and
only if N is an ultrapower of M.

Theorem 8.32. Consider an institution with negations and conjunctions such that sen-
tences are preserved by ultraproducts. Then for each class M of Σ-models:

• M∗∗ = ≡ (Up M), and

• M∗∗ = Ur−1(Up M) when in addition the institution has the Keisler-Shelah prop-
erty and Up is idempotent (i.e., Up;Up = Up).

Proof. • The first part follows immediately with an inspection of the proof of Thm. 8.5.

• For the second part, it is therefore enough to show that Up;Ur−1 = Up;≡. This goes
as follows:

1 Ur−1 ⊆ ≡ each model is elementary equivalent to any of its ultrapowers

2 Up;Ur−1 ⊆ Up;≡ 2

3 ≡ ⊆ Up;Ur−1 Keisler-Shelah property

4 Up;≡ ⊆ Up;Up;Ur−1 = Up;Ur−1 3, Up;Up = Up.

□

To establish that Up is idempotent at the general categorical level is not easy, but
with somehow less effort it can be established in concrete institutions such as FOL . In
both cases, the main idea is as follows. Let (I j) j∈J be a family of sets and I be a disjoint
union of it. If F is an ultrafilter over J and (Fj) j∈J is a family of ultrafilters, each Fj being
an ultrafilter over I j, then

F̂ = {X ⊆ I | { j ∈ J | X ∩ I j ∈ Fj} ∈ F}

is an ultrafilter too. Then given Fj-ultraproducts of families (M j,i)i∈I j of models, for each
j ∈ J, then any of their F-ultraproducts is an F̂-ultraproduct of (M j,i) j∈J,i∈I j .

Axiomatizability by universal sentences revisited. We refine the conclusion of Cor. 8.8
in the ‘HSP’ spirit.

Theorem 8.33. Under the framework and the hypotheses of Cor. 8.8 we also assume that
the institution is a Łoś-institution and that

(UAX1) each elementary extension invents strongly and completely ultraproducts,

(UAX2) the ultraproduct construction is idempotent (i.e., Up;Up = Up), and

(UAX3) the Sen0-submodels are preserved by expansions along elementary extensions.

Then for any class of Σ-models M

(M∗∩¬Sen0
Σ)∗ =

Sen0
←− (Up M).



234 Chapter 8. Preservation and Axiomatizability

Proof. The proof plans to show that Sen0
←− (Up M) is closed under Sen0-submodels and

ultraproducts and then finalize the proof by using Cor. 8.8.

• The closure of Sen0
←− (Up M) under Sen0

←− follows from the transitivity of Sen0
−→.

Let f : M→ N such that MM[Sen0]N f and g : N→ P such that NN [Sen0]Pg. We show
that MM[Sen0]Pf ;g.

1 NN↾ιΣ f = (i−1
Σ,N1N)↾ιΣ f = i−1

Σ,M f = N f naturality of i, definition of N f

2 Pg↾ιΣ f = (i−1
Σ,Ng)↾ιΣ f = i−1

Σ,M( f ;g) = Pf ;g naturality of i, definition of Pf ;g.

Let us consider any ρ ∈ (MM)∗∩Sen0
ΣM . Then

3 N f |= ρ (MM)∗ ∩Sen0
ΣM ⊆ (N f )

∗ ∩Sen0
ΣM , ρ ∈ (MM)∗ ∩Sen0

ΣM

4 NN |= (ιΣ f )ρ 1, 3, Satisfaction Condition

5 (ιΣ f )ρ ∈ Sen0
ΣN naturality of sub-functor Sen0 ⊆ Sen

6 (ιΣ f )ρ ∈ (NN)
∗∩Sen0

ΣN 4, 5

7 Pg |= (ιΣ f )ρ 6, NN [Sen0]Pg

8 Pf ;g |= ρ 2, 7, Satisfaction Condition

• Now we show that Sen0
←− (Up M) is closed under ultraproducts. For this, we first prove

that for each class N of Σ-models we have that

9 Up(Sen0
←− N) ⊆ Sen0

←− (Up N).

Let us consider (hi : Mi → Ni ∈ N)i∈I such that (Mi)Mi [Sen0](Ni)hi , i ∈ I, and ultra-
products (µJ : MJ →MU )J∈U , (νJ : NJ → NU )J∈U . Let hJ : MJ → NJ be the unique
homomorphism such that hJ ;qJ,i = pJ,i;hi for each i ∈ J (p and q being families of
projections of the respective direct products).

Ni Mi
hi

oo

NJ

qJ,i

OO

MJ

pJ,i

OO

hJ

oo NJ

νJ

((

qJ⊃J′

''

MJhJ

oo
pJ⊃J′

//

µJ
!!

MJ′

µJ′
}}

hJ′
// NJ′

νJ′

uu

MU

h
��

NU
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Let h : MU → NU be the unique homomorphism such that hJ ;νJ = µJ ;h for each

J ∈U . We show that (MU )MU [Sen0](NU )h meaning that MU
Sen0
−→ NU which gives that

MU ∈
Sen0
←− (Up N).

– By applying UAX1 to (MU )Mu there exists ιΣMU -expansions M′i of Mi and ultra-
product (µ′J : M′J →M′U = (MU )MU )J∈U such that µ′↾ιΣMU = µ.

– Since ιΣMU is representable, each M′i determines an unique expansion h′i : M′i→N′i
of hi. By Propositions 6.7 and 6.9 we can expand the ultraproduct ν to an ultraprod-
uct (ν′J : N′J→ N′U )J∈U in two stages, first expand all hJ to h′J : M′J→ N′J , and then
ν to ν′.

– Let h′ : (MU )MU = M′U → N′U be the unique homomorphism such that µ′J ;h′ =
h′J ;ν′J , which is also the unique expansion of h to a homomorphism from M′U . Since
the unique homomorphism (MU )MU → (NU )h is an expansion of h, it follows that
N′U = (NU )h.

– Let ρ ∈ ((MU )MU )
∗∩Sen0

ΣMU . Then

10 there exists J ∈U such that M′i |= ρ for each i ∈ J ρ preserved by ultrafactors

11 N′i |= ρ for each i ∈ J h′i : M′i → N′i Sen0-submodel (h′i↾ιΣMU = hi, UAX3

12 (NU )h = N′U |= ρ ρ preserved by ultraproducts.

This completes the proof of 9. Now we finalise the proof that Sen0
←− (Up M) is closed

under ultraproducts.

13 Up(Sen0
←− (Up M)) ⊆ Sen0

←− (Up(Up M)) 9 for N= UpM

14 ⊆ Sen0
←− (Up M) 13, Up;Up = Up (UAX2).

• We have thus proved that Sen0
←− (Up M) is closed under Sen0-models and ultraproducts,

and in fact it is the least class of models with this property that contains M. By applying
the same line of reasoning as in the final parts of the proof of Theorems 8.30 and
8.31, which in the current case includes reliance on the result of Cor. 8.8, we get the
conclusion of the theorem.

□

The following concrete instance of Thm. 8.33 illustrates how its specific conditions
can be established in concrete situations. In FOL , let Sc be the class of the closed injective
model homomorphisms and Univ be the functor of the universal sentences.

Corollary 8.34. For any FOL signature Σ and any class of Σ-models M,

(M∗∩UnivΣ)∗ =
Sc← (Up M)).
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Proof. In Thm. 8.33 we take Sen0 to be the subfunctor Exist of the existential sentences
such as in Prop. 8.1 and Corollaries 8.4 and 8.9. How the axiom UAX2 holds in FOL we
have discussed above; this is by far the most difficult check of the validity of the specific
conditions of Thm. 8.33 in FOLas the other two axioms hold as follows:

UAX1: Elementary extensions invent strongly and completely ultraproducts because as
injective signature extensions with constants they meet the conditions of Prop. 6.11.

UAX3: By Prop. 8.1 the Sen0-submodels are precisely the closed injective homomor-
phisms which are preserved by expansions along the injective signature extensions with
constants.

□

Birkhoff institutions
The way we have developed and presented the axiomatizability results in this section
follows a certain pattern. One starts with an arbitrary class of models M. On the one
hand one considers the models of the sentences of a certain kind which are satisfied by
all models in M, and on the other hand one takes the closure of M first under a class
of filtered products, and afterwards under certain relations defined in terms of certain
classes of model homomorphisms. These two operations give the same result; this is the
respective axiomatizability result. (In the literature the latter semantic closure operators
are called axiomatizable hulls.)

The definition. The pattern for axiomatizability results discussed above is captured for-
mally by the concept of Birkhoff institution. For any class of filters F and any class of
Σ-models, by F M we denote the class of all F -products of models from M.
Then (Sig,Sen,Mod, |=,F ,B) is a Birkhoff institution when

• F is a class of filters with {{∗}} ∈ F , and

• (Sig,Sen,Mod, |=) is an institution such that for each signature Σ ∈ |Sig| the category
ModΣ has F -products,

• for each signature Σ, BΣ ⊆ |ModΣ| × |ModΣ| is a binary reflexive relation which is
closed under isomorphisms, i.e., (BΣ;∼=Σ) = BΣ = (∼=Σ;BΣ),

such that for each class M of Σ-models

M∗∗ = B−1
Σ

(F M).

Examples. Based on the results we have already developed we can now present a list
of Birkhoff institutions obtained around FOL by varying the style of the sentences. The
second part of the list below contains some examples of Birkhoff institutions not devel-
oped in this book, but which are known in the literature in terms of the corresponding
axiomatizability result.



8.6. General Birkhoff axiomatizability 237

institution B F source
FOL ≡ all ultrafilters Thm. 8.32
FOL ultraradical relation all ultrafilters Thm. 8.32
PL = all ultrafilters Thm. 8.32

UNIV Sc→ all ultrafilters Cor. 8.34

HCL∞,ω
Sc→ {{I} | I set} Thm. 8.30

universal FOL-atoms Hr←; Sc→ {{I} | I set} Thm. 8.25

EQL Hr←;
Sw→ {{I} | I set} Thm. 8.30

universal FOL∞,ω sentences Sc→ {{{∗}}} [9]

HCL Sc→ all filters [9]

∀∨ (universal disjunctions of atoms) Hs←; Sc→ all ultrafilters [9]

∀∨∞ (univ. infinitary disj. of atoms) Hs←; Sc→ {{{∗}}} [9]
∀∃ (universal-existential sentences) sandwiches ([42]) all ultrafilters [9]

where Hr denotes the class of surjective, Hs the class of strong surjective, Sw the class of
injective, and Sc the class of closed injective model homomorphisms.

Exercises
8.12. Prove the idempotency of the ultraproduct construction in PL .

8.13. Birkhoff institutions of partial algebras
The following institutions of partial algebras arise as Birkhoff institutions according to the follow-
ing table:

institution B F
UNIV (PA)

Sc→ all ultrafilters

QE2(PA)
Sw→ {{I} | I set}

QE(PA)
Sc→ {{I} | I set}

where Sw and Sc are the classes of plain, respectively closed, injective homomorphisms and where
UNIV (PA) is the institution of the ‘universal’ sentences in PA (see Ex. 8.2).

Notes. Thm. 8.5 and Cor. 8.6 are institution-independent generalizations of basic axiomatizability
results in first-order logic of [109] (see also [42]). Our general preservation-by-saturation Thm. 8.2
generalizes and extends its first-order logic Cor. 8.4 which can be found in [42]. Its axiomatizability
consequence Cor. 8.9 can also be found in [42] while Cor. 8.8 constitutes its institution-independent
generalization. The ultraradicals have been introduced and used in [205].

Similar quasi-variety concepts to ours have been formulated and results obtained within the
framework of factorization systems (see [227, 228] or [9] for a very general approach), however,
the inclusion systems framework leads to greater simplicity. Thm. 8.14 generalizes a well-known
result from universal algebra [134] and conventional model theory of first-order logic [169]. A
similar institution-independent result has been obtained by Tarlecki [227] within the framework of
the so-called ‘abstract algebraic institutions’. However, the concept of abstract algebraic institution
provides a set of conditions much more complex than our framework. Within the same setting, [228]
develops an institution-independent approach to the quasi-variety theorem related to ours, however
Birkhoff Variety Thm. 8.25 seems to have no previous institution-independent variant.
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Both quasi-variety and Birkhoff variety theorems have rather old roots in universal alge-
bra. The former had been discovered by Mal’cev [169] while the latter by Birkhoff back in 1935
(see [27]). Lemmas 8.17 and 8.24 are inclusion system versions of well-known Birkhoff-like ax-
iomatizability results for satisfaction by injectivity originally developed within the framework of
factorization systems [197, 10]. They appeared in their current form as axiomatizability results for
the so-called ‘inclusive equational logic’ of [212].

For a proof of the idempotency of the ultraproduct construction in FOL we may consult [12]
and for the general categorical one we may look into [7].

Birkhoff institutions were introduced in [66]. A more complete list of Birkhoff sub-institu-
tions of first-order logic can be obtained by using results from [9]. Examples of Birkhoff institutions
in the context of less conventional logics arise in the context of Birkhoff-style axiomatizability
results for these logics. For example, a large list of Birkhoff institutions based on partial algebra
can also be obtained from [9]. Moreover, the very general axiomatizability results of [9] can be
applied to obtaining Birkhoff institutions out of recent algebraic specification logics.



Chapter 9

Interpolation

Interpolation is one of the most important topics of logic and model theory. It has been
studied extensively and in-depth in various logical contexts. Its manifold applications
have been explored both in logic and in computing science.

In the first section of this chapter, we present several different perspectives on the
concept of interpolation. A true understanding of such central concept in logic and model
theory and of its applications may involve a structural categorical view on the one hand,
a logical meaning on the other hand, and an understanding of the relationship between
them. It also requires an understanding of the exact relationship between its traditional
forms and its generalised abstract forms. Once we have covered these aspects, we will
devote the rest of the chapter on methods for obtaining interpolation properties.

We develop two direct methods for obtaining interpolation results, one of them
based on the Birkhoff-style axiomatizability properties of institutions, and the other one
based on Robinson consistency. Although these two methods have quite complemen-
tary application domains, interpolation in FOL arises as an application of both of them,
with the former method involving the ‘heavy artillery’ of the Keisler-Shelah property
(Cor. 7.25). For the interpolation caused by axiomatizability, as a technical device, we use
a semantic interpretation of interpolation. Apart from bringing uniformity to interpolation-
by-axiomatizability, this has also other applications, such as in institutions supporting
higher-order quantifications.

A third method to establish interpolation, which is presented here, is an indirect one,
which ‘borrows’ interpolation along the institution comorphisms.

Another topic of this chapter refers to an extension of the Craig interpolation con-
cept to the so-called ‘Craig-Robinson interpolation’ which is the variant of interpolation
appropriate for several applications such as definability and semantics of structured spec-
ifications.
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9.1 What is interpolation?
The structural view of interpolation is based on mappings between theories. This requires
a concept that is dual to that of theory morphism which at this point in our discussion is
already familiar to us.

Anti-morphisms of theories. In Sec. 4.1 we have introduced ‘morphisms of theories’.
Recall that given theories (Σ,E) and (Σ′,E ′) a morphism ϕ : (Σ,E)→ (Σ′,E ′) is just a
morphism between the underlying signatures, i.e. ϕ : Σ→ Σ′, such that E ′ |= ϕE. This
concept comes from model-theoretic computing science, especially algebraic specifica-
tion and other logic-based declarative paradigms, where theories represent program or
specification modules and morphisms of theories represent various connections between
them that support their systematic aggregation into bigger modules. The most common
such connection is that of an ‘import’, but there are others too. In all situations the target
theory (i.e. (Σ′,E ′)) is ‘bigger’ than the source theory (i.e. (Σ,E)). This is what E ′ |= ϕE
says, another way to write this being (ϕE)∗∗ ⊆ E ′∗∗. However, it is mathematically legit-
imate to reverse this, in other words to have the target theory ‘smaller’ than the source
theory. This would be expressed as ϕE |=E ′. Let us call this an anti-morphism of theories.
Anti-morphisms of theories share similar properties with the morphisms of theories, for
instance, they form a category under the composition defined at the level of their under-
lying signature morphisms. But a morphism and an anti-morphism cannot be composed.
To distinguish between them let us adopt the following notation: (ϕ,=|) for morphisms
and (ϕ, |=) for anti-morphisms.

Pseudo-commutative morphism-anti-morphism (m-a-m) squares. These are squares
like the left-hand side one below:

(Σ,E)
(ϕ1,=|)

//

(ϕ2,|=)
��

(Σ1,E1)

(θ1,|=)
��

Σ
ϕ1
//

ϕ2

��

Σ1

θ1
��

(Σ2,E2)
(θ2,=|)

// (Σ′,E ′) Σ2
θ2

// Σ′

(9.1)

where

• the horizontal (vertical) arrows represent morphisms (anti-morphisms) of theories,
and

• the underlying signature morphisms form a commutative square (depicted as the right-
hand side square in the above figure).

Note that the idea of the commutativity of an m-a-m square does not make any sense as
such a square contains both morphisms and anti-morphisms of theories and the mappings
of the same kind are disconnected. The attribute ‘pseudo-commutative’ refers to the fact
that the square formed by the underlying signature morphisms commutes.
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Interpolants. Let us consider the following two questions:

1. Given a span (ϕ1,=|), (ϕ2, |=), can we complete it to a pseudo-commutative m-a-m
square like in Fig. 9.1?

2. Given a sink (θ1, |=), (θ2,=|), can we complete it to a pseudo-commutative m-a-m
square like in Fig. 9.1?

These are dual questions, however in terms of their answers the difference between them
cannot be any bigger. While the answer to the former question is always an unconditional
‘yes’, the justification being very simple, the latter question represents the interpolation
problem, which admits manifold solutions, all of them very contextual and difficult. We
will solve the former question immediately, by Prop. 9.1 below, and then in the rest of
this chapter, we will address the latter question in extenso.

Proposition 9.1. For any m-a-m span (ϕ1,=|), (ϕ2, |=), any commutative square of sig-
nature morphisms like in Fig. 9.1 determines at least one pseudo-commutative m-a-m
square like in Fig. 9.1.

Proof. Let us define E ′ = θk(ϕkE) (by the commutativity of the square of signature mor-
phisms we have that θ1(ϕ1E) = θ2(ϕ2E)). Then

• (θ1, |=) : (Σ1,E1) → (Σ′,E ′) is an anti-morphism from the morphism property of
(ϕ1,=|) and by an application of the ‘translation’ property of the semantic consequence
for θ1.

• (θ2,=|) : (Σ2,E2)→ (Σ′,E ′) is a morphism from the anti-morphism property of (ϕ2, |=
) is an anti-morphism and by an application of the ‘translation’ property for θ2.

□

Concerning the latter question let us make the following remarks.

• By the ‘transitivity’ property of semantic consequence, a m-a-m sink (θ1, |=), (θ2,=|)
is essentially the same with a sink of signature morphisms θ1, θ2 such that θ1E1 |=
θ2E2. In this case, E ′ can be any set of sentences ‘in-between’ θ1E1 and θ2E2, i.e.
θ1E1 |=E ′ |= θ2E2. As terminology, E1 is called the premise of the interpolation, while
E2 is called its conclusion.

• The completion of an m-a-m sink as above has two aspects: first a cone ϕ1, ϕ2 for the
sink θ1, θ2 of signature morphisms, and then a set of sentences E such that (ϕ1,=|),
(ϕ2, |=) is a m-a-m span. The set E is called an interpolant for E1 and E2.

• Traditionally the interpolation problem is concerned with the second aspect only, by
assuming already a cone ϕ1, ϕ2. This is true both in the case of the very classical
logic contexts (PL , FOL), of less classical ones (e.g., modal logics), and even the
institution-theoretic ones. Later on in this section, we will have a more extensive dis-
cussion on this. However, we think that the more ambitious idea of considering (Σ,E)
as being the interpolant (which means including the signature Σ as part of the concept
of interpolant) deserves further exploration.
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Now we are ready to formulate the main interpolation concept in our book. In any
institution, a commuting square of signature morphisms like in the Fig. 9.1 is a Craig
Interpolation square (abbreviated Ci square) when any sink (θ1, |=), (θ2,=|) can be com-
pleted to a pseudo-commutative m-a-m square like in Fig. 9.1. The familiar form of this
definition is in its explicit form: for any E1 ⊆ SenΣ1, E2 ⊆ SenΣ2 such that θ1E1 |= θ2E2
there exists E ⊆ SenΣ such that E1 |= ϕ1E and ϕ2E |= E2.

Finiteness aspects. In traditional interpolation studies as well as in computing science
applications the theories involved in interpolation problems are usually finite. Concerning
that, we can make the following remarks. Consider a commutative square of signature
morphisms like the above.

1. If it supports the Ci property for the finite / singleton conclusions (i.e. E2 finite /
singleton) then it is a Ci square. If E2 is infinite then we can take the union of all the
interpolants obtained from the interpolation problems with E1 as premise and each
sentence of E2 as a conclusion.

2. Let us assume that the institution is compact. If the conclusion E2 of an interpolation
problem is finite then by compactness any interpolant E can be reduced to a finite one.

Down to earth. Let us look now into a concrete example of interpolation and see how it
fits our abstract interpolation concepts. In FOL consider a single-sorted signature with a
binary operation symbol ⋆ and constants a,a′,b,b′,c. This signature is the Σ′ from our
above definition of interpolation squares. Consider the following semantic consequence

(a = a′ ∧ a⋆b = c) |= (b = b′ ⇒ a′ ⋆b′ = c). (9.2)

Based on this consequence we can formulate an (institution theoretic) interpolation prob-
lem. We will use the notations familiar from the discussion above. The consequence (9.3)
can be represented by some m-a-m sink (θ1, |=), (θ2,=|) where Σ1 and Σ2 are just Σ′ from
which we remove b′ and a, respectively and θ1, θ2 are the resulting signature inclusions.
E1 is the premise and E2 the conclusion of the consequence and E ′ can be either of them or
even another theory that satisfies the requirements, since given a consequence like (9.3),
what E ′ exactly is does not constitute an issue.

A ‘smart’ way to justify the semantic consequence (9.3), which also reveals its main
point, is to factor it as follows:

(a = a′ ∧ a⋆b = c) |= a′ ⋆b = c |= (b = b′ ⇒ a′ ⋆b′ = c).

This factoring represents a completion of the above sink to a pseudo-commutative m-a-m
square, where the m-a-m span (ϕ1,=|), (ϕ2, |=) is given by Σ = Σ1 ∩Σ2, ϕ1, ϕ2 being
the obvious inclusions, and the interpolant E being the equality a′ ⋆b = c. This square of
signature inclusions is a Ci square, but why and how this happens we will see later on in
this chapter. From this information, we can understand that the existence of interpolants
for this problem was inevitable. Moreover, from our discussion on finiteness aspects,
because FOL is compact and also has conjunctions any interpolant for this problem could
be presented in a single-sentence form.
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The traditional versus the institution-theoretic view of interpolation. The tradi-
tional view of interpolation is illustrated well by the concrete example above. Firstly,
it is only about intersection-union squares of signatures like below.

Σ1∩Σ2
ϕ1

⊆
//

ϕ2 ⊆
��

Σ1

θ1⊆
��

Σ2
θ2

⊆
// Σ1∪Σ2

The idea is that an interpolant is always made of symbols that are shared by the premise
and the conclusion of interpolation. Since in the traditional contexts we do not consider
signature morphisms other than inclusions, the idea of shared symbols leads to Σ = Σ1∩
Σ2 as this is the maximal signature such that Σ⊆ Σ1,Σ2. This maximality guarantees that
we do not miss interpolants just because of not having enough symbols available.

Then it is only about single sentences.
From our definition of interpolation, it is quite clear that in institution theory there

is a revision of these two aspects. These have to do with pragmatics both at the level of
the theory and of the applications. The traditional concept of interpolation is dependent
on the classical concrete context in which it had originally been developed, that tacitly
enjoys some very specific properties. This is just one reason among others why it lacks
the sort of generality that is required by modern logical contexts, especially those related
to applications in computing science. Let us discuss in more detail the motivations behind
these revisions.

• There are a couple of motivations for generalising from intersection-union squares of
signatures to arbitrary commutative squares. One is abstraction, at the abstract level
bothering with concepts such as inclusion, union, and intersection constitute an un-
necessary technical complication that has nothing to do with interpolation as such. Of
course, inclusion systems are an ideal tool for dealing at the abstract level with such
concepts, but this would still be a technical complication. The second motivation has
to do with some applications of interpolation to algebraic specification where some of
the signature morphisms involved in the interpolation squares may be non-injective.
We will see details about this in Chap. 15. The latter motivation is of course stronger
than the former.

• In the traditional context of interpolation, if instead of single sentences we refer to fi-
nite sets of sentences then we get the same thing. But this is so only because FOL has
conjunctions. In institutions without conjunctions the traditional single-sentence vari-
ant of interpolation can be unnecessarily restrictive when compared to the one based
on sets of sentences, and in some cases it makes almost no sense in the applications.
For instance in EQL , in the single-sentence variant the interpolation problems fail in
general, while in the set-of-sentences formulation they admit interpolants in general.
And we should know that EQL is an important institution as its good computational
properties recommend it as foundation for some important specification and program-
ming paradigms. The same situation happens with HCL , the institution underlying
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logic programming. And after all, what counts in logic and its applications are theories
rather than individual sentences. Therefore the institution theoretic view of interpola-
tion adopts a form based on sets of sentences.

(L ,R )-interpolation. The commutativity of a square of signature morphisms is nec-
essary for defining interpolation but in general, is too loose for supporting interpola-
tion properties. If we look at the traditional context, there is a tightness aspect to the
intersection-union squares. Σ1 ∩Σ2 being the maximal signature Σ such that Σ ⊆ Σ1,Σ2
takes the sharing to its most permissive level. At the other end of the interpolation square,
the union Σ1∪Σ2 is the minimal signature Σ′ that can accommodate both the premise and
the conclusion of an interpolation problem. At the general categorical level ‘intersection’
means ‘pullback’ while ‘union’ means ‘pushout’. This suggests that we should consider
interpolation for those commutative squares of signature morphisms that are both pull-
back and pushout squares. However the reality of the developments in institution-theoretic
interpolation is a bit different, the pullback condition being not only unnecessary but even
a hindrance in the applications. Otherwise said the sharing between Σ1 and Σ2 should be
thought in a broader sense than that of a mere intersection. On the other hand, the pushout
condition is crucial. There are several reasons for these as follows.

• When building an algebraic specification or a declarative program usually Σ comes
before Σ1 and Σ2, and Σ′ comes at the end as a kind of parameterized ‘union’ of Σ1 and
Σ2, the parameter of the ‘union’ is Σ. This ‘union’ is achieved by a pushout construc-
tion. Moreover, the sharing is not always a span of inclusions, it can be a span of other
types of signature morphisms also. On the other hand, a pullback represents a reverse
order and has no meaning in the world of software module aggregation. But what does
this have to do with interpolation? Such commutative squares of signature morphisms
that arise from software modules composition in logic-based contexts should enjoy
interpolation properties so that the respective module compositions have good prop-
erties, that for instance enable modular theorem proving and formal verifications. We
will see exactly what this means in Chap. 15.

• Then, and not unrelated to the previous item, it is common for pushout squares of
signature morphisms to enjoy model amalgamation, which plays an important role in
some methods of establishing establishing interpolation properties, especially when
relying upon axiomatizability results.

Let us say this with clarity: all the extensions of the traditional concept of interpolation
that take place in institution theory do cover fully the traditional concept of interpola-
tion, so these should be regarded as a mere enrichment rather than something else. An
enrichment that broadens remarkably the application domain of interpolation.

In many institutions only some pushout squares of signature morphisms have the Ci
property. For example, while in F OL1 (the unsorted version of FOL) all pushout squares
have the Ci property, this is not the case in FOL . Also, in EQL and HCL , not all pushout
squares have the Ci property. It is often convenient to capture such classes of Ci squares by
restricting independently ϕ1 and ϕ2 to belong to certain classes of signature morphisms.
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Therefore, for any classes of signature morphisms L ,R , we say that the institution has
the Craig (L ,R )-Interpolation property if each pushout square of signature morphism of
the form

• L
//

R
��

•

��

• // •

is a Ci square.
The list below anticipates some of the concrete (L ,R )-interpolation properties ob-

tained in this chapter. But before presenting this list let us establish the following notation
for FOL signature morphisms.

(xyz)-morphisms of signatures. Let us define the following syntactic properties for
signature morphisms. A FOL signature morphism ϕ is an (xyz)-morphism, with
x,z ∈ {i,s,b,∗} and y ∈ {i, i′,s,b,e,∗} when the sort component ϕst has the property x,
the operation component ϕop has the property y, and the relation component ϕrl has the
property z. In the case of the families of functions ϕop and ϕrl the properties refer to their
components. The meanings of these symbols are as follows:

• The symbols i, s, b, e stand for ‘injective’, ‘surjective’, ‘bijective’, ‘injective and
encapsulated’, respectively. The symbol ∗ stands for ‘any’.

• That ϕ
op
w→s is encapsulated means that no ‘new’ operation symbol, i.e., outside the

range of ϕ, is allowed to have the sort within the range of ϕ. In other words, if
ϕ : (S,F,P)→ (S′,F ′,P′) and σ′ ∈ F ′w′→s′ with s′ ∈ ϕS then there exists σ ∈ Fw→s
such that ϕσ = σ′.

• The symbol i′ stands for ‘injective’ plus that ϕ does not introduce any new operation
whose sort is empty. The emptiness of a sort is established in the source signature if it
comes from there.

For example, an (ss∗)-morphism of signatures is surjective on the sorts and on the oper-
ations, while a (bis)-morphism of signatures is bijective on the sorts, is injective on the
operations, and is surjective on the relations.

This notational convention can be extended to other institutions too, such as for ex-
ample PA , EQL or F OL1. In the case of EQL , because we do not have relation symbols,
the last component is missing. The same applies to F OL1, in this case, the first component
(i.e., the sort component) is missing.

The list. Below is the above-mentioned list of (L ,R )-interpolation properties:
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institution L R reference
F OL1 ∗∗ ∗∗ Cor. 9.11 or 9.22
FOL i∗∗ ∗∗∗ Cor. 9.17 or 9.22

∗∗∗ i∗∗ Cor. 9.11 or 9.22
EQL ∗∗ ii′ Cor. 9.9

ie ∗∗ Cor. 9.14
HCL ∗∗∗ ii′i Cor. 9.9

ie∗ ∗∗∗ Cor. 9.14
SOL ∗∗∗ iii Cor. 9.6

Exercises
9.1. In FOL consider single-sorted signatures Σ1 and Σ2 such that Σ1 has two constants a,b, a
unary operation symbol f , and a unary relation symbol q, while Σ2 has one constant c.

1. Prove that

q( f a)∧¬q( f b) |=Σ1∪Σ2 (∃v)v ̸= c. (9.3)

2. In Σ1∩Σ2, find a interpolant for the consequence (9.3).

9.2. Composition of interpolation squares
Ci squares can be composed both ‘horizontally’ and ‘vertically’: in any institution, consider the
commuting squares of signature morphisms

Σ

ϕ2

��

ϕ1
// Σ1

ϕ′1

��

φ1
// Σ′1

φ′1

��

1 2

Σ2

φ2

��

ϕ′2

// Σ′

φ

��

φ

// Σ′′

3

Σ′2
φ′2

// Σ′′

Then

1. 12
(

13
)

is a Ci square if 1 and 2
(

3
)

are Ci squares.

2. 1 is a Ci square if 12
(

13
)

is a Ci square and φ1 (φ2) is conservative.

(Hint: Use the m-a-m square definition of interpolation.)

9.2 Semantic interpolation
By using the Galois connection between sets of sentences and classes of models given by
the satisfaction relation, we may shift the interpolation concept from sets of sentences to
classes of models. This has very little logical significance, but as we will see later on in
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the chapter, it can be technically very useful. The semantic interpretation of interpolation
is based on the following observations for any commuting square of signature morphisms
in an arbitrary institution.

Σ
ϕ1
//

ϕ2

��

Σ1

θ1
��

Σ2
θ2

// Σ′

(9.4)

If E1 ⊆ SenΣ1, E2 ⊆ SenΣ2, and E ⊆ SenΣ then we can rewrite:

• θ1E1 |=Σ′ θ2E2 as (Modθ1)
−1E∗1 ⊆ (Modθ2)

−1E∗2 ,

• E1 |=Σ1 ϕ1E as E∗1 ⊆ (Modϕ1)
−1E∗, and

• ϕ2E |=Σ2 E2 as (Modϕ2)
−1E∗ ⊆ E∗2 .

Now let us abstract E∗1 to any class M1 ⊆ |ModΣ1|, E∗2 to any class M2 ⊆ |ModΣ2|, and
E to any class M⊆ |ModΣ|. Then the interpolation situation defined by E1,E2 and E gets
translated to the following: for any classes of models M1 ⊆ |ModΣ1|, M2 ⊆ |ModΣ2| such
that

(Modθ1)
−1M1 ⊆ (Modθ2)

−1M2

there exists a class of models M⊆ |ModΣ| such that

M1 ⊆ (Modϕ1)
−1M and (Modϕ2)

−1M⊆M2. (9.5)

M is called a semantic interpolant for M1 and M2. Note however that if we want to solve
an interpolation problem by interpreting it as semantic interpolation as above, then we
still have to do another step, namely to get (a syntactic interpolant) E from M. This can
be done only if M is elementary, otherwise said if it is axiomatizable. We may therefore
state the following Principle of Semantic Interpolation:

The existence of a (syntactic) interpolant for E1 and E2 is equivalent to the ex-
istence of a semantic interpolant M for E∗1 and E∗2 such that M is elementary,
in this case the syntactic interpolant being M∗.

Existence of semantic interpolants. The following simple result shows that the exis-
tence of semantic interpolants is easy and subject only to a mild condition commonly
satisfied in the applications. So the real difficulty of interpolation, when approached by
the Principle of Semantic Interpolation, is to get the semantic interpolant axiomatized.

Proposition 9.2. In any institution, for any weak model amalgamation square like (9.4),
if Mk ⊆ |ModΣk|, k = 1,2, such that

(Modθ1)
−1M1 ⊆ (Modθ2)

−1M2

then M1 and M2 have M=M1↾ϕ1 as a semantic interpolant.
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Proof. • That M1 ⊆ (Modϕ1)
−1M follows immediately from the definition of M.

• For showing that (Modϕ2)
−1M⊆M2 we consider any M2 ∈ (Modϕ2)

−1M and prove
that M2 ∈M2. This goes as follows:

1 M2↾ϕ2 ∈M M2 ∈ (Modϕ2)
−1M

2 there exists M1 ∈M1 such that M1↾ϕ1 = M2↾ϕ2 1, definition of M

3 there exists M′ ∈ |ModΣ′| s.th. M′↾θk = Mk, k = 1,2 2, model amalgamation hypothesis

4 M′ ∈ (Modθ1)
−1M1 M1 ∈M1 (2), M′↾θ1 = M1 (3)

5 M′ ∈ (Modθ2)
−1M2 4, (Modθ1)

−1M1 ⊆ (Modθ2)
−1M2

6 M2 ∈M2 5, M′↾θ2 = M2.

□

Semantic operators. Fixed points of semantics operators will assist us in the search
for axiomatizable semantic interpolants. With examples of semantics operators we have
already met in Chap. 8 (on preservation and axiomatizability) but we have not yet given
them a definition. Given a signature Σ, a semantic Σ-operator is just a mapping of Σ-
classes of Σ-models UΣ : P |ModΣ| → P |ModΣ|. It is a semantic closure operator when
it has the following additional properties:

– M⊆UΣM reflexivity

– M⊆M′ implies UΣM⊆UΣM′ monotonicity

– UΣ(UΣM) = UΣM idempotency

– if M is closed under isomorphisms, then UΣM is also
closed under isomorphisms

closure under isomorphisms.

Some examples of semantic closure operators are as follows.

• The trivial operators: the identity operators and the maximal operators.

• The isomorphic closure operator Iso defined by Iso M = {M |M ∼= N for some N ∈
M}.

• The elementary closure operator (−)∗∗ mapping each class of models M to M∗∗.

• In the context of the developments in Chap. 8, when a class of models M gets mapped
to I←M, E→M, PM, UpM (when Up is idempotent, such as in FOL), E→ (

I←M),
Sen0
←− (UpM) (when Up is idempotent), I← (PM), E→ (PM), E→ (

I→ (PM)), all these are
closure operators under the conditions of the respective results where they appear.
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Fixed points of semantic operators. A class M of Σ-models is a fixed point for a
semantic operator UΣ when UΣM = IsoM. Let FX UΣ be the class of all fixed points of
UΣ. Fixed points M of semantic operators may guarantee the closure of M under certain
semantic operators, a closure that may determine the axiomatizability of M. For instance
if we take U M=

I← (PM) then the closure of M under Iso and U means that M is closed
under I← and under direct products (of course by and under the conditions of Prop. 8.29).
Via Thm. 8.18 this leads to the axiomatizability of M.

The following is a rather abstract generic result which gives a set of heavily techni-
cal sufficient conditions for the existence of a semantic interpolant that in the applications
can be easily shown to be elementary as a consequence of being a fixed point of semantic
operators that are linked to axiomatizability properties. By giving various meanings to the
parameters U and V we will be able to apply this result to obtain various general proper
interpolation properties.

Theorem 9.3. In any institution, consider any weak model amalgamation square of sig-
nature morphisms

Σ
ϕ1
//

ϕ2

��

Σ1

θ1
��

Σ2
θ2

// Σ′

and pairs of semantic operators U = ⟨UΣ, UΣ1⟩ and V = ⟨VΣ, VΣ2⟩ such that

1. UΣ;VΣ;UΣ = UΣ;VΣ,

2. V are closure operators,

3. Modϕ1 preserves fixed points of U (i.e., (FX UΣ1)↾ϕ1 ⊆ FX UΣ)),

4. (Modϕ1); Iso;VΣ = Iso;(Modϕ1);VΣ, and

5. VΣ;(Modϕ2)
−1 ⊆ (Modϕ2)

−1;VΣ2 .

Then all classes of models M1 ∈ FX UΣ1 and M2 ∈ FX VΣ2 which are closed under iso-
morphisms and such that (Modθ1)

−1M1 ⊆ (Modθ2)
−1M2 have a semantic interpolant

M in (FX UΣ)∩ (FX VΣ) which is closed under isomorphisms.

Proof. The semantic interpolant M is defined as VΣ(M1↾ϕ1). We prove the properties of
M in reverse order of their importance.

• We first show that M is closed under isomorphisms. We have that:

1 VΣ M1↾ϕ = VΣ (IsoM1)↾ϕ1 M1 closed under isomorphisms

2 = VΣ Iso(M1↾ϕ1) model reducts, as functors, preserve isomorphisms.

Since Iso(M1↾ϕ1) is closed under isomorphisms, by the closure under isomorphisms
property of VΣ (as semantic closure operator), from (2), it follows that VΣ M1↾ϕ is
closed under isomorphisms too.



250 Chapter 9. Interpolation

• Now we show that M ∈ FX UΣ as follows:

3 M1↾ϕ1 ∈ FX UΣ M1 ∈ FX UΣ1 , Modϕ1 preserves fixed points

4 UΣM= UΣ(VΣ M1↾ϕ1) = UΣ(VΣ Iso(M1↾ϕ1)) definition of M, 2

5 = UΣ(VΣ(UΣ M1↾ϕ1)) =VΣ(UΣ M1↾ϕ1) 3, condition 1. of the theorem

6 = VΣ Iso(M1↾ϕ1) = VΣ (IsoM1)↾ϕ1 3, 2

7 = VΣ M1↾ϕ1 =M= IsoM M1 closed under isomorphisms, definition of M, M closed
under isomorphisms.

• Now we show that M ∈ FX VΣ as follows:

8 VΣM= V 2
Σ
M1↾ϕ1 = VΣ M1↾ϕ1 definition of M, VΣ idempotent (closed operator)

9 =M= IsoM definition of M, M closed under isomorphisms.

• Finally, we show that M is a semantic interpolant for M1 and M2 (properties 11 and
15 below).

10 M1↾ϕ1 ⊆ VΣ M1↾ϕ1 =M reflexivity of VΣ (closure operator), definition of M

11 M1 ⊆ (Modϕ1)
−1M equivalent way to write 10

12 (Modϕ2)
−1M= (Modϕ2)

−1(VΣ M1↾ϕ1) definition of M

13 ⊆ VΣ2((Modϕ2)
−1M1↾ϕ1) condition 5.

14 ⊆ VΣ2M2 Prop. 9.2, monotonicity of VΣ2 (closure operator property)

15 = IsoM2 =M2 M2 ∈ FX VΣ2 (condition 3.), M closed under isomorphisms.

□

Let us remark that:

Fact 9.4. In the context of Thm. 9.3 the relation M ∈ (FX UΣ)∩ (FX VΣ) can be equiva-
lently expressed as M ∈ FX(VΣ;UΣ).

Proof. By using that M is closed under isomorphisms and the first two conditions of
Thm. 9.3. □

Higher-order interpolation. An immediate application of the general semantic inter-
polation Thm. 9.3 is the following general result.

Corollary 9.5. In any institution with universal R -quantification for a class R of signa-
ture morphisms, any weak model amalgamation square

Σ
ϕ1
//

ϕ2

��

Σ1

θ1
��

Σ2
θ2

// Σ′

for which ϕ2 ∈ R is a Craig interpolation square.
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Proof. In Thm. 9.3 let us take

• U to be identities, and

• V to be elementary closures, i.e., V M=M∗∗.

Since for this setting of U and V the first four conditions of Thm. 9.3 are rather trivial,
let us focus on the last condition, that (Modϕ2)

−1N∗∗ ⊆ ((Modϕ2)
−1N)∗∗ for each N⊆

|ModΣ|. Consider a Σ2-model N2 such that N2↾ϕ2 ∈N∗∗ and let ρ2 ∈ ((Modϕ2)
−1N)∗. We

need to show that N2 |=Σ2 ρ2. Let ρ′2 be a universal ϕ2-quantification of ρ2. Then:

1 ρ′2 ∈ N∗∗ ρ2 ∈ ((Modϕ2)
−1N)∗, ρ′2 universal ϕ2-quantification of ρ2

2 N2↾ϕ2 |= ρ′2 1, N2↾ϕ2 ∈ N∗∗

3 N2 |= ρ2 2, ρ′2 universal ϕ2-quantification of ρ2.

By the conclusion of Thm. 9.3 we get a semantic interpolant M, closed under isomor-
phisms, and such that M∗∗ = IsoM (as a fixed point for V ), which means M∗∗ =M. The
conclusion of this corollary follows now by the Principle of Semantic Interpolation. □

The following interpolation properties are instances of Cor. 9.5. Recall that SOL is
the ‘second-order’ extension of FOL admitting quantifiers over any injective signature
extensions with a finite number of symbols and that a signature morphism in FOL has
non-empty sorts if there exists at least one term of each sort.

Corollary 9.6. The institutions FOL , HCL , EQL , SOL have Craig (Sig,R )-interpola-
tion where R

• is the class of all injective signature extensions with constants ϕ : Σ→ Σ′ such that Σ

has non-empty sorts, in the case of FOL , HCL and EQL , and

• is the class of (iii)-morphisms of signatures ϕ : Σ→ Σ′ such that both Σ and Σ′ have
non-empty sorts, in the case of SOL .

Proof. In order to apply Cor. 9.5 we have to establish that the considered institutions
admit universal R -quantification. In any of the considered institutions let ϕ : Σ→ Σ′ be
a signature morphism in R and let ρ′ be a Σ′-sentence. We have to show that there exists
a Σ-sentence ρ such that

for each Σ-model M, M ∈ ρ
∗ if and only if (Modϕ)−1M ⊆ ρ

′∗. (9.6)

Of course, when ϕ is finitary, i.e., extends with a finite number of symbols, this holds
because all the considered institutions having explicit finitary universal R -quantifications
we can just consider ρ to be a universal ϕ-quantification of ρ′. So the issue is relevant
only when ϕ extends with an infinite number of symbols.

• Because ρ′ has only a finite number of symbols and Σ′ has non-empty sorts, there
exists a sub-signature Σ0 ⊆ Σ′ such that Σ0 is finite and has non-empty sorts, and there
exists a Σ0-sentence ρ′0 such that ρ′ = χ′ρ′0 where χ′ denotes the signature inclusion
Σ0 ⊆ Σ′.
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• Let us consider the following square of signature inclusions.

Σ∩Σ0
ϕ0

⊆
//

⊆χ

��

Σ0

χ′⊆
��

Σ
ϕ

⊆
// Σ′

(9.7)

This is a weak model amalgamation square because:

– the intersection-union square determined by Σ and Σ0 is a pushout square,

– hence it is a model amalgamation square because all considered institutions are
semi-exact, and moreover

– it is a weak model amalgamation square because the inclusion Σ∪ Σ0 ⊆ Σ′ has
the model expansion property because both Σ and Σ0 have non-empty sorts (and
consequently their union too) and by Fact 5.6.

• Because all considered institutions have finitary R -quantifications, there exists a Σ∩
Σ0-sentence ρ0 which is an universal ϕ0-quantification of ρ′0. We define ρ = χρ0 and
prove (9.6). Consider any Σ-model M. From the weak model amalgamation property
of the square (9.7) we have:

1 (Modϕ0)
−1((Modχ)M) = (Modχ′)((Modϕ)−1M).

Then (9.6) is obtained by the following succession of equivalent statements:

– M |= ρ

– M |= χρ0 ρ = χρ0

– M↾χ |= ρ0 Satisfaction Condition

– (Modϕ0)
−1(M↾χ)⊆ (ρ′0)

∗
ρ0 universal ϕ0-quantification of ρ′0

– (Modχ′)((Modϕ)−1M)⊆ (ρ′0)
∗ 1

– (Modϕ)−1M ⊆ ρ′∗ ρ′ = χ′ρ′0, Satisfaction Condition.

□

The interpolation properties for FOL , EQL , HCL given by Cor. 9.6 are rather weak
because in all these cases R is quite narrow. Later in the section, we will prove much
stronger interpolation results for these institutions. On the other hand, the interpolation
property for SOL given by Cor. 9.6 is rather substantial. This difference is caused by
the possibility of higher-order quantifications in SOL which is missing in FOL , EQL or
HCL .
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Exercises
9.3. Interpolation in HN K
The institution of higher order logic with Henkin semantics (HN K ) has Craig (SigHN K ,(bi))-
interpolation. (Hint: From Cor. 9.5.)

9.3 Interpolation by axiomatizability
In this section, we derive a couple of general interpolation results for Birkhoff institutions
from the abstract semantic interpolation Thm. 9.3. We also apply them to actual insti-
tutions and thus obtain a series of concrete interpolation results. For this, we need the
following concept of lifting relations.

Lifting relations. Let ϕ : Σ→ Σ′ be a signature morphism and R = ⟨RΣ, RΣ′⟩ with
RΣ ⊆ |ModΣ| × |ModΣ| and RΣ′ ⊆ |ModΣ′| × |ModΣ′| be a pair of binary relations. We
say that ϕ lifts R if and only if for each M′ ∈ |ModΣ′| and N ∈ |ModΣ| if ⟨M′↾ϕ, N⟩ ∈RΣ,
then there exists N′ ∈ |ModΣ′| such that N′↾ϕ = N and ⟨M′, N′⟩ ∈ RΣ′ .

Σ

ϕ
��

ModΣ M′↾ϕ

RΣ N = N′↾ϕ

Σ′ ModΣ′

Modϕ

OO

M′
R

Σ′
(∃)N′

This situation can be expressed more compactly by the following inequality:

(Modϕ);RΣ( ) ⊆ RΣ′( );(Modϕ).

Can you relate this to the 5th condition of the semantic interpolation Theorem 9.3?

The ‘right’ interpolation theorem
The first interpolation theorem derived from Birkhoff axiomatizability properties, which
is presented below, relies upon the properties of the morphisms on the ‘right-hand side’
of the interpolation squares.

Theorem 9.7. Consider a Birkhoff institution (Sig,Sen,Mod, |=,F ,B) and a weak model
amalgamation square of signature morphisms:

Σ
ϕ1
//

ϕ2

��

Σ1

θ1
��

Σ2
θ2

// Σ′

such that

1. Modϕ1 preserves F -products, and
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2. ϕ2 lifts B

Then this is a Craig Interpolation square.

Proof. We apply Thm. 9.3 by setting the semantic operators U and V as follows (we
omit the signature subscripts from the notation of the operators):

• U M= F M, and

• V M= (B−1)+M, where (B−1)+ is the transitive closure of B−1.

The hypotheses of Thm. 9.3 can be checked as follows:

1. This hypothesis is UΣ;VΣ;UΣ = UΣ;VΣ.

• On the one hand,

1 V (UM)⊆U(V (UM)) N⊆ F N (since {{∗}} ∈ F , a hypothesis of Birkhoff institutions).

• On the other hand,

2 U(V (UM))⊆ V (U(V (UM))) N⊆ V N (B reflexive)

Now let us prove by induction on n ∈ ω that for each N⊆ |ModΣ|

3 B−n(F N) = N∗∗

– The base case, n = 1, follows by the definition of Birkhoff institutions.

– For the induction step we do the following reasoning:

4 B−(n+1)(F N) = B−1(B−n(F N)) = B−1 N∗∗ induction step

5 ⊆ B−1(F N∗∗) {{∗}} ∈ F

6 = N∗∗∗∗ = N∗∗ Birkhoff institution, ( )∗∗ idempotent (closure operator).

Also

7 N∗∗ = B−n(F N induction hypothesis

8 ⊆ B−(n+1)(F N) B reflexive.

Thus 6 and 8 prove the induction step. Hence

9 V (UN) = (B−1)+(F M) =
⋃

n∈ω B−n(F N) = N∗∗ 3

10 V (U(V (UN))) = V (UN∗∗) = N∗∗∗∗ 9 applied twice

11 = N∗∗ = V (UN) ( )∗∗ idempotent (closure operator), 9

12 U(V (UM))⊆ V (UM) 2, 11

Therefore condition 1. of Thm. 9.3 is fulfilled by 1 and 12.

2. V are closure operators the reflexivity of B , by the transitivity of (B−1)+, and because
B is closed under isomorphism.
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3. Consider any M1 ∈ FX UΣ1 . We have to prove that M1↾ϕ1 ∈ FX UΣ. This goes as
follows:

13 F (M1↾ϕ1) = Iso((F M1)↾ϕ1) Modϕ1 preserves F -products

14 = Iso((IsoM1)↾ϕ1) M1 ∈ FX UΣ1

15 = Iso(Iso(M1↾ϕ1)) = Iso(M1↾ϕ1) Modϕ1 preserves isomorphisms.

4. The condition to be proved is

(Modϕ1) ; Iso ; VΣ = Iso ; (Modϕ1) ; VΣ.

Let N⊆ |ModΣ1|. Then, on the one hand

16 B−1(Iso N↾ϕ1) = B−1 N↾ϕ1 B closed under isomorphisms

17 ⊆ B−1 (IsoN)↾ϕ1 reflexivity of Iso, monotonicity of B−1( )

and on the other hand

18 B−1 (IsoN)↾ϕ1 ⊆ B−1 Iso(N↾ϕ1) B−1( ) monotone, Modϕ1 preserves isomorphisms.

5. That VΣ ; (Modϕ2)
−1 ⊆ (Modϕ2)

−1 ; VΣ2 means that ϕ2 lifts B+ (the transitive
closure of B) which holds by the hypothesis that ϕ2 lifts B .

Now consider a set E1 of Σ1-sentences and E2 a set of Σ2-sentences such that
θ1E1 |= θ2E2. By setting M1 = E∗1 and M2 = E∗2 in the statement of Thm. 9.3, ac-
cording to its conclusion we obtain a semantic interpolant closed under isomorphisms
M⊆ |ModΣ| and such that M∈ (FX UΣ)∩(FX VΣ). This implies M= B−1(F M) which
by the Birkhoff institution property means M∗∗ =M. Thus E =M∗ is an interpolant. □

Apart from the fundamental axiomatizability framework of a Birkhoff institution,
from the hypotheses of Thm. 9.7 only the lifting condition sets substantial limits to its
applicability. Note that this condition is a reflection of condition 5. of the generic Thm. 9.3
to a more concrete framework. The other conditions can usually be handled as follows:

• Regarding the model amalgamation hypothesis, for interpolation squares we usually
look among pushout squares of signature morphisms. Thus we can do with the basic
assumption that the institution has weak model amalgamation.

• It is common that in institutions in which the signatures contain only symbols with
finite arities, the filtered products of models are preserved by the model reducts cor-
responding to any signature morphism. For the case of FOL and related institutions
this has been shown in Sect. 6.2.
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The lifting condition. We now focus on the condition underlying Thm. 9.7, that ϕ2 lifts
B . Below we give an emblematic example of how this condition can be solved at the level
of concrete institutions.

Towards the end of Sect. 8.6 we have introduced some classes of FOL model ho-
momorphisms. Let us recall them in the form of the following table.

class name injective / surjective model theoretic property
Hr surjective
Hs surjective strong
Sw injective
Sc injective closed

Proposition 9.8. In FOL , each (ii′i)-morphism of signatures lifts B for each B ∈ {Sw→,
Sc→,

Hr←,
Hs←}. Consequently, each (ii′i)-morphism of signatures lifts H←; S→ for each H ∈

{Hr,Hs} and each S ∈ {Sw,Sc}.
Proof. What follows is very much a proof by construction. Let ϕ : Σ→ Σ′ be a (ii′i)-
morphism of FOL-signatures, with Σ = (S,F,P) and Σ′ = (S′,F ′,P′) being their actual
forms. We treat the H and the S cases simultaneously. Consider a Σ-model homomorphism
h as follows: h : N → M′↾ϕ when h ∈ H and h : M′↾ϕ → N when h ∈ S. In the H case
we lift h to a Σ′-homomorphism h′ : N′→M′ while in the S case to a Σ′-homomorphism
h′ : M′→ N′. Moreover, concerning membership to one of the four classes of homomor-
phisms, we aim that h′ must be of the same kind as h.

• For each symbol z in Σ we define N′ϕz = Nz. This is equivalent to N′↾ϕ = N. The
definition holds because ϕ is injective ((iii)-morphism). Also, h′ is defined by

h′s′ =

{
hs s′ = ϕs
1M′

s′
, s′ ̸∈ ϕS.

This implies that N′s′ = M′s′ whenever s′ is outside the range of ϕ. Note that lifting of
h to h′ maintains the injectivity / surjectivity of h. It remains to define N′ on the oper-
ation and relation symbols outside the range of ϕ, and this constitutes the challenging
part of this proof.

• At the level of the operations, let us consider σ′ ∈ F ′w→s but not within the range of ϕ.

– In the H case, for each appropriate sequence x of arguments, by using the surjec-
tivity of h′s, we let N′

σ′x ∈ h′−1
s (M′

σ′(h
′
wx)).

– In the S case we let

N′
σ′x =

{
h′s(M

′
σ′(h

′−1
w x)), x ∈ h′wM′w

any element of N′s, otherwise.

The correctness of this definition can be justified as follows. In the former case,
it follows by the injectivity of h′. In the latter case, it is about making sure that
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N′s ̸= /0. This follows from the definition of (ii′i). If s is not within the range of ϕ

then N′s = M′s ̸= /0 because σ′ ∈ Fw→s is a ‘new’ operation symbol. If s is within the
range of ϕ then N′s = Nϕ−1s ̸= /0 by the same argument like in the previous case.

• At the level of the relations, for each π′ ∈ P′w but outside the range of ϕ, we let N′
π′ =

h′−1
w M′

π′ in the H case and N′
π′ = h′wM′

π′ in the S case.

We can see that under this lifting, N′↾ϕ = N, that h′ is a Σ′-homomorphism and is ex-
actly of the same kind as h concerning their membership to one of the four classes of
homomorphisms. □

Some concrete interpolation consequences of Thm. 9.7. Based upon some of the ax-
iomatizability results listed at the end of Sect. 8.6, by the interpolation Thm. 9.7 and the
lifting Prop. 9.8 we have the following interpolation results:

Corollary 9.9. The institutions UNIV , of the universal FOL∞,ω-sentences, HCL , HCL∞,ω,
of universal FOL-atoms, EQL , ∀∨, ∀∨∞ have Craig (Sig,(ii′i))-interpolation.

The counterexample below shows that the injectivity condition on the signature
morphisms from R is necessary too, as in its absence interpolation may fail.

Failure of interpolation because of non-injectivity. In EQL consider the pushout
square of signature morphisms

Σ = { f ,g}
ϕ1

⊆
//

ϕ2

��

Σ1 = { f ,g,h}

θ1
��

Σ2 = {k}
θ2

⊆
// Σ′ = {k,h}

such that all the signatures involved contain only one sort s and one constant a (not shown
in the diagram) and only unary operations as shown in the diagram. Let

• E1 = {(∀x)gx = h( f x), (∀x) f (gx) = h(gx)} and

• E2 = {(∀x)k(kx) = kx}.

It is easy to see that θ1E1 |=Σ′ θ2E2 (check it!). We show that the interpolation problem
defined by this consequence does not have a solution. By Reductio ad Absurdum let us
suppose that there exists an interpolant E.

• E may contain only reflexive equations (∀x)t = t ′. We prove this by considering the
following Σ1-model M1.

– (M1)s = {t(hna) | t (Σ+ x)-term, n ∈ ω} where h0a = a, hn+1a) = h(hna), and
t(hna) is the Σ1-term obtained by substituting variable x by hna.

– (M1) f t = f t, (M1)gt = gt for each t ∈ (M1)s.
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– (M1)ht =


gt0, t = f t0
f (gt0), t = gt0
hn+1a, t = hna.

Obviously, M1 |= E1. Since E1 |= ϕ1E (E interpolant) it follows that M1↾ϕ1 |= E. If E
contains an equation (∀x)t = t ′ such that t and t ′ are different terms, then M1↾ϕ1 |=
t(a) = t ′(a). However this is not possible as t(a) and t ′(a), being just their own inter-
pretation in M1, are different elements in M1 (and in M1↾ϕ1 too, as M1↾ϕ1 just forgets
the interpretation of h).

• Hence E is a trivial theory, which implies that ϕ2E is a trivial theory. Then ϕ2E ̸|= E2.

As a side remark aimed at people who are familiar with algebraic specification and term
rewriting we may note the following. M1 is an initial model of E1 as it is the model of the
normal forms of E1 turned into a rewriting system {h( f x)→ gx, h(gx)→ f (gx)}. This is
terminating because each application of one of the two rules decreases the number of the
hs in a term. It is also confluent because it is non-lapsing and orthogonal (left-linear and
non-overlapping). For the connaisseurs, in this case, these properties are straightforward
to check.

Interpolation by the Keisler-Shelah property. In situations when B is rather weakly
defined, the lifting condition can be rather difficult to establish. The cost is thus shifted
from the axiomatizability property to the lifting condition on ϕ2. A typical example is
given by FOL , regarded as a Birkhoff institution with B being the elementary equivalence
relation ≡, and F the class of all ultrafilters (cf. Thm. 8.32). A solution to this problem
is given by the Keisler-Shelah property (cf. Cor. 7.25) via Thm. 8.32 which says that
a class of FOL-models is elementary if and only if it is closed under ultraproducts and
ultraradicals. This provides a characterization of elementary equivalence≡ strong enough
to support an easy applicability of the interpolation Thm. 9.7. But before doing this let
us consider the following simple fact. We invite the reader to be convinced of this fact by
himself.

Fact 9.10. A FOL signature morphism lifts isomorphisms if and only if it is (i∗∗).

Corollary 9.11. FOL has Craig (SigFOL ,(i∗∗))-interpolation.

Proof. We use the Birkhoff axiomatizability characterization of elementary classes in
FOL ,

M∗∗ = Ur−1(UpM)

given by Thm. 8.32. Let us show that each FOL signature morphism ϕ which lifts isomor-
phisms, also lifts the ultraradical relation Ur. If we did this then the conclusion followed
by the virtue of Fact 9.10. Here we go:

1 (M′↾ϕ)U = N for some ultrafilter U

2 (M′U )↾ϕ
∼= (M′↾ϕ)U = N FOL-signature morphisms preserve filtered products (Sec. 6.2), 1
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3 M′U ∼= N′ for some N′ such that N′↾ϕ = N 2, ϕ lifts isomorphisms

4 M′(Ur)N′ 3.

□

The ‘left’ interpolation theorem
The second general interpolation theorem that relies on Birkhoff axiomatizability is pre-
sented below. It shifts the reliance upon the lifting property of the signature morphisms
from those on the ‘right-hand side’ to those on the ‘left-hand side’ of the interpolation
squares of signature morphisms. One consequence of this is that the lifting condition on
B rather becomes a lifting condition on its inverse B−1.

Theorem 9.12. Consider a Birkhoff institution (Sig,Sen,Mod, |=,F ,B) and a weak model
amalgamation square of signature morphisms:

Σ
ϕ1
//

ϕ2

��

Σ1

θ1
��

Σ2
θ2

// Σ′

such that

1. Modϕ1 preserves F -products, and

2. ϕ1 lifts B−1 and isomorphisms.

Then this is a Craig Interpolation square.

Proof. We apply the abstract semantic interpolation Thm. 9.3 by setting the semantic
operators U and V as follows:

• U are the elementary closure operators, i.e., UM=M∗∗, and

• V are the identities operators.

Because the hypotheses 1,2 and 5 of Thm. 9.3 are trivial to check, we focus on the re-
maining two ones.

3. Let M1 ∈ FX UΣ1 which means that M∗∗1 = IsoM1. We have to show that (M1↾ϕ1)
∗∗ =

Iso(M1↾ϕ1). We have the following sequence of relations:

(M1↾ϕ1)
∗∗ = B−1

Σ
(F (M1↾ϕ1)) Birkhoff institution

= B−1
Σ

(F Iso(M1↾ϕ1)) filtered products are defined up to isomorphisms

= B−1
Σ

(F ((IsoM1)↾ϕ1)) ϕ1 lifts isomorphisms

= B−1
Σ

(F (M∗∗1 ↾ϕ1)) M1 ∈ FX UΣ1

= B−1
Σ

(Iso((F M∗∗1 )↾ϕ1)) Mod(ϕ1) preserves F -products
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= B−1
Σ

((F M∗∗1 )↾ϕ1) B closed under isomorphisms

⊆ B−1
Σ

((B−1
Σ1

(F M∗∗1 ))↾ϕ1) B’s reflexive

= B−1
Σ

(M∗∗∗∗1 ↾ϕ1) Birkhoff institution

= B−1
Σ

(M∗∗1 ↾ϕ1) ( )∗∗ closure operator

⊆ (B−1
Σ1

(M∗∗1 ))↾ϕ1 ϕ1 lifts B−1

⊆ (B−1
Σ1

(F M∗∗1 ))↾ϕ1 N⊆ F N because {{∗}} ∈ F

=M∗∗∗∗1 ↾ϕ1 Birkhoff institution

=M∗∗1 ↾ϕ1 ( )∗∗ closure operator

= (IsoM1)↾ϕ1 M1 ∈ FX UΣ1

⊆ Iso(M1↾ϕ1) Modϕ1 preserves isomorphisms.

Since we work only with institutions closed under isomorphisms, we also have that
Iso(M1↾ϕ1)⊆ (M1↾ϕ1)

∗∗, hence (M1↾ϕ1)
∗∗ = Iso(M1↾ϕ1).

4. This condition holds because (Modϕ1); IsoΣ = IsoΣ1 ;(Modϕ1) which is another way
of expressing that ϕ1 lifts isomorphisms.

The conclusion of Thm. 9.3 tells us that for any sets E1 of Σ1-sentences and E2 of Σ2-
sentences such that θ1E1 |= θ2E2 there exists a semantic interpolant M closed under iso-
morphisms and such that M∗∗ = IsoM. By the closure of M under isomorphisms this
means that M∗∗ =M, hence M is elementary. By the Principle of Semantic Interpolation,
E =M∗ is an interpolant for E1 and E2. □

For obtaining concrete instances of the general ‘left’ interpolation Thm. 9.12 we
follow the same path as in the previous ‘right’ interpolation Thm. 9.7. Therefore we have
to establish classes of signature morphisms that lift various concrete relations that can be
used in building various operators B .

The lifting condition. The following result establishes lifting of the inverses of the
relations considered by Prop. 9.8.

Proposition 9.13. In FOL , each (ie∗)-morphism of signatures lifts B−1 for each B ∈
{Sw→,

Sc→,
Hs←} and each (iei)-morphism lifts Hr→. Consequently, for each S ∈ {Sw,Sc}, each

(ie∗)-morphism of signatures lifts S←; Hs→ and each (iei)-morphism lifts S←; Hr→ .

Proof. We will develop a proof by construction following similar steps like in the proof
of Prop. 9.8. Let ϕ : Σ→ Σ′ be an (ie∗)-morphism of FOL-signatures, with Σ = (S,F,P)
and Σ′ = (S′,F ′,P′) being their actual forms. Like in the proof of Prop. 9.8 we treat
the H and the S cases simultaneously. Consider a Σ-model homomorphism h as follows:
h : N → M′↾ϕ when h ∈ S and h : M′↾ϕ → N when h ∈ H. Note that this is inverse to
how we considered h in the proof of Prop. 9.8; this is so because now we lift B−1 rather
than B .
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• The definition of N′ for the symbols ϕz, z in Σ, and of h′ is almost the same like in the
proof of Prop. 9.8, the aim being to have N′↾ϕ = N and h′↾ϕ = h. The only difference
is that in the H case, when s′ ̸∈ ϕS, we let

N′s′ =

{
{∗} (a singleton set), M′s′ ̸= /0

/0, otherwise.

In the S case it is like in the proof of Prop. 9.8, i.e. h′s′ = 1M′
s′

.

• For the operations σ′ ∈ F ′w→s but not within the range of ϕ:

– In the S case we define N′
σ′x = h′−1

s (M′
σ′(h

′
wx)). The encapsulation condition guar-

antees that N′
σ′x exists when s ∈ ϕS. When s ̸∈ ϕS, N′

σ′x = M′
σ′(h

′
wx) since h′s is

identity. The injectivity of h′ implies the uniqueness of N′
σ′x.

– In the H case

N′
σ′x =

{
Nσx, σ′ = ϕσ

∗, σ′ ̸∈ ϕF.
The encapsulation condition guarantees that we can define N′

σ′ in a correct way
and such that h′ satisfies the homomorphism condition on the operations. In its
absence , for s ∈ ϕS the homomorphism condition h′s(M

′
σ′x) = N′

σ′(h
′
wx) could not

be satisfied in situations when h′(M′
σ′x) ̸= h′s(M

′
σ′y) but h′wx = h′wy. On the other

hand, in the presence of the encapsulation condition this is not an issue because
σ′ is an operation originating from Σ and we can say that all things regarding
σ′ happen in fact at the level of Σ. This includes the definition of N′

σ′ and the
homomorphism property.

• For the relation symbols π′ ∈ P′w outside the range of ϕ we define N′
π′ = h′−1

w M′
π′ in

the S case and N′
π′ = h′wM′w in the H case.

□

Some concrete interpolation consequences of Thm. 9.12. Based upon some of the ax-
iomatizability results listed at the end of Sect. 8.6, by the interpolation Thm. 9.12 and the
lifting Prop. 9.13, and also because each (i∗∗)-morphism of signatures lifts isomorphisms
of FOL-models (cf. Fact 9.10) we have the following concrete interpolation results:

Corollary 9.14. The institutions below have Craig (L ,Sig)-interpolation as indicated in
the table below:

institution L
UNIV ie∗

universal FOL∞,ω-sentences
HCL , HCL∞,ω, ∀∨, and ∀∨∞

universal FOL-atoms iei
EQL ie
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Three abstraction levels of interpolation in retrospective. All interpolation results
in this section have been derived from the highly abstract semantic interpolation result of
Thm. 9.3. This process involved the development of interpolation results on three levels of
abstraction, in a top-down movement from abstract to concrete. The top level is that of the
abstract semantic interpolation. Below it there is the level of general proper interpolation.
At the bottom level sit the interpolation results in concrete institutions. This development
process is emblematic for the institution-theoretic development of model theory in general
and we can visualise it in the form of the following tree.

Thm. 9.3

xx �� &&

Cor. 9.5

��

Thm. 9.7

��

Prop. 9.8
&&

Thm. 9.12

Prop. 9.13
&&

Cor. 9.6 Cor. 9.11 Cor. 9.9 Cor. 9.14

Exercises
9.4. Interpolation in PL
In propositional logic (PL) each pushout square of signatures is a Ci square. (Hint: PL is a Birkhoff
institution with F the class of all ultrafilters and B the identity relation.)

9.5. Interpolation for partial algebra
By the general axiomatizability results of this section, through the axiomatizability results for partial
algebras of the Exercises 8.3, 8.9 and 8.11, formulate and prove interpolation results for partial
algebras.

9.6. Given a weakly semi-exact institution I , let C be the class of the signature morphisms ϕ that
admit the model expansion property and for which SenI (ϕ) is surjective. Then I has both the Craig
(C ,SigI ) and (SigI ,C )-interpolation properties.

9.4 Interpolation by consistency
In the early age of model theory, first-order Craig interpolation was obtained in sev-
eral different ways. One prominent way was to derive it from a consistency property
of first-order logic, known as ‘Robinson consistency’. In this section we generalise this
method to the institution-independent level. First we develop the definition of institution-
independent Robinson consistency and establish its mutual causality relationship with
Craig interpolation. Then we develop a general Robinson consistency theorem at the level
of abstract institutions. This relies on some properties of the respective institution that are
essentially those that give FOL its character, such as admitting all Boolean connectives
and a kind of quantification that in the applications amounts to first-order quantification.
This means that the range of the applicability of the results of this section is confined to
FOL-like institutions, a situation very different from the developments of Sec. 9.3. More-
over, this difference is not only about applicability. While the results of Sec. 9.3 have only
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little correspondence to developments outside institution theory, what will follow in this
section represent just a high generalisation of well known results from first-order model
theory.

Robinson consistency. Recall that a Σ-theory E in an arbitrary institution is consistent
if E∗ ̸= /0. A commuting square of signature morphisms

Σ
ϕ1
//

ϕ2

��

Σ1

θ1
��

Σ2
θ2

// Σ′

is a Robinson Consistency square (abbreviated RC square) if and only if all theories Ei ⊆
SenΣi, i ∈ {1,2}, with ‘inter-consistent reducts’, i.e., (Senϕ1)

−1E∗∗1 ∪ (Senϕ2)
−1E∗∗2 is

consistent, have ‘inter-consistent Σ′-translations’, i.e., θ1E1 ∪ θ2E2 is consistent.
Note that Robinson consistency has substance in institutions where consistency is

not a trivial property in the sense of being a property of each theory. For instance in HCL
and EQL , according to Cor. 4.28, any theory is consistent.

Quasi-compactness. The method to obtain interpolation that is put forward in this sec-
tion relies on compactness in several diferent ways. This is unlike the interpolation results
previously developed in this chapter. However in all results of this section (and also of
Sec. 10) compactness can be technically replaced with the existence of infinite conjunc-
tions. Note that in general these two properties are mutually exclusive. We can take ad-
vantage of this technical situation and widen significantly the applicability of the results
to institutions admitting infinite conjunctions but lacking compactness. We say that an
institution is quasi-compact when it is compact or has infinite conjunctions.

Robinson consistency versus Craig interpolation
The method to obtain Craig interpolation by Robinson consistency relies on a result about
the latter implying the former.

Theorem 9.15. In any quasi-compact institution with negations and conjunctions, each
RC square is a Ci square.

Proof. For each sentence e let ¬e denote any negation of e. For each Γ finite set of sen-
tences let ∧Γ denote any conjunction of the sentences in Γ. Consider Ei ⊆ SenΣi, i = 1,2,
such that θ1E1 |= θ2E2. In this proof we will use tacitly several general properties of
the semantic consequence relation |=, such as those from Prop. 3.7 or others that can
be derived from those. Also, we will rely on the general preservation of the semantics
of negation and conjunctions by translation along signature morphisms, properties that
follow easily from the Satisfaction Condition. For each e2 ∈ E2 we have that:

1 θ1E1 ∪ θ2¬e2 inconsistent θ1E1 |= θ2e2, ¬θ2e2 |=| θ2¬e2
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2 (Senϕ1)
−1E∗∗1 ∪ (Senϕ2)

−1(¬e2)
∗∗ inconsistent 1, RC property

3 there exists Γ1(e2)⊆ (Senϕ1)
−1E∗∗1 , Γ2(e2)⊆ (Senϕ2)

−1(¬e2)
∗∗

finite such that Γ1(e2)∪Γ2(e2) inconsistent
2, quasi-compactness

4 Γ1(e2) |=¬∧Γ2(e2) 3

5 E1 |= ϕ1 Γ1(e2) Γ1(e2)⊆ (Senϕ1)
−1E∗∗1

6 ¬e2 |= ϕ2 Γ2(e2) Γ2(e2)⊆ (Senϕ2)
−1(¬e)∗∗2

7 ϕ2¬∧Γ2(e2) |= e2 6, ϕ2(¬∧Γ2(e2)) |=| ¬∧ϕ2Γ2(e2)

8 ϕ2 Γ1(e2) |= e2 4, 7

9 ϕ2
⋃

e2∈E2
Γ1(e2) |= E2 8

10 E1 |= ϕ1
⋃

e2∈E2
Γ1(e2) 5.

The relations 9 and 10 show that
⋃

e2∈E2
Γ1 is an interpolant for E1 and E2. □

Under the same conditions as those of Thm. 9.15, its reverse holds too. From the
perspective of obtaining interpolation, this does not have any value. However besides of
its theoretical value, very importantly, it can be used to achieve symmetry of interpolation.
We will see how this works after the following theorem.

Theorem 9.16. In any quasi-compact institution with negations and conjunctions, each
Ci square is an RC square.

Proof. For each sentence e let ¬e denote any negation of e. For each Γ finite set of sen-
tences let ∧Γ denote the conjunction of the sentences in Γ. We prove that for any theories
E1, E2 such that θ1E1∪θ2E2 is inconsistent, (Senϕ1)

−1E∗∗1 ∪ (Senϕ2)
−1E∗∗2 is inconsis-

tent too. We have that

1 ∃ finite Γ2 ⊆ E2 s.th. θ1E1∪θ2Γ2 inconsistent θ1E1 ∪θ2E2 inconsistent, quasi-compactness

2 θ1E1 |= θ2(¬∧Γ2) 1, θ2(¬∧Γ2) |=| ¬∧θ2Γ2

Let E be an interpolant for E1 and ¬∧Γ2. By quasi-compactness we may assume that E
is finite. Then

3 E1 |= ϕ1E E interpolant

4 E ⊆ (Senϕ1)
−1E∗∗1 3

5 ϕ2E |=¬∧Γ2 E interpolant

6 Γ2 |= ϕ2(¬∧E) 5, ϕ2(¬∧E) |=| ¬∧ϕ2E

7 E2 |= ϕ2(¬∧E) 6, Γ2 ⊆ E2

8 ¬∧E ∈ (Senϕ2)
−1E∗∗2 7.

From 4 and 8 we deduce that any model of (Senϕ1)
−1E∗∗1 ∪ (Senϕ2)

−1E∗∗2 satisfies
both E and ¬∧E. Such model cannot exist, hence (Senϕ1)

−1E∗∗1 ∪ (Senϕ2)
−1E∗∗2 is

inconsistent. □
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Ci is generally an asymmetric property with respect to the reflection in the mirror of
the considered squares of signature morphisms (we have seen lot of that in Sec. 9.3), while
RC is a symmetric property. The equivalence between Ci and RC given by Thm. 9.15
brings the symmetry of RC to Ci. This may allow for the extension of Ci properties
of institutions. The following is an example of such an extension of the interpolation
property of FOL formulated by Cor. 9.11.

Corollary 9.17. FOL has both Craig (SigFOL ,(i∗∗)) and ((i∗∗),SigFOL)-interpolation.

Robinson consistency theorem
The next step is to develop an institution-independent RC theorem. The following concept
of lifting of isomorphisms will be needed.

Lifting isomorphisms. A span of signature morphisms Σ1 Σ
ϕ1
oo

ϕ2
//Σ2 is said to

lift isomorphisms if for any Σi-models Mi, i = 1,2, such that M1↾ϕ1
∼= M2↾ϕ2 then there

exists Σi-models Ni, i = 1,2, such that Mi ∼= Ni, i = 1,2, and N1↾ϕ1 = N2↾ϕ2 .

Σ1 ModΣ1

Modϕ1
��

M1_

��

∼= ∃N1_

��

Σ

ϕ1

OO

ϕ2
��

ModΣ M1↾ϕ1

∼= M2↾ϕ2 N1↾ϕ1 = N2↾ϕ2

Σ2 ModΣ2

Modϕ2

OO

M2
_

OO

∼= ∃N2

_

OO

At the beginning of Sec. 9.3 we already introduced a concept of lifting relations
by single signature morphisms, which can be applied to the isomorphism relations ∼= be-
tween models too. On the one hand, lifting isomorphisms by single signature morphisms
is a particular case of lifting isomorphisms by spans by taking the identity as the other
morphism of the span. On the other hand, given a span, if any of the two constituent mor-
phisms lifts isomorphisms then the span lifts isomorphisms. How this works can be seen
in the proof of Prop. 9.18 below.

Proposition 9.18. A span of signature morphisms Σ1 Σ
ϕ1
oo

ϕ2
//Σ2 lifts isomorphisms

if either ϕ1 or ϕ2 lifts isomorphisms.

Proof. Consider Σi-models Mi, i= 1,2, such that M1↾ϕ1
∼=M2↾ϕ2 . We assuem that ϕ1 lifts

isomorphisms. Then there exists a Σ1-model N1 such that N1 ∼= M1 and N1↾ϕ1 = M2↾ϕ1 .
Now, in the definition of lifting isomorphisms by spans, we take N2 = M2. □

From Fact 9.10 and Prop. 9.18 we have the following concrete situation.

Corollary 9.19. A span of FOL signature morphisms Σ1 Σ
ϕ1
oo

ϕ2
//Σ2 lifts isomor-

phisms when either ϕ1 or ϕ2 is an (i∗∗)-morphism.
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Theorem 9.20 (Robinson consistency). Consider any institution with diagrams ι such
that

1. M∗ ⊆ N∗ if there exists a model homomorphism M→ N,

2. it has pushouts of signatures and has weak model amalgamation,

3. it has universal χ-quantification for χ signature morphisms of the forms ιΣh and ιΣM
for all Σ-model homomorphisms h : M→ N,

4. it has negations and conjunctions,

5. it has ω-co-limits1 of models and moreover these are preserved by the model reduct
functors, and

6. it is quasi-compact.

Then any weak amalgamation square of signature morphisms like below

Σ
ϕ1
//

ϕ2

��

Σ1

θ1
��

Σ2
θ2

// Σ′

such that the span ϕ1,ϕ2 lifts isomorphisms, is a Robinson Consistency square.

Proof. Let Ei ⊆ SenΣi, i = 1,2, be theories. Denote Γi = (Senϕi)
−1E∗∗i ; they are closed

theories. Assume Γ1∪Γ2 is consistent. We have to prove that θ1E1 ∪ θ2E2 is consistent
too. It suffices to find Σi-models Ni |= Ei, i = 1,2, such that N1↾ϕ1 = N2↾ϕ2 , and then we
apply weak amalgamation to find the desired Σ′-model N′ of θ1E1 ∪ θ2E2.

In brief, the way to achieve this is to get the Ni, i = 1,2, as liftings of reducts
M1↾ϕ1

∼= M2↾ϕ2 where Mi are obtained as co-limits of ω-chains in Mod(Σi,Ei). The cru-
cial isomorphism M1↾ϕ1

∼= M2↾ϕ2 is obtained by constructing the two ω-chains in such
a way that when reduced to ModΣ they are both final sub-diagrams of the same larger
diagram. Let us provide detail to this process.

• Let ( f n
i : An

i → An+1
i )n∈ω, i = 1,2, denote the two ω-chains mentioned above. Their

reducts to ModΣ are linked together by families of Σ-homomorphisms (gn)n∈ω and
(hn)n∈ω as shown by the commutative diagram below:

A0
1↾ϕ1

f 0
1 ↾ϕ1

//

g0 ##

A1
1↾ϕ1

f 1
1 ↾ϕ1

//

g1 ##

A2
1↾ϕ1

g2 $$

· · ·

A0
2↾ϕ2 f 0

2 ↾ϕ2

//
h0

;;

A1
2↾ϕ2 f 1

2 ↾ϕ2

//
h1

;;

A2
2↾ϕ2 · · ·

(9.8)

We will also need that A0
1 |= E1 ∪ϕ1Γ2 and A0

2 |= E2. At this stage let us just assume
the diagram (9.8) and continue with the details of the proof of the theorem.
1Here ω is the totally ordered set of the natural numbers.
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• Because the model reduct functors preserve ω co-limits, the co-limits of ( f n
i )n∈ω, i =

1,2, in ModΣi (with vertices denoted as Mi) are mapped by Modϕi to co-limits in
ModΣ.

• Since both ( f n
i ↾ϕi)n∈ω, i= 1,2, are final sub-diagrams of (9.8), it follows (by Thm. 2.4)

that M1↾ϕ1
∼= M2↾ϕ2 (and isomorphic to the vertex of the co-limit of (9.8)).

• Because satisfaction is preserved along model homomorphisms (condition 1. of the
theorem) and A0

i |= Ei, i = 1,2, we have that Mi |= Ei, i = 1,2.

• Because the span ϕ1, ϕ2 lifts isomorphisms there are Ni, i = 1,2, such that Ni ∼= Mi
and N1↾ϕ1 = N2↾ϕ2 . Moreover Ni |= Ei because Mi |= Ei and isomorphisms preserve
satisfaction.

The theorem is thus proved modulo the construction of the two ω-chains and of the fam-
ilies g and h such that the diagram (9.8) commutes. The remaining part of this proof is
devoted entirely to the developments of this construction by an inductive process that
consists of four steps as follows.

0.1 At the first base case we initialise the chain f1 by taking A0
1 ∈ (E1 ∪ϕ1Γ2)

∗. This is
possible only if E1 ∪ϕ1Γ2 is consistent. By Reduction ad Absurdum suppose that it
is inconsistent. This implies that:

1 there exists Γ′2 ⊆ Γ2 finite s.th. E1∪ϕ1Γ′2 inconsistent quasi-compactness

2 E1∪ϕ1(∧Γ′2) inconsistent institution has conjunctions

3 E1 |= ϕ1(¬∧Γ′2) institution has also negations, 2

4 ¬∧Γ′2 ∈ Γ1 3, definition of Γ1.

Since Γ2 is a closed theory and Γ′2 ⊆ Γ2, we have that ∧Γ′2 ∈ Γ2, which together
with relation 4 contradicts that Γ1 ∪Γ2 is consistent. Therefore we can take A0

1 ∈
(E1∪ϕ1Γ2)

∗.

0.2 The second base case represents the initialisation of the chain f2 by setting a Σ2-
model A0

2 ∈ E∗2 and a Σ-homomorphism g0 : A0
1↾ϕ1 → A0

2↾ϕ2 . Let us abbreviate A0
1↾ϕ1

by B0. We consider a pushout square of signature morphisms as follows:

Σ
ιΣB0

//

ϕ2

��

ΣB0

u

��

Σ2 v
// •

(9.9)

If uEB0 ∪ vE2 were consistent then we let B be one of its models. Then we can set
A0

2 = B↾v and g0 = iΣ,B0 B↾u (as by the Satisfaction Condition B↾u |=EB0 ). Thus it re-
mains to show the consistency of uEB0 ∪ vE2. We do this by Reductio ad Absurdum,
so we suppose it is inconsistent. We have that:
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5 ∃ e ∈ SenΣB0 s.th. EB0 |= e, vE2 |= u(¬e) quasi-compactness, conjunctions, negations

Let e′ ∈ SenΣ be any universal ιΣB0-quantification of ¬e. We prove that:

6 E2 |= ϕ2e′.

Let M2 ∈ E∗2 . By the Satisfaction Condition M2 |= ϕ2e′ is equivalent to M2↾ϕ2 |= e′.
For any ιΣB0-expansion M0 of M2↾ϕ2 , by the weak model amalgamation of the square
(9.9), there exists a model M such that M↾u = M0 and M↾v = M2. Then:

7 M |= vE2 M↾v = M2, M2 |= E2, Satisfaction Condition

8 M |= u(¬e) 7, vE2 |= u(¬e) (5)

9 M0 |=¬e M0 = M↾u, 8, Satisfaction Condition.

Hence M2↾ϕ2 |= e′ and thus 6 is proved. We continue as follows.

10 e′ ∈ Γ2 6, Γ2 = (Senϕ2)
−1E2

11 B0 |= e′ 10, B0 |= Γ2 (A0
1 |= ϕ1Γ2, Satisfaction Condition)

12 (B0)B0 |=¬e 11, e′ universal ιΣB0-quantification of ¬e

13 (B0)B0 |= e EB0 |= e (5), (B0)B0 |= EB0 (as initial model of the diagram of B0).

The relations 12 and 13 altogether represent a contradiction, hence uEB0 ∪ vE2 is
consistent. Consequently the model B exists, which gives A0

2 and g0.

n.1 Now we find f n
1 and hn such that f n

1 ↾ϕ1 = gn;hn. In order to simplify formulas we
denote An

i ↾ϕi by Bn
i , i = 1,2. We first show that it suffices to find a ((Σ1)An

1
,EAn

1
)-

model Fn
1 and a (ΣBn

2
,EBn

2
)-model Hn such that Fn

1 ↾ιϕ1 Bn
1
= Hn↾ιΣgn .

– By assuming that Fn
1 and Hn exist, we define f n

1 = iΣ1,An
1
Fn

1 and hn = iΣ,Bn
2
Hn and

let us prove that f n
1 ↾ϕ1 = gn;hn.

– Note that by the functoriality of ι the diagram below commutes:

(Σ1)An
1

ΣBn
1

ιϕ1 Bn
1

oo
ιΣgn

// ΣBn
2

Σ1

ιΣ1 An
1

OO

Σ
ϕ1

oo

ιΣBn
1

OO

ιΣBn
2

>>

– Note also that by the naturality of i the diagram below commutes:

Mod((Σ1)An
1
,EAn

1
)

Mod ιϕ1 Bn
1
//

iΣ1 ,A
n
1
��

Mod(ΣBn
1
,EBn

1
)

iΣ,Bn
1
��

Mod(ΣBn
2
,EBn

2
)

Mod ιΣgn
oo

iΣ,Bn
2

��

An
1/ModΣ1 Modϕ1

// Bn
1/ModΣ Bn

2/ModΣ
gn/ModΣ

oo
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– Therefore, by following the naturality of i in the diagram above

f n
1 ↾ϕ1 = (iΣ1,An

1
Fn

1 )↾ϕ1 = iΣ,Bn
1
(Fn

1 ↾ιϕ1 Bn
1
) definition of f n

1 , naturality of i

= iΣ,Bn
1
(Hn↾ιΣgn) Fn

1 ↾ιϕ1 Bn
1
= Hn↾ιΣgn

= gn;(iΣ,Bn
2
Hn) = gn;hn naturality of i, definition of hn.

It remained to get Fn
1 and Hn. For this it is enough to consider a pushout like below

ΣBn
1

ιϕ1 Bn
1
//

ιΣgn

��

(Σ1)An
1

u

��

ΣBn
2 v

// •

and find a model for uEAn
1
∪ vEBn

2
. Its u-reduct will be Fn

1 and its v-reduct will be Hn.
We show the consistency of uEAn

1
∪ vEBn

2
by Reductio ad Absurdum. Suppose it is

inconsistent. Then

14 exists e ∈ SenΣBn
2

s.th. EBn
2
|= e, uEAn

1
|= v(¬e) quasi-compactness, conjunctions, negations.

Let e′ ∈ SenΣBn
1

be any universal ιΣgn-quantification of ¬e. Then

15 EAn
1
|= (ιϕ1Bn

1)e
′ like with 6

16 (An
1)An

1
|= (ιϕ1Bn

1)e
′ 15, (An

1)An
1

initial ((Σ1)An
1
,EAn

1
)-model

17 (An
1)An

1
↾ιϕ1 Bn

1
∼= (Bn

1)Bn
1

naturality of i

18 (Bn
1)Bn

1
|= e′ 16, 17, Satisfaction Condition

19 (Bn
2)Bn

2
|= (ιΣgn)EBn

1
ιΣgn : (ΣBn

1
,EBn

1
)→ (ΣBn

2
,EBn

2
) theory morphism

20 (Bn
2)Bn

2
↾ιΣgn |= EBn

1
19, Satisfaction Condition

21 (Bn
2)Bn

2
↾ιΣgn |= e′ 18, 20, e′ preserved by the unique homomorphism (Bn

1)Bn
1
→ (Bn

2)Bn
2
↾ιΣgn

22 (Bn
2)Bn

2
|=¬e 21, e′ ιΣgn-quantification of ¬e

23 (Bn
2)Bn

2
|= e EBn

2
|= e (14).

Since 22 and 23 represent a contradiction, it follows that uEAn
1
∪ vEBn

2
is consistent,

hence we can get Fn
1 and Hn.

n.2 The last part of the proof consists of finding f n
2 and gn+1 such that f n

2 ↾ϕ2 = hn;gn+1.
Since this is very similar to the proof of (n.1) we may skip it.

□
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Obtaining concrete Robinson Consistency Theorems. We now see how the hypothe-
ses of Thm. 9.20 can be established in concrete institutions.

1. Like in Thm. 7.11 on the existence of saturated models, in the applications the model
homomorphisms of the institutions should be restricted to the elementary ones. More-
over, in this context, we also need diagrams. Cor. 5.36 provides a solution to this as it
establishes institutions with diagrams for the elementary homomorphisms.

2. This is a common property of many concrete institutions of interest. However, here
we have to consider that the model homomorphisms are elementary, which may pose
some difficulties with the semi-exactness. But, luckily, here we need amalgamation
only for the models and not for the homomorphisms.

3. In the applications this condition essentially requires that the institution has universal
quantification for the class of the injective signature extensions with constants. This
is justified by the fact that usually both elementary extensions ιΣM and the signature
morphisms of the form ιΣh for h : M→N elementary Σ-homomorphism are signature
extensions with constants. In the case of ιΣh this is so because in the applications h
is injective as an elementary homomorphism in an institution with negations. For
establishing the universal quantification for the injective signature extensions with an
arbitrary number of constants, in institutions where quantification is defined only for
injective signature extensions with a finite number of constants, one uses the same
argument as in the proof of Cor. 9.6 which relies upon sentences being finitary.

4. This is perhaps the condition that constrains most the applicability domain of the the-
orem, but does not require any explanations concerning its realisation in the concrete
institutions.

5. The existence of ω-co-limits for models is handled by instances of the general re-
sult on directed co-limits of elementary homomorphisms given by Cor. 7.4. More-
over, since the directed co-limits of elementary homomorphisms are obtained as co-
limits using ordinary model homomorphisms (and afterwards the co-limiting co-cone
is shown to consist of elementary homomorphisms), the preservation of ω-co-limits
of elementary homomorphisms follows as a consequence of the arities of the symbols
of the signatures being finite as in the typical example given by Prop. 6.8.

6. The final hypothesis of the theorem, the quasi-compactness, can be established in the
applications by methods from Chap. 6 on ultraproducts, but also by other methods (not
yet discussed) too, such as completeness. Though, as a side remark, we may notice
that compactness, from all hypotheses of Thm. 9.20 being the most demanding one to
establish, was not required by any of the previous interpolation results that were based
on axiomatizability properties. Those results did not require semantic negations either.
If we look at the proof of Thm. 9.20, we can see that the roles of the negations and of
the compactness are very related to each other. Moreover, because of negations and
conjunctions it does not matter which form of compactness we chose, model-theoretic
or consequence-theoretic, as in this case these are equivalent forms.



9.4. Interpolation by consistency 271

Since the conditions of the general implication of Craig interpolation from Robinson
consistency (Thm. 9.15) are part of the list of conditions of Thm. 9.20, we can formulate
the expected interpolation consequence of the latter result.

Corollary 9.21. In any institution satisfying the list of hypotheses of Thm. 9.20, any weak
model amalgamation square of signature morphisms such that its span lifts isomorphisms,
is a Craig interpolation square.

Note how the lifting of isomorphisms is a recurrent condition in our interpolation
results, in its single signature version it was required in Thm. 9.12.

We can now obtain again the FOL interpolation result of Cor. 9.17, but this time as
an instance of Robinson consistency Thm. 9.20.

Corollary 9.22. FOL has Craig (SigFOL ,(i∗∗)) and ((i∗∗),SigFOL)-interpolation.

But let us compare the mathematical costs of obtaining this result by the two meth-
ods. The Robinson Consistency method has a lower cost as the other method, based on
the Keisler-Shelah theorem in FOL , requires results about saturated models, also in re-
lation with ultraproducts, some non-trivial set theory, the assumption of GCH. Some of
these are results of complex developments beyond the effort required by the Robinson
consistency method.

Failure of interpolation (and consequently of Robinson consistency) because of non-
injectivity. The FOL interpolation result given by Cor. 9.17 (or 9.22) and consequently
the Robinson consistency in FOL , are sharp indeed in the sense that if none of the sig-

nature morphisms of a span Σ1 Σ
ϕ1
oo

ϕ2
//Σ2 is (i ∗ ∗) then the pushout of the span

might fail to be a Ci square. The following gives an example for this situation. Consider
the following pushout of FOL signatures containing only sorts and constants as shown in
the diagram below:

Σ = {a : s1,b : s2}
ϕ1

//

ϕ2

��

Σ1 = {a : s}

θ1
��

Σ2 = {a,b : s}
θ2

// Σ′ = {a : s}

Evidently, θ1(a = a) |= θ2(a = b). However we will show that there is no interpolant E
for this. By Reductio ad Absurdum suppose that there is one. Then

(a = a) |= ϕ1E and ϕ2E |= (a = b).

Consider the models

model X signature of X Xs Xs1 Xs2 Xa Xb
M Σ – {A,B} {A,B} A A
N Σ – {A,B} {A,B} B B
N1 Σ1 {A,B} – – B –
M2 Σ2 {A,B} – – A B
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Note that N = N1↾ϕ1 , M = M2↾ϕ2 and that M ∼= N by the isomorphism which is identity
on s2 and swaps the elements of s1. Then

1 N1 |= (a = a) |= ϕ1E E interpolant

2 N |= E 1, N = N1↾ϕ1 , Satisfaction Condition

3 M |= E 2, M ∼= N

4 M2 |= ϕ2E 3, M = M2↾ϕ2 , Satisfaction Condition

5 M2 |= (a = b) 4, ϕ2E |= (a = b) (E interpolant).

Since 5 is false, E does not exist.

Interpolation in FOL versus interpolation in some of its sub-institutions. We have
obtained a series of concrete interpolation results in FOL and in sub-institutions of FOL
as instances of general institution-independent result. Now we are in the position to com-
pare the interpolation properties in FOL on the one hand, and in sub-institutions such as
HCL , EQL , UNIV , etc. on the other hand.

• All interpolation properties developed in the above mentioned institutions require that
at least one morphism of the span ϕ1, ϕ2 of the respective interpolation square, is
injective on the sorts.

• However, in the sub-institutions the injectivity requirement is more stringent than in
FOL as it extends also operation and relation symbols. Moreover, in the case of the
operation symbols, besides mere injectivity other technical conditions are necessary,
such as encapsulation or non-empty sorts. Thus we can say that FOL has stronger
interpolation properties than the mentioned sub-institutions.

• Even if the conditions of interpolation in HCL , EQL , or UNIV , etc., are more strin-
gent than in FOL , we will see later on in the chapter on applications to specification
that they fit well with what is required by the modularisation technologies.

Exercises
9.7. [3] Elementary amalgamation squares
A commuting square of signature morphisms

Σ
ϕ1
//

ϕ2

��

Σ1

θ1

��

Σ2
θ2

// Σ′

is an elementary amalgamation square if for each Σ1-model M1 and each Σ2-model M2 such that
M1↾ϕ1 ≡M2↾ϕ2 there exists a unique Σ′-model M′ such that M′↾θ1 ≡M1 and M′↾θ2 ≡M2. In any in-
stitution with negation, a commuting square of signature morphisms is an elementary amalgamation
square if and only if it is a Robinson consistency square.
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9.8. In any institution with diagrams such that each pushout of elementary extensions is a Robinson
consistency square, any two elementary equivalent models can be “embedded” into a common

model in the sense that for each M1 ≡ M2 there exists homomorphisms M1
h1
//M M2

h2
oo .

(Hint: Consider the pushout of the span of elementary extensions along the models M1 and M2, and
consider the theories (M1)M1

∗ and (M2)M2
∗.)

9.9. Interpolation in FOL∞,ω

FOL∞,ω has Craig (Sig,(i ∗ ∗)) and ((i ∗ ∗),Sig)-interpolation. (Hint: Use Robinson consistency
Thm. 9.20.)

9.10. Robinson consistency in PA
Develop the Robinson consistency result for PA as an instance of Thm. 9.20. Derive a correspond-
ing interpolation result for PA .

9.5 Craig-Robinson interpolation
In this section we will introduce a more refined form of interpolation than Craig interpo-
lation. Although it is rather marginal in the mainstream logic, for some computing science
applications it does appear as the appropriate form of interpolation. Moreover, as we will
see, the same is true for some model theory as such applications.

The Craig interpolation property can be strengthened by adding to the ‘primary’
premises E1 a set Γ2 (of Σ2-sentences) as ‘secondary’ premises. In any institution we say
that a commuting square of signature morphisms like below

Σ
ϕ1
//

ϕ2

��

Σ1

θ1
��

Σ2
θ2

// Σ′

is a Craig-Robinson Interpolation square (abbreviated CRi square) when for each set E1
of Σ1-sentences and each sets E2 and Γ2 of Σ2-sentences, if θ1E1 ∪θ2Γ2 |=Σ′ θ2E2, then
there exists a set E of Σ-sentences such that E1 |=Σ1 ϕ1E and Γ2 ∪ ϕ2E |=Σ2 E2. Also
the ⟨L , R ⟩-interpolation concept can be extended in a straightforward way from Craig
interpolation to Craig-Robinson interpolation.

Craig-Robinson versus Craig interpolation. By taking Γ2 to be the empty set /0 we
can see that

Fact 9.23. Any CRi square is also a Ci square.

The opposite implication does not hold in general. The following gives a sufficient
condition when Ci and CRi are equivalent interpolation concepts.

Proposition 9.24. In any institution that has implications and is quasi-compact, a com-
muting square of signature morphisms is a CRi square if and only if it is a Ci square.
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Proof. We focus only on the implication not covered by Fact 9.23, that Ci implies CRi.
Consider E1 ⊆ SenΣ1 and E2,Γ2 ⊆ SenΣ2 such that θ1E1∪θ2Γ2 |= θ2E2.

• First we notice that without loss of generality we may assume that E2 consists of only
one sentence e, i.e., E2 = {e}. Indeed, if we assumed that CRi property holds for each
e ∈ E2, let Ee be the interpolant corresponding to each e ∈ E2. Then

⋃
e∈E2

Ee is an
interpolant corresponding to E2.

• Because we may assume that E2 = {e}, then by the quasi-compactness assumption,
we may further assume without loss of generality that E1 and Γ2 are finite.

• Let Γ2⇒ e denote γ1⇒ (· · · ⇒ (γn⇒ e)) where Γ2 = {γ1, . . . ,γn}. Then

1 θ1E1 |= θ2(Γ2⇒ e) θ1E1 ∪θ2Γ2 |= θ2e, induction on the size of Γ2

2 there exists E ⊆ SenΣ s.th. E1 |= ϕ1E, ϕ2E |= (Γ2⇒ e) 1, Ci property

3 E1 |= ϕ1E, ϕ2E ∪Γ2 |= e 2, induction on the size of Γ2.

□

Prop. 9.24 gives the possibility to extend Ci properties to CRi properties in institu-
tions as illustrated by the following example.

Corollary 9.25. FOL has Craig-Robinson (Sig,(i∗∗)) and ((i∗∗),Sig)-interpolation.

Proof. By Cor. 9.17, 9.22, and 9.11 FOL has the corresponding Craig interpolation prop-
erties, has implications and is compact (cf. Cor. 6.24). □

Although one may get the feeling that CRi embeds a form of implication and there-
fore it is expected only in institutions having semantic implications, it is not so. Later on
(in Sect. 14.3) we will see that institutions without semantic implications such as EQL
and HCL may enjoy CRi for a wide class of pushout squares of signature morphisms.

Failure of Craig-Robinson interpolation. In the absence of implications, CRi may fail
even in intersection-union squares as shown by the following example. In EQL , consider
Σ = Σ2 single-sorted signatures with four constants a,b,c,d, and Σ1 = Σ′ their extension
with an unary operation symbol f . Let E1 = { f a = b, f c = d}, E2 = {b = d}, and Γ2 =
{a= c}. Then E1∪Γ2 |=E2 but there is no Craig-Robinson interpolant E such that E1 |=E
and E ∪Γ2 |= E2.

Extending interpolation
Sometimes interpolation properties can be established in two stages. At the first stage we
establish it for a particular class of commuting squares of signature morphisms. At the
second stage we extend them to a larger class of squares of signature morphisms by a
general method formulated by Thm. 9.28 below. This technique uses Craig-Robinson in-
terpolation and it constitutes our first application of CRi. We need the following concept.
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Logical kernels. A signature morphism ϕ : Σ→ Σ′ has a logical kernel, when there
exists a Σ-theory lkϕ such that

any Σ-model M has a ϕ-expansion if and only if M |= lkϕ.

Fact 9.26. Any logical kernel is a tautology in the target signature, i.e., |=Σ′ ϕ lkϕ.

The following is a typical example of a logical kernel. It just shows how one can
recover the model expansion property in the case of the signature morphisms that are
injective on the sorts but not necessarily injective on the operation or the relation symbols.
The idea is simple, we impose syntactically that the Σ-model does not interpret differently
those symbols on which the injectivity of ϕ fails.

Fact 9.27. Any (i∗∗)-morphism of FOL signatures ϕ : Σ→Σ′ such that Σ has non-empty
sorts has the logical kernel

lkϕ = {(∀X)πX ⇔ π′X | ϕrlπ = ϕrlπ′} ∪ {(∀X)σX = σ′X | ϕopσ = ϕopσ′}.

In the same way we can even treat the non-empty sorts condition. If ϕ does not add
any new operation symbols whose result is a non-empty sort in Σ, the definition of lkϕ in
Fact 9.27 still does it, otherwise we can force the semantic non-emptiness by adding to
lkϕ a sentence

(∃x : s) x = x

for each sort s of Σ that has the issue described above.

Theorem 9.28 (Extending interpolation). In any institution with model amalgamation
consider classes of signature morphisms L0,L ,R0,R ,E ⊆ Sig such that

1. each signature morphism φ ∈ L (R ) can be factored as φ = i;ϕ such that ϕ ∈ E and
i ∈ L0 (R0), and

2. each ϕ ∈ E is a retract that has a logical kernel.

If the institution has the Craig-Robinson (L0,R0)-interpolation property then it also has
the Craig-Robinson (L ,R )-interpolation property.

Proof. Consider a pushout θ1,θ2 of a span of signature morphisms φ1,φ2 like in diagram
(9.11) such that φ1 ∈ L , φ2 ∈ R , and let E1 ⊆ SenΣ1 and Γ2,E2 ⊆ SenΣ2 such that

θ1E1 ∪ θ2Γ2 |= θ2E2. (9.10)

The main idea of this proof is to derive a CR (L0,R0)-interpolation problem and show
that its interpolant is an interpolant for (9.10) too.
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• Let φ1 = i1;ϕ1, φ2 = i2;ϕ2 such that i1 ∈ L0, i2 ∈ R0 and ϕ1,ϕ2 ∈ E . Let i′1, i
′
2 be a

pushout of i1, i2 as in diagram (9.11). By the universal property of pushouts, let ϕ be
the unique signature morphism Σ′′→ Σ′ such that i′k;ϕ = ϕk;θk, k = 1,2.

Σ
i1
//

i2
��

φ1

''

φ2

��

Σ′1 ϕ1
//

i′1
��

Σ1

θ1

��

Σ′2 i′2

//

ϕ2

��

Σ′′

ϕ

��

Σ2
θ2

// Σ′

(9.11)

• Consider ϕi a left-inverse to ϕi, i = 1,2, and define E ′1 = ϕ1E1 ∪ lkϕ1 , Γ′2 = ϕ2Γ2 ∪
lkϕ2 , and E ′2 = ϕ2E2.

• We will show that i′1E ′1 ∪ i′2Γ′2 |= i′2E ′2. This would represent a CR (L0,R0)-interpolation
problem. Consider a Σ′′-model M′′ such that M′′ |= i′1E ′1 ∪ i′2Γ′2. We have to prove that
M′′ |= i′2E ′2. Define M′k = M′′↾i′k

, k = 1,2. Then

1 M′1 |= ϕ1E1∪ lkϕ1 , M′2 |= ϕ1Γ2∪ lkϕ2 M′′ |= i′kE ′k , k = 1,2, Satisfaction Condition.

Because of the logical kernel property, from 1 we obtain a ϕk-expansion Mk of M′k,
k = 1,2. Then

2 M1 |= ϕ1(ϕ1E1) = E1 1, Satisfaction Condition, ϕ1;ϕ1 = 1Σ1

3 M2 |= ϕ2(ϕ2Γ2) = Γ2 1, Satisfaction Condition, ϕ2;ϕ2 = 1Σ2

4 Mk↾φk = Mk↾ϕk↾ik = M′k↾ik = M′′↾i′k
↾ik , k = 1,2 φk = ik;ϕk , definitions of Mk , M′k

5 M1↾φ1 = M2↾φ2 4, i1; i′1 = i2; i′2

By the model amalgamation property, from 5 we obtain an unique amalgamation M′ ∈
|ModΣ′| of M1 and M2. Then

6 M′↾ϕ↾i′k
= M′↾θk↾ϕk = Mk↾ϕk = M′k = M′′↾i′k

ik;ϕ = ϕk;θk , definitions of M′, Mk , M′k

7 M′↾ϕ = M′′ 6, uniqueness of model amalgamation

8 M′ |= ϕ(i′1E ′1∪ i′2Γ′2) 7, Satisfaction Condition, M′′ |= i′1E ′1 ∪ i′2Γ′2

9 ϕ(i′1E ′1) = θ1(ϕ1E ′1) |=| θ1E1 definition of E ′1, ϕ1;ϕ1 = 1Σ1 , Fact 9.26, ‘translation’ of |=

10 ϕ(i′2Γ′2) |=| θ2Γ2 similarly to 9

11 M′ |= θ2E2 = θ2(ϕ2E ′2) 8, 9, 10, θ1E1 ∪θ2Γ2 |= θ2E2, E2 = ϕ2E ′2 (ϕ2;ϕ2 = 1Σ2 )
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12 M′′ |= i′2E ′2 7, 11, ϕ2;θ2 = i′2;ϕ, Satisfaction Condition, ϕ2;ϕ2 = 1Σ2 .

• We have thus showed that i′1E ′1 ∪ i′2Γ′2 |= i′2E ′2. Let E ⊆ SenΣ be a CR interpolant such
that E ′1 |= i1E and Γ′2 ∪ i2E |= E ′2. We show that E is an interpolant for the original
consequence θ1E1∪θ1Γ2 |= θ2E2 too. This goes as follows:

13 ϕ1E ′1 |= ϕ1(i1E) E ′1 |= i1E, ‘translation’ of semantic consequence |=

14 E1∪ϕ1(lkϕ1) |= φ1E 13, ϕ1;ϕ1 = 1Σ1 , φ1 = i1;ϕ2

15 E1 |= φ1E 14, Fact 9.26

16 ϕ2Γ′2∪ϕ2(i2E) |= ϕ2E ′2 Γ′2 ∪ i2E |= E ′2, ‘translation’ of semantic consequence |=

17 Γ2∪ϕ2(lkϕ2)∪φ2E |= E2 16, ϕ2;ϕ2 = 1Σ2 , φ2 = i2;ϕ2

18 Γ2∪φ2E |= E2 17, Fact 9.26.

The relations 15 and 18 show that E is an interpolant for the CR (L ,R )-interpolation
problem (9.10).

□

The result of Thm. 9.28 relies on the CR form of interpolation, it cannot be obtained
for just Craig interpolation. The reason for this is the logical kernel lkϕ2 , which is neces-
sary to obtain the Σ2-model M2. It is an indispensable part of the secondary premise of
interpolation, Γ′2. In an eventual Craig interpolation formulation of the theorem, we can
dispense with Γ2, but not with lkϕ2 , which forces us into CR interpolation. However if in
some applications we may find CRi being too strong then we can still have a Ci version of
Thm. 9.28 by weakening its conclusion. We have to eliminate lkϕ2 , which can be achieved
by trivialising ϕ2, which means R = R0. So we can formulate the following Ci version
of Thm. 9.28.

Corollary 9.29. In any institution with model amalgamation consider classes of signa-
ture morphisms L0,L ,R0,E ⊆ Sig such that

1. each signature morphism φ∈L can be factored as φ= i;ϕ such that ϕ∈E and i∈L0,
and

2. each ϕ ∈ E is a retract that has a logical kernel.

If the institution has the Craig (L0,R0)-interpolation property then it also has the Craig
(L ,R0)-interpolation property.

Interpolation in infinitary second order logic. In what follows we illustrate the appli-
cability of the extension Thm. 9.28 by a concrete case. Let SOL∞,ω be the extension of
second order logic SOL which allows infinite conjunctions of sentences.

Proposition 9.30. SOL∞,ω has Craig (Sig,R ) and (R ,Sig)-interpolation for R the class
of (i ∗ ∗)-morphisms of signatures ϕ : Σ→ Σ′ for which Σ′ is finite and both Σ and Σ′

have non-empty sorts.
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Proof. First, let us remember that the category of SOL∞,ω signatures is that of the FOL
signatures, the only difference between the two institutions being at the level of the sen-
tences. Then, SOL∞,ω is quasi-compact because it has infinite conjunctions. This is unlike
SOL , and it is important because it allows all the connections between Ci, RC and CRi.

• By the equivalence between Ci and RC provided Theorems 9.15 and 9.16, it is enough
to establish Craig (Sig,R )-interpolation.

• By Prop. 9.24, in SOL∞,ω Ci is equivalent to CRi.

• Then we can apply the extension Thm. 9.28 where R0 is the class of the (iii)-morphisms
of signatures Σ→ Σ′ such that Σ′ is finite and Σ,Σ′ have non-empty sorts. For this we
need the Craig (Sig,R0)-interpolation for SOL∞,ω. Cor. 9.5 does this for us by argu-
ments similar to those used for obtaining the respective Ci property for SOL (Cor. 9.6).
Though for SOL∞,ω the argument for the existence of Σ0 finite (see the proof of
Cor. 9.6) has to be done on the basis that Σ′ is finite rather than that the sentences
of the institution are finitary.

• In order to apply Thm. 9.28 mentioned above it still remains to set up the class E of
signature morphisms. This is the class of the (bss)-morphisms. By Fact 9.27 they have
logical kernels and, moreover, it is also easy to see that they are also retracts.

• It remains to show that each signature morphism (φ : (S,F,P)→ (S′,F ′,P′)) ∈ R
can be factored as φ = i;ϕ with i ∈ R0 and ϕ ∈ E . This factoring is illustrated by the
diagram

(S,F,P)
φ∈R

//

i∈R0 ##

(S′,F ′,P′)

(S′,F ⋆φ+F ′,P⋆φ+P′)
ϕ∈E

::

where for each arity w and sort s

(F ⋆φ+F ′)φw→φs = Fw→s⊎F ′φw→φs and (P⋆φ+P′)φw = Pw⊎P′φw.

The two formulas above signify a disjoint union between the constituent sets of F
and P, with the arities and sorts renamed according to φst one the one hand, and the
constituent sets of F ′ and P′, on the other hand. ϕ is the obvious signature morphism
that aggregates φ and the identity on (S′,F ′,P′).

□

Exercises
9.11. In the counter-example showing how CRi may fail in EQL , we stated that the respective
consequence does not admit an interpolant. Prove this. (Hint: If E1 |= E with E ⊆ SenEQL

Σ, then
each Σ-model satisfies E.)
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9.12. Symmetric Birkhoff institutions
A Birkhoff institution (Sig,Sen,Mod, |=,F ,B) is symmetric when B is symmetric. Extend
Thm. 9.7 to Craig-Robinson interpolation for symmetric Birkhoff institutions.

9.13. [76] Lifting interpolation to theories
For any institution I and a class S ⊆ Sig of signature morphisms let S th be the class of theory
morphisms ϕ such that ϕ ∈ S (as a signature morphism). The institution I th of the theories of I has
the Craig-Robinson (L th,R th)-interpolation if I has the Craig-Robinson (L ,R )-interpolation.

9.6 Borrowing interpolation

The borrowing method is the last method to obtain interpolation properties that we dis-
cuss in this chapter. In brief, given an institution comorphism I → I ′ such that I ′ has a
certain interpolation property, under certain conditions this can be transferred to I along
the comorphism. This method is especially useful when I ′ is a well studied institution
in which the interpolation properties are well understood, while our know-how about I
may be much weaker. In some cases it would be possible to apply on I our previously
developed general interpolation results, but still the borrowing method might require less
mathematical effort. The borrowing method requires some special interpolation properties
of the involved comorphism.

Interpolation properties of comorphisms. Let (Φ,α,β) : I → I ′ be a comorphism of
institutions and let ϕ : Σ→Ω be a signature morphism in I . The naturality of α gives us
the following commutative square of signature morphisms:

SenΣ
αΣ
//

Senϕ

��

Sen′(ΦΣ)

Sen′(Φϕ)

��

SenΩ
αΩ

// Sen′(ΦΩ)

(9.12)

Then the comorphism (Φ,α,β)

• has the Craig ϕ-left interpolation property when for each E1 ⊆ SenΩ, E2 ⊆ Sen′(ΦΣ)
such that αΩE1 |=′ (Φϕ)E2 there exists E ⊆ SenΣ such that E1 |= ϕE and αΣE |=′ E2,
and

• has the Craig ϕ-right interpolation property when for each E1 ⊆ Sen′(ΦΣ), E2 ⊆ SenΩ

such that (Φϕ)E1 |=′ αΩE2 there exists E ∈ SenΣ such that E1 |= αΣE and ϕE |= E2.

The left and the right interpolation properties are mutually symmetric with respect to
the diagonal SenΣ→ Sen′(ΦΩ) in the commutative square (9.12). We also extend the
definitions of these two properties from single morphisms to classes S ⊆ Sig by requiring
that each morphism from S has the respective property.
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Borrowing interpolation along institution comorphisms
The following is a generic result that can be used for borrowing interpolation properties
along institution comorphisms.

Proposition 9.31. Let (Φ,α,β) : I → I ′ be a conservative institution comorphism such
that Φ preserves pushouts, and let L ,R ⊆ Sig be classes of signature morphisms such
that I ′ has the Craig (ΦL ,ΦR )-interpolation. If (Φ,α,β) has the Craig L-left or R -
right interpolation, then I has Craig (L ,R )-interpolation.

Proof. Consider a pushout of signature morphisms in I as shown below

Σ
ϕ1
//

ϕ2

��

Σ1

θ1
��

Σ2
θ2

// Σ′

(9.13)

such that ϕ1 ∈ L , ϕ2 ∈ R , E1 ⊆ SenΣ1, E2 ⊆ SenΣ2 and θ1E1 |= θ2E2. We have to find an
interpolant E ⊆ SenΣ for this (L ,R )-interpolation problem.

• We have that:

1 αΣ′(θ1E1) |=′ αΣ′(θ2E2) θ1E1 |= θ2E2, Satisfaction Condition of (Φ,α,β)

2 (Φθ1)(αΣ1E1) |=′ (Φθ2)(αΣ2E2) 1, naturality of α.

• Since Φ maps the pushout square (9.13) to the following pushout square of signature
morphisms in I ′

ΦΣ
Φϕ1

//

Φϕ2

��

ΦΣ1

Φθ1

��

ΦΣ2
Φθ2

// ΦΣ′

(9.14)

the relation 2 represents a Craig (ΦL ,ΦR )-interpolation problem.

• By the Ci property of I ′ there exists an interpolant E0 ⊆ Sen′(ΦΣ) such that

3 αΣ1E1 |=′ (Φϕ1)E0

4 (Φϕ2)E0 |=′ αΣ2E2.

From now we can proceed in two alternative ways depending on which of the left or
the right interpolation properties are available for (Φ,α,β).

• In the case of L-left interpolation, from 3 we have that there exists E ⊆ SenΣ such that
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5 E1 |= ϕ1E

6 αΣE |=′ E0.

We show that E is the desired interpolant for θ1E1 |= θ2E2. Half of the interpolant
property of E is given by 5. We obtain the other half as follows:

7 (Φϕ2)(αΣE) |=′ (Φϕ2)E0 6, ‘translation’ of semantic consequence |=′

8 αΣ2(ϕ2E) |=′ αΣ2E2 7, 4, naturality of α, ‘transitivity’ of semantic consequence |=′

9 ϕ2E |= E2 8, (Φ,α,β) conservative.

The relations 5 and 9 show that E is an interpolant for θ1E1 |= θ2E2.

• In the case of R -right interpolation we can do like we did for L-left interpolation, by
using the R -right interpolation property on 4, get E, and then use 5 and the conserva-
tivity of the comorphism to show that E is an interpolant for θ1E1 |= θ2E2.

□

In the applications, the hypothesis on the conservativity of the comorphism can be
typically solved as a consequence of the model expansion property of β. The preservation
of pushout squares by the signature translation functor Φ is a rather common property in
the applications; often Φ is even a left-adjoint. The substantial specific condition of the
general borrowing result of Prop. 9.31 is the interpolation property of the comorphism.
In what remains of this section we will address this condition. We will also present sam-
ples of concrete applications of the borrowing interpolation technique put forward in this
section.

Borrowing interpolation between institutions having the same expressive power. Let
(Φ,α,β) : I → I ′ be an institution comorphism. We say that it preserves the expressive
power when for each ΦΣ-theory Γ′ there exists a Σ-theory Γ such that αΣΓ |=| Γ′. This
property says that any axiomatizable class of models from I ′ can be axiomatised from
I . In this case the interpolation properties for the comorphism can be established rather
easily, leading to a rather easy transfer of interpolation from the target institution to the
source institution.

Proposition 9.32. Any institution morphism comorphism (Φ,α,β) : I → I ′ which is
conservative and preserves the expressive power has both the Craig SigI -left and right
interpolation properties.

Proof. Under the notations employed when we defined the Craig left and right interpola-
tion we let E ⊆ SenΣ such that

αΣE |=|

{
E2, for the left interpolation
E1, for the right interpolation.
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Then the Craig SigI -left and right interpolation properties follow immediately, in each
case one of the two properties of the interpolant holds by definition, while in the case of
the other one we rely on the conservativity hypothesis. □

A good application of the result of Prop. 9.32 is the derivation of interpolation prop-
erties in PA from those in FOL . This is proposed to the reader in Ex. 9.14.

Interpolation properties for comorphisms through axiomatizabillity

On the one hand, in Sec. 9.3 we developed two interpolation-by-axiomatizability theo-
rems that had a ‘left’ and ‘right’ character, respectively. On the other hand, now we have
the concepts of ‘left’ and ‘right’ interpolation for comorphisms. Can we relate these two
situations, and if yes then can we use Theorems 9.7 and 9.12 to obtain some ‘left’ and
‘right’ interpolation properties for comorphisms at a general level? In what follows we
will answer positively to both questions. This requires an effort which hass the following
two main aspects:

• We have to interpret the heterogeneous situation defined by an institution comor-
phism as a homogeneous situation of a single institution.

• We have to inspect the proofs of the two theorems mentioned above in order to
develop a more refined view regarding the role played by each of their conditions.

The former aspect will be understood in its full generality in Chap. 14 only, as it is the
simplest non-trivial case of the so-called ‘Grothendieck institution’ construction. In other
words, here we anticipate this important concept by means of a good application.

Flattening comorphisms to institutions. Let us start with a comorphism (Φ,α,β) : I →
I ′. We can define an institution I ♯ = (Sig♯,Sen♯,Mod♯, |=♯) as follows.

• Sig♯ puts the signatures of I and I ′ on ‘one bag’, but qualifying them by their origin.
So an object of Sig♯ is either a pair (I ,Σ) with Σ ∈ |Sig| or else a pair (I ′,Σ′) with
Σ′ ∈ |Sig′|. The signature morphisms of Sig♯ are of two kinds:

– ‘internal’ ones such as ϕ : (I ,Σ)→ (I ,Ω) (or ϕ′ : (I ′,Σ′)→ (I ′,Ω′)), with ϕ ∈
Sig(Σ,Ω) (ϕ′ ∈ Sig′(Σ′,Ω′)), or

– ‘external’ ones, ϕ : (I ,Σ)→ (I ′,Σ′), with ϕ ∈ Sig′(ΦΣ,Σ′).

Note that there are no signature morphisms (I ′,Σ′)→ (I ,Σ). Hence the only possible
compositions are between ‘internal’ morphisms – and this is defined on the basis of
the composition of signature morphisms in the respective institution – and between
an ‘internal’ and an ‘external’ morphism. The latter kind of composition is defined as
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shown in the diagram below:

(I ,Σ)
ϕ
//

Φϕ ; θ
$$

(I ,Ω)

θ

��

θ;ζ

$$

(I ′,Ω′)
ζ

// (I ′,Z)

It is easy to check that these definitions yield a category, which is Sig♯.

• The sentence functor Sen♯ and the model functor Mod♯ just extend the sentence and
the model functors of I and I ′– which are used in the case of the ‘internal’ signature
morphisms – to the ‘external’ signature morphisms ϕ : (I ,Σ)→ (I ′,Σ′) as follows:

– Sen♯ϕ = αΣ ; Sen′ϕ, and

– Mod♯
ϕ = Mod′ϕ ; βΣ.

We can also easily check that these definitions of Sen♯ and of Mod♯ are appropriate
functors.

• Finally, the satisfaction relation |=♯ is defined locally, by

(M |=♯
(I ,Σ) ρ) = (M |=Σ ρ) and (M′ |=♯

(I ′,Σ′) ρ
′) = (M′ |=′

Σ′ ρ
′).

We can check easily the Satisfaction Condition for the ‘internal’ morphisms, this being
inherited from I and I ′. For the ‘external’ morphisms this involves both the local
Satisfaction Condition in I ′ and the Satisfaction Condition of the comorphism.

The following remark clarifies the formal connection between the ‘left’ and the ‘right’
interpolation concepts of Sec. 9.3 and those for comorphisms.

Fact 9.33. Let (Φ,α,β) : I → I ′ be an institution morphism and let S ⊆ Sig be a class
of I -signature morphisms. For any ϕ ∈ S let us consider the commutative square of I ♯-
signature morphisms:

(I ,Σ)
1ΦΣ

//

ϕ

��

(I ′,ΦΣ)

Φϕ

��

(I ,Ω)
1ΦΩ

// (I ′,ΦΩ)

(9.15)

Then (Φ,α,β)

• has Craig S -right interpolation if and only if for each ϕ ∈ S , the commutative square
(9.15), is a Craig interpolation square in I ♯, and

• has Craig S -left interpolation if and only if for each ϕ ∈ S the reflection of the square
(9.15) with respect to the diagonal (I ,Σ)→ (I ′,ΦΩ) is a Craig interpolation square
in I ♯.
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(Φ,β)-amalgamation. In Theorems 9.7 and 9.12 model amalgamation, in its weak
form, played a role. This is expected also to happen when establishing interpolation prop-
erties for comorphisms using the (technique of those) two theorems. We already have
concepts of model amalgamation for comorphisms from Sec. 4.3. We can use them here,
but in order to keep the hypotheses of our results as weak / lax as possible, we need model
amalgamation at the level of comorphisms only for the classes of signature morphisms
that are involved in the interpolation. Therefore we slightly adapt the concepts of model
amalgamation for comorphisms from Sec. 4.3 as follows.

For any comorphism (Φ,α,β) : I → I ′ we say that a signature morphism ϕ : Σ→
Ω in I has (Φ,β)-amalgamation when for each Ω-model N and each ΦΣ-model M′ with
N↾ϕ = βΣM′ there exists a unique ΦΩ-model N′ such that βΩN′ = N and N′↾Φϕ = M′.
As usual, if we drop the uniqueness requirement on N′ we have the weak version of the
concept, called weak (Φ,β)-amalgamation.

Fact 9.34. Let (Φ,α,β) : I → I ′ be an institution morphism and let S ⊆ Sig be a class of
I -signature morphisms. Then S has (weak) model (Φ,β)-amalgamation if and only if for
each ϕ ∈ S the commutative square of I ♯-signature morphisms (9.15) has (weak) model
amalgamation.

Left interpolation property for comorphisms. The key to derive a left interpolation
property for comorphisms from Thm. 9.12 is to match the following two commutative
squares of signature morphisms:

Σ
ϕ1

//

ϕ2

��

Σ1

θ1
��

(I ,Σ)

1ΦΣ

��

ϕ
// (I ,Ω)

1ΦΩ

��

Σ2
θ2

// Σ′ (I ′,ΦΣ)
Φϕ

// (I ′,ΦΩ)

The left-hand side one is the interpolation square of Thm. 9.12, while the right-hand
side square is the square in I ♯ that through Fact 9.33 bridges ordinary interpolation to
comorphism interpolation. Note that the Birkhoff institution structure has been used in
the proof of Thm. 9.12 only in connection to ϕ1, which means that, in the context of the
comorphism interpolation, it is enough to assume it for I only. Let us also consider the
conclusion of Fact 9.34 which relates (Φ,β)-amalgamation to ordinary amalgamation in
institutions. Thus we can translate Thm. 9.12 to the comorphims environment as follows:

Proposition 9.35. Consider an institution comorphism (Φ,α,β) : I → I ′ such that I =
(Sig,Sen,Mod, |=,F ,B) is a Birkhoff institution. Let S ⊆ Sig be a class of signature mor-
phisms such that for each ϕ ∈ S :

1. ϕ has weak (Φ,β)-amalgamation,

2. Modϕ preserve F -products, and

3. ϕ lifts B−1 and isomorphisms.

Then the comorphism has the Craig S -left interpolation property.
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Right interpolation property for comorphisms. For the right interpolation property
we apply the same technique like for the left interpolation, of matching the right-hand side
square below to the interpolation square of Thm. 9.7 (the left-hand side square below).

Σ
ϕ1

//

ϕ2

��

Σ1

θ1
��

(I ,Σ)

ϕ

��

1ΦΣ
// (I ′,ΦΣ)

Φϕ

��

Σ2
θ2

// Σ′ (I ,Ω)
1ΦΩ

// (I ′,ΦΩ)

We also use again the conclusion of Facts 9.33 and 9.34. The proof of Thm. 9.7 uses
fully the Birkhoff institution hypothesis only on Σ and Σ2, which means that it is enough
to assume the Birkhoff institution hypothesis only for I . However since the semantic
operator U is defined as F ( ), we also have to assume F -products for I ′. These lead to
the following translation of Thm. 9.7 to the comorphism environment:

Proposition 9.36. Consider an institution comorphism (Φ,α,β) : I → I ′ such that I =
(Sig,Sen,Mod, |=,F ,B) is a Birkhoff institution. Let S ⊆ Sig be a class of signature mor-
phisms. We assume that:

1. ϕ has weak (Φ,β)-amalgamation for each ϕ ∈ S ,

2. the categories of models of I ′ have F -products,

3. βΣ preserves F -products for each Σ ∈ |Sig|, and

4. ϕ lifts B for each ϕ ∈ S .

Then the comorphism has the Craig S -right interpolation property.

Deja vu concrete interpolation properties, but this time by borrowing. By using the
lifting properties provided by Prop. 9.8 and 9.13, from Propositions 9.35 and 9.36, we
obtain the interpolation properties for comorphisms as shown in the following table.

I I ′ S -left S -right
UNIV , ∀∨ FOL ie∗ ii′i

HCL FOL ie∗
EQL FOL ie

universal FOL-atoms HCL ii′

Based on the interpolation properties for comorphisms listed in the above table we
can obtain the interpolation results of Corollaries 9.9 Cor. 9.14 for sub-institutions of
FOL , but this time via the borrowing route given by Prop. 9.31.

Exercises
9.14. [76] Interpolation in PA by borrowing
PA has Craig-Robinson (SigPA ,(i∗∗)) and ((i∗∗),SigPA )-interpolation borrowed from FOL along
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the comorphism PA → FOL th encoding partial operations as relations (see Sect. 4.1). (Hint: Use
Ex. 9.13 and Fact 9.32.) Apply this method for obtaining concrete interpolation results in other
institutions such as POA , MBA , etc.

9.15. The institution comorphism FOL→FOEQL encoding relations as operations (see Sect. 3.3)
has both Craig (i∗∗)-left and right interpolation.

9.16. For each injective function u : S→ S′, the institution comorphism (Φu,αu,βu) : FOLS →
FOLS′ (see Ex. 3.28) has both the SigS-left and right interpolation properties.

9.17. [76] Interpolation in HN K
In any institution with pushouts of signatures, a commuting square of signatures

Σ
ϕ1
//

ϕ2

��

Σ1

θ1

��

Σ2
θ2

// Σ′

is a quasi-pushout when the signature morphism ψ : Σ′′→ Σ′ from the vertex Σ′′ of the pushout of
ϕ1 and ϕ2 to Σ′ is conservative.

1. Prove a relaxed variant of Prop. 9.31 which replaces the condition that the signature translation
functor Φ preserve pushouts by the slightly more general condition that Φ maps pushouts to
quasi-pushouts.

2. Apply this upgraded variant of Prop. 9.31 for ‘borrowing’ interpolation from FOL to HN K
through the comorphism HN K → FOEQL th of Ex. 4.12. (Hint: The sentence translations
α(S,F) of the comorphism HN K → FOEQL th are bijective.)

9.18. (from [67], corrected) The embedding comorphism FOEQL → POA has both Craig (ie)-
left and right interpolation (Hint: Use the encoding comorphism POA → FOL th for translating
the left and the right interpolation problems of the given comorphism to interpolation problems
in FOL). Give a counterexample for the (ii)-right interpolation by considering the signatures Σ =
({s1,s2},{a,b : → s1}) and Σ2 which extends Σ with the operation σ : s1→ s2. (Hint: Consider
E1 = {a≤ b,(∀x,y : s2)(x≤ y)⇒ (x = y)} and E2 = {σa = σb}.)

Notes. The importance of interpolation in logic and model theory can be seen from [224, 42]. A
recent monograph dedicated to interpolation in modal and intuitionistic logics is [110]. Interpolation
also has numerous applications in computing science especially in formal specification theory [20,
96, 101, 25, 241, 33, 136, 137] but also in data bases (ontologies) [157], automated reasoning
[196, 199], type checking [153], model checking [174], and structured theorem proving [6, 173].
This is only a partial account of this phenomenon and furthermore now and then new applications
of interpolation in computing science pop up. A survey, but far from being exhaustive, about its
applications to modularization of computing systems is [54].

The first pushout-based institution-independent formulation of Craig Interpolation appears in
[226] but uses single sentences. This satisfied the need in formal specification theory to generalize
interpolation from the conventional framework based on extensions of signatures to a framework
involving arbitrary signature morphisms. The formulation of Ci with sets of sentences comes from
[96] under the influence of Rodenburg’s work on equational interpolation [214]; in particular note
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that (cf. [214]) equational logic satisfies the formulation of Ci with sets of sentences but not the sin-
gle sentence version. The weak amalgamation square condition of Thm.s 9.3 and 9.7 is weaker
than the corresponding assumptions in the literature that the interpolation square is a pushout
[227, 96, 33, 32, 102, 213]. The concept of semantic interpolation and Thm. 9.3 have been in-
troduced, respectively, proved in [205]. The interpolation result for Birkhoff institutions (Thm. 9.7)
has been developed in [66]. Its equational instance has been developed in an abstract setting in
[213]. This work is also the source for the (counter)example showing that the injectivity condition
of ϕ2 is necessary. The application of Thm. 9.7 to FOL interpolation by the Keisler-Shelah property
(Cor. 9.11) has been noticed in [205].

That the equivalence between Robinson consistency and Craig interpolation relies upon
(quasi-)compactness and the existence of negation and of conjunctions, other details of the actual
institution being irrelevant, has been noticed within the framework of the so-called ‘model-theoretic
logics’ by [194, 195]. A variant of Robinson consistency was defined for institutions in [226] fol-
lowing a variant of the corresponding property in F OL1. Our definition of Robinson consistency
comes from [140] which follows another well-known definition. The first institution-independent
proof of the equivalence between Robinson consistency and Craig interpolation appears in [226].
Robinson consistency (Thm. 9.20) is due to [140] where it has also been used to derive the FOL
interpolation result of Cor. 9.22. This result, which appears also in [34] extended to the limit the
previously known interpolation properties of FOL which appeared in [32]. The counterexample
showing the necessity to have injectivity on sorts at least for one signature morphism comes from
[32]. The case of many-sorted interpolation shows that the classification of many-sorted logics as
“inessential variations” of one-sorted logic [179] is certainly wrong.

Craig-Robinson interpolation plays an important role in specification language theory, see
[20, 96, 102]. The name “Craig-Robinson” interpolation has been used for instances of this property
in [224, 241, 102] and “strong Craig interpolation” has been used in [96]. Some of the ideas behind
Thm. 9.28 come from [102].

The interpolation property for comorphisms was formulated in [67], and the borrowing meth-
od for interpolation was developed in [76].





Chapter 10

Definability

The last core topic from model theory that we discuss in the institution-independent
framework is definability theory. Traditionally, definability is considered to have a special
relationship to interpolation. Partially, this can be explained by the fact that in FOL the
main result of definability theory can be obtained as a consequence of the interpolation
property. In this chapter we will understand also other dimensions of this connection,
which are revealed only by the institution-independent approach. For instance, the ab-
straction process from the ordinary concept of definability to the institution-independent
one follows a similar route to how we did for interpolation (Chap. 9). Then, axiomatiz-
ability properties play for definability a causal role that is strongly reminiscent of one of
the interpolation-by-axiomatizability results of Chap. 9.

In the first section of this rather short chapter we explain definability first from the
conventional concrete perspective and then from an institution-independent perspective.
Without any doubt, the main concept of definability theory is the so-called ‘definability
property’. This is an equivalence property. One of the implications is obvious in the clas-
sical single-sorted FOL context, but it is not so much in the institution-independent setup.
In the second section we develop some widely applicable conditions for this implication
to hold. For the other implication, the more substantial one, we first establish it from
Craig-Robinson interpolation. Then we establish it on a different basis, in the context of
Birkhoff institutions. Like in the case of interpolation, definability can also be establish
by the ‘borrowing’ technique. A proposed exercise is dedicated to this technique.

10.1 What is definability?

Definability theory provides answers to the question to what extent implicit definitions
can be made explicit. In order to make a preliminary sense of this it is helpful to discuss
an example. Perhaps the most natural way to define the concept of group involves two
stages. At the first stage, we consider the concept of monoid. In the additive notational
style, this is a single-sorted algebra with two operations, + , of arity 2, and a constant
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0. The theory of monoids consists of the associativity equation for + together with the
two identity equations for 0. All these are very familiar to us. At the second stage the
signature of the theory of monoids – let us denote it Σ – gets extended with an unary
operation, called the ‘inverse operation’ and denoted −, and the theory with a couple of
new axioms:

(∀x)x+−x = 0 and (∀x)(−x)+ x = 0.

Let (Σ′,E ′) denote this theory of groups. We may note two aspects of this extension from
the theory of monoids to the theory of groups.

• Given a monoid M, there is at most one possibility to expand it to a group. We cannot
have two inverses for an element. This utterly simple fact is one of the first exercises
that are often given to students of group theory. In model-theoretic terminology we
say that the inverse operation is implicitly defined by the theory of groups. This is the
‘semantic side’ of definability.

• There is also a ‘syntactic side’ of definability, which is less obvious, and refers to the
possibility of systematic elimination of the inverse operation from FOL sentences in
the context of group theory. Otherwise said, if we think in terms of FOL th, then this
means that in the theory of groups (Σ′,E ′), any (Σ′,E ′)-sentence ρ is equivalent to a
(Σ′,E ′)-sentence Eρ that does not contain any occurence of the inverse operation−. In
other words, Eρ is a Σ-sentence. There is a subtle ‘smell’ of interpolation here, isn’t
it? Moreover, this applies to any extension of Σ with new symbols, in other words
ρ and Eρ may contain other symbols too, but the main point remains: the inverse
operation can be eliminated from Eρ. This property is called the explicit definability
of the inverse operation. To understand the extent to which this is non-trivial first try
to find an Eρ when ρ is (∃x)(−x = −a+ x). Then show that it does the job. If you
failed at the first step try the following choice for Eρ:

(∀a1,x1)(∃x)(a1 +a = 0)∧ (x1 + x = 0)⇒ (x1 = a1 + x).

The main issue of definability theory is to establish the equivalence between implicit and
explicit definability; this is called the ‘definability property’. In the conventional frame-
work of FOL , that explicit implies implicit definability is almost trivial, hence the ‘defin-
ability property’ usually designates the other implication. The main result of the classical
definability theory is that the ‘definability property’ holds in F OL1 (the single-sorted
version of FOL). However, in a more general context we cannot expect such kind of un-
conditional result, we rather have to formulate adequate conditions for this to work. Now
let us formulate all these concepts in an institution-independent manner.

Institution-theoretic definability. After you already studied the concept of institution-
theoretic interpolation, you, the reader, with institution-theoretic definability will proba-
bly have a strong deja vu feeling.
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• The first step towards defining institution-independent definability is to consider arbi-
trary signature morphisms rather than just signature extensions with a single operation
symbol (like in our example of the inverse operation for groups). This also allows for
a full abstract approach in the spirit of category theory which treats elements as ar-
rows. Let ϕ : Σ→ Σ′ be a signature morphism and E ′ be a Σ′-theory. Then ϕ is defined
implicitly by E ′ if the reduct functor

Mod(Σ′,E ′) // ModΣ′
Modϕ

//ModΣ

is injective on objects (models).

• In the case of explicit definability we perform some further generalisations as follows.

– Eρ is considered to be a set of sentences rather than a single sentence. The motiva-
tion for this is similar to that from interpolation when interpolants are considered
sets of sentences rather than single sentences.

– In the group theory example we have discussed that signature of Eρ can be an
‘extension’ of Σ. At the abstract level this means that Eρ ⊆ SenΣ1 for a signature
morphism θ : Σ→ Σ1. Then what about the signature of ρ? We have two different
‘extensions’ of Σ, one represented by ϕ and the other one by θ. The way to put them
together is to consider a pushout like below:

Σ
ϕ
//

θ

��

Σ′

θ′

��

Σ1 ϕ1
// Σ′1

(10.1)

Then ρ ∈ SenΣ′1. Now we have the context for formulating the explicit definability
property at the abstract level. A signature morphism ϕ : Σ→ Σ′ is defined explic-
itly by a Σ′-theory E ′ when for each pushout square like (10.1) and each sentence
ρ ∈ SenΣ′1 there exists Eρ ⊆ SenΣ1 such that ρ |=| ϕ1Eρ in the context of the the-
ory (Σ′1,θ

′E ′). By the concept of institution of theories, I th, we can write this as
ρ |=|(Σ′1,θ′E ′) ϕ1Eρ. A less compact way to formulate this is that for each Σ′1-model
M such that M |= θ′E ′ we have that M |= ρ if and only if M |= ϕ1Eρ.

The definability property. This is the main concept of definability theory. In the institution-
independent setup it is like this. We say that a signature morphism ϕ has the definability
property when any given theory defines ϕ explicitly if and only if it defines ϕ implicitly.
This extends also to classes S of signature morphisms.

Exercises
10.1. [204] Composability of definability
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• In any institution the classes of signature morphisms which are defined implicitly / explicitly
form a category. Moreover, if the institution is semi-exact, these classes of signature morphisms
are also stable under pushouts.

• In any semi-exact institution with universal D-quantification for a class D of signature mor-
phisms that are stable under pushouts, for any pushout square of signature morphisms

Σ
ϕ
//

θ

��

Σ′

θ′

��

Σ1
ϕ1
// Σ′1

such that θ ∈ D and has the model expansion property, ϕ has the definability property with
respect to E ′ whenever ϕ1 has the definability property with respect to θ′E ′.

10.2. [204] Borrowing definability
Let (Φ,α,β) : I → I ′ be an institution comorphism. We say that an I -signature morphism ϕ : Σ1→
Σ2 is (Φ,β)-precise whenever the function |Mod′(ΦΣ2)| → |Mod′(ΦΣ1)×|ModΣ2| mapping each
M′2 to ⟨M′2↾Φϕ, βΣ2 M′2⟩ is injective. We say that the comorphism (Φ,α,β) is precise when each
I -signature morphism is (Φ,β)-precise.

• What is the connection between (Φ,β)-precise signature morphisms and the signature mor-
phisms that admit the (Φ,β)-amalgamation?

• Establish which of the comorphisms introduced in Sec. 3.3 and in Sec. 4.1 are precise.

• Borrowing implicit definability. For any (Φ,α,β)-precise signature morphism ϕ and theory E ′,
Φϕ is defined implicitly by αE ′ if ϕ is defined implicitly by an E ′.

• Borrowing explicit definability. If
1. (Φ,α,β) : I → I ′ is conservative,

2. Φ preserves pushouts, and

3. α is surjective modulo the semantic equivalence |=|,
then any I -signature morphism ϕ is defined (finitely) explicitly by a theory E ′ if Φϕ is defined
(finitely) explicitly by αE ′.

• Under the assumptions at the previous item, any (Φ,α,β)-precise signature morphism ϕ has the
definability property if Φϕ has the definability property.

10.2 Explicit implies implicit definability
In this section we study the implication of implicit definability from the explicit defin-
ability. Before formulating sufficient conditions at the general level it is helpful to see
how this works in FOL . Then we will get a better understanding of the conditions for this
implication to work.

Proposition 10.1. In FOL any (s∗∗)-morphism of signatures is defined implicitly when-
ever it is defined explicitly.
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Proof. Let ϕ : Σ→ Σ′ be any (s ∗ ∗)-morphism of signature which is defined explicitly
by E ′ ∈ SenΣ′. Let M′,N′ be (Σ′,E ′)-models that share the same ϕ-reduct, denoted A. We
have to show that M′ = N′.

• Let s′ be any sort of Σ′. Because ϕ is surjective on the sorts, there exists a sort s of Σ

such that ϕs = s′. Then M′s′ = N′s′ = As.

• In the case of the operation and of relation symbols we use the explicit definability
hypothesis as follows. In the definition of institution-independent explicit definability
we set θ to ιΣA, the elementary extension of A. We let M′1,N

′
1 to be the amalgamations

of M with AA, respectively of N′ with AA. For any ρ ∈ SenΣ′1 we have that

1 M′1,N
′
1 |= θ′E ′ M′,N′ |= E ′, Satisfaction Condition

2 M′1,N
′
1 ∈ ρ∗ if and only if M′1,N

′
1 ∈ (ϕ1Eρ)

∗ explicit definability

3 M′1,N
′
1 ∈ (ϕ1Eρ)

∗ if and only if AA ∈ Eρ
∗ 1, Satisfaction Condition

4 M′1,N
′
1 ∈ ρ∗ if and only if AA ∈ Eρ

∗ 2, 3.

Thus M′1≡N′1. Now, by considering in the role of ρ sentences of the form (θ′σ)(x1, . . . ,xk)=
y and (θ′π)(x1, . . . ,xk) (with x1, . . . ,xk,y being elements of A of appropriate sorts), we
obtain that the operation symbols (θ′σ) and the relation symbols (θ′π) get interpreted
the same by M′1 and N′1. Consequently, σ and π get also the same interpretations in M′

and in N′.

□

What does this example teach us in terms of being able to formulate abstract appli-
cable conditions for the implication of implicit from explicit definability to hold? How
can we replicate this proof at an abstract level?

1. The equality M′ = N′ is established in the signature Σ′1 (as M′1 = N′1) where the ele-
ments of M′ and N′ are available as syntactic entities (constants) by using the elemen-
tary extension given by their common reduct. M′1, N′1 are just the expansions of M′,
N′, respectively, that interpret their elements (which are all shared) by themselves.

2. The elementary equivalence M′1 ≡ N′1 was proved from the explicit definability hy-
pothesis, by using that both models share the same ϕ1-reduct. This piece of the proof
has an obvious institution-independent character.

3. The equality M′1 = N′1 has been derived from the elementary equivalence M′1 ≡ N′1
by considering the atomic sentences that define the interpretations of the operation
and relation symbols by M′ and N′. M′1 ≡ N′1 implies that each atom in the extended
signature is satisfied either by none or by both models, which means that each sym-
bol newly added by ϕ gets the same interpretation in M′ and N′. At the institution-
independent level this has to be axiomatised as there we cannot consider such kind
of sentences becasue these are institution-dependent.
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4. It has been crucial that the elements of the shared reduct A cover all elements of M′

and N′, which can be guaranteed only by the surjectivity of ϕ on the sort symbols.
At the abstract level this is also covered by the axiom that M′1 ≡ N′1 implies M′1 =
N′1 because without this surjectivity the axiom would simply not hold in concrete
situations such as in FOL .

The proof of Prop. 10.1 tells us something else, that it uses only some very basic properties
of FOL , such as elementary diagrams and model amalgamation. In the case of the former
it uses only the elementary extension, no need for the sentences of the diagrams. This
is the sense of this implication being almost trivial, that its proof does no require any
substantial model-theoretic result.

Tight signature morphisms

The concept that we are going to introduce now represents the core part in the axioma-
tisation of the conditions for the derivation of the implicit from the explicit definability
at the institution-independent level. In any institution with model amalgamation and with
diagrams ι, a signature morphism ϕ : Σ→ Σ′ is ι-tight when for all Σ′-models M′ and N′

with a common ϕ-reduct A and for any pushout of signature morphisms as in the diagram,

Σ
ϕ
//

ιΣA
��

Σ′

θ′

��

ΣA ϕ1
// Σ′1

M′1 ≡ N′1 implies M′ = N′, where M′1, N′1, respectively, are the unique amalgamations of
M′, N′, respectively, with AA (the initial model of the diagram of A).

Note that the concept of ι-tight signature morphisms does not involve the sets of
sentences EA that constitute de diagrams, so in principle it can be formulated more gener-
ally only in terms of the elementary extensions ιΣA and of the models AA. Otherwise said,
we can do it only by requiring that for each model Σ-model A there exists a designated
signature morphism ιΣA : Σ→ Σ and a designated ιΣA-expansion AA of A.

The following helps to characterize concretely the tight signature morphisms in
institutions.

Proposition 10.2. Let ϕ : Σ→ Σ′ be a ι-tight signature morphism in a semi-exact insti-
tution with diagrams ι. Then any two Σ′-models that are isomorphic by a ϕ-expansion of
an identity, are equal.

Proof. Let h′ : M′ → N′ be a Σ′-isomorphism such that h′↾ϕ is identity. Let M′↾ϕ =
N′↾ϕ = A. For the diagram from the definition of tight signature morphisms consider the
amalgamation of h′ with 1AA ; this is also an isomorphism. Therefore M′1 ∼= N′1, hence
M′1 ≡ N′1. By the definition of ϕ being tight, we get that M′ = N′. □
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Tight signature morphisms in FOL . By virtue of Prop. ?? we expect that (s ∗ ∗)-
morphisms in FOL aretight. Cor. 10.3 below says even more, that in FOL ‘tight’ is the
sharp abstract formulation of (s∗∗)-morphisms, which enjoy the implication of implicit
from explicit definability. Of course, similar situations, based on similar arguments, are
expected in other concrete institutions too.

Corollary 10.3. A FOL signature morphism ϕ is ι-tight (for the standard system of dia-
grams ι) if and only if ϕ is an (s∗∗)-morphism.

Proof. Let ϕ : Σ→ Σ′.

• The surjectivity on the sorts is necessary because otherwise, given a Σ′-model M′ we
may consider another Σ′-model N′ which is like M′ but interprets the sorts outside the
image of ϕ : Σ→ Σ′ differently but isomorphically to M′. This gives a non-identity
Σ′-isomorphism between different Σ′-models, that expands a Σ-identity, thus contra-
dicting Prop. 10.2.

• The surjectivity on the sorts is also sufficient by an argument that repeats the last
paragraph in the proof of Prop. 10.1.

□

Explicit implies implicit definability

Proposition 10.4. In any institution having model amalgamation and diagrams ι, each
ι-tight signature morphism is defined implicitly whenever it is defined explicitly.

Proof. We employ the familiar notations of this section. The proof aggregates two argu-
ments as follows:

• For M′1≡N′1 we can copy-paste the corresponding argument from the proof of Prop. 10.1
as that piece of proof did not involve any of the concrete specificities of FOL , being
thus institution-independent.

• Then we can use the ι-tight hypothesis.

□

We can see that the FOL result of Prop. 10.1 follows from the general result of
Prop. 10.4 plus the characterisation of the tight FOL morphisms of signatures given by
Cor. 10.3.

Exercises

10.3. A PA signature morphism is tight if and only if it is surjective on sorts.
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10.3 Definability by interpolation
The rest of this chapter is dedicated to the hard implication of the relationship between
implicit and explicit definability, i.e., implicit implies explicit definability. The follow-
ing result obtains this as an application of interpolation. We do it with Craig-Robinson
interpolation. This is different from the well-known proof of the corresponding result in
FOL where apparently the weaker Craig form of interpolation in used. But this may be
misleading because in the FOL proof the fact that FOL has implications is used also.
Our reliance on Craig-Robinson interpolation allows for a wider range of applications
as Craig-Robinson interpolation is weaker than Craig interpolation plus implications, and
there are indeed interesting situations that fall within the former case but outside the latter.

Theorem 10.5. In any institution with model amalgamation and having Craig-Robinson
(L ,R )-interpolation for classes L and R of signature morphisms which are stable under
pushouts, any signature morphism in L∩R is defined explicitly when is defined implicitly.

Proof. Let (ϕ : Σ→ Σ′) ∈ L ∩R be defined implicitly by E ′ ⊆ SenΣ′. We consider a
pushout of ϕ with an arbitrary signature morphism θ : Σ→ Σ1 and let ρ be any Σ′1-
sentence.

Σ
ϕ
//

θ

��

Σ′

θ′

��

Σ1 ϕ1
// Σ′1

(10.2)

Now we consider a pushout of ϕ1 with itself:

Σ1
ϕ1
//

ϕ1

��

Σ′1

θ1
��

Σ′1 θ2

// Σ′′

• First, we show that

1 θ1(θ
′E ′) ∪ θ1ρ ∪ θ2(θ

′E ′) |=Σ′′ θ2ρ.

Consider a Σ′′-model M′′ such that M′′ |= θ1(θ
′E ′)∪θ1ρ∪θ2(θ

′E ′). We have that

2 M′′↾θ1↾θ′↾ϕ = M′′↾θ1↾ϕ1↾θ = M′′↾θ2↾ϕ1↾θ = M′′↾θ2↾θ′↾ϕ ϕ;θ′ = θ;ϕ1, ϕ1;θ1 = ϕ1;θ2

3 M′′↾θk↾θ′ |= E ′, k = 1,2 M′′ |= θk(θ
′E ′), Satisfaction Condition

4 M′′↾θ1↾θ′ = M′′↾θ2↾θ′ 2, 3, ϕ implicitly defined by E ′

5 M′′↾θ1↾ϕ1 = M′′↾θ2↾ϕ1 ϕ1;θ1 = ϕ1;θ2

6 M′′↾θ1 = M′′↾θ2 4, 5, unique model amalgamation ((10.2) pushout, model amalgamation square)
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7 M′′↾θ1 |= ρ M′′ |= θ1ρ, Satisfaction Condition

8 M′′ |= θ2ρ 6, 7, Satisfaction Condition.

• Now we apply Craig-Robinson interpolation property to relation 1:

9 ϕ1 ∈ L ∩R ϕ ∈ L ∩R , L , R stable under pushouts

10 there exists Eρ ⊆ SenΣ1 s.th. θ′E ′∪{ρ} |= ϕ1Eρ, θ′E ′∪ϕ1Eρ |= ρ 1, 9, CRi.

The conclusion 10 shows that ϕ is explicitly defined by E ′. □

Definability in FOL . By applying the result of Thm. 10.5 to FOL we obtain a de-
finability property that is more general than what is known from the classical theory of
definability.

Corollary 10.6. In FOL , any (i∗∗)-morphism of signatures is explicitly defined when it
is implicitly defined. Consequently, in FOL , the definability property holds for the (b∗∗)-
morphisms of signatures.

Proof. For the first part of the conclusion we use the FOL instance of Thm. 10.5 in
conjunction with the Craig-Robinson interpolation property of FOL as given Cor. 9.25.
Then by Cor. 10.1 we extend this to the second conclusion. □

Some interesting instances of Thm. 10.5 in sub-institutions of FOL emerge from a
Craig-Robinson interpolation result in Sec. 14.3. Those applications will illustrate well
the power of reliance on Craig-Robinson interpolation rather than on Craig interpolation
because they refer to institutions that do not have implications.

Exercises
10.4. [204] Definability by interpolation in PA
In PA , any (i∗∗)-morphism of signatures is defined explicitly if it is defined implicitly. Prove this
in two different ways:

1. directly, by Thm. 10.5, and

2. by borrowing along the relational encoding comorphism PA → FOL th by using the result
of Ex. 10.2 (Hint: A theory morphism ϕ : (Σ,E)→ (Σ′,E ′) is defined implicitly, respectively
explicitly, by E ′′, in the institution of theories I th if and only if ϕ : Σ→ Σ′ is defined implicitly,
respectively explicitly, by E ′∪E ′′, in the base institution I .)

10.4 Definability by axiomatizability
In this section we develop another method to obtain definability properties which relies
upon the axiomatizability properties of the institution.
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Weakly lifting relations. In Sec. 9.3 we have introduced a concept of lifting rela-
tions which have been used to derive concrete instances of the general interpolation-by-
axiomatizability Thm. 9.7. For the purpose of this section we introduce a weaker vari-
ant of this concept. Let ϕ : Σ→ Σ′ be a signature morphism and R = ⟨RΣ, RΣ′⟩ with
RΣ ⊆ |ModΣ| × |ModΣ| and RΣ′ ⊆ |ModΣ′| × |ModΣ′| be a pair of binary relations. We
say that ϕ lifts weakly R if and only if for each M′,N′′ ∈ |ModΣ′| and N ∈ |ModΣ| if
⟨M′↾ϕ, N′′↾ϕ⟩ ∈ RΣ, then there exists N′ ∈ |ModΣ′| such that N′↾ϕ = N′′↾ϕ and ⟨M′, N′⟩ ∈
RΣ′ .

Σ

ϕ
��

ModΣ M′↾ϕ

RΣ N′′↾ϕ = N′↾ϕ

Σ′ ModΣ′

Modϕ

OO

M′
R

Σ′
(∃)N′

Fact 10.7. A signature morphism lifts weakly (a pair of relations) R whenever it lifts R .

The reason for Fact 10.7 is evident: in the weak variant of lifting we restrict the
models N to those that already admit a ϕ-expansion.

Definability in Birkhoff institutions
Theorem 10.8. Consider a Birkhoff institution (Sig,Sen,Mod, |=,F ,B) with model amal-
gamation and a class S ⊆ Sig of signature morphisms which is stable under pushouts and
such that for each ϕ ∈ S

1. Modϕ preserves F -products, and

2. ϕ lifts weakly B−1.

Then any signature morphism in S is defined explicitly if it is defined implicitly.

Proof. Let ϕ ∈ S . If ϕ : Σ→ Σ′ is defined implicitly by E ′, then we show it is defined
explicitly by E ′ too. Therefore consider any pushout square of signature morphisms for

the span Σ1 Σ
θ
oo

ϕ
//Σ′

Σ
ϕ
//

θ

��

Σ′

θ′

��

Σ1 ϕ1
// Σ′1

and any Σ′1-sentence ρ. Let M′1 = (θ′E ′ ∪ {ρ})∗ and Eρ = (M′1↾ϕ1)
∗.

• We first show θ′E ′ ∪ {ρ} |=ϕ1Eρ. Consider M′1 a model of θ′E ′ ∪ {ρ}. We have that:

1 M′1↾ϕ1 ∈M′1↾ϕ1 definition of M′1
2 M′1↾ϕ1 |= Eρ 1, Eρ = (M′1↾ϕ1 )

∗
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3 M′1 |= ϕ1Eρ 2, Satisfaction Condition.

That was the easy part. Now follows the more difficult part.

• Now we show that θ′E ′ ∪ ϕ1Eρ |=ρ. Consider M′1 a Σ′1-model satisfying θ′E ′ ∪ ϕ1Eρ.
We prove that M′1 |= ρ. We have that:

4 M′1↾ϕ1 |= Eρ M′1 |= ϕ1Eρ, Satisfaction Condition

5 M′1↾ϕ1 ∈ (M′1↾ϕ1)
∗∗ 4, Eρ = (M′1↾ϕ1 )

∗

6 (M′1↾ϕ1)
∗∗ = B−1

Σ1
(F M′1↾ϕ1) 5, Birkhoff institution

7 F M′1↾ϕ1 = Iso((F M′1)↾ϕ1 ) Modϕ1 preserves F -products (ϕ1 ∈ S , S stable under pushouts)

8 F M′1 ⊆ B−1
Σ′1

(F M′1) =M′1
∗∗ =M′1 BΣ′1

reflexive, Birkhoff institution, M′1 elementary

9 M′1↾ϕ1 ∈ B−1
Σ1

(M′1↾ϕ1) 5, 6, 7, BΣ closed under isomorphisms, 8

From 9 we obtain the existence of a Σ′1-model N′1 ∈M′1 such that ⟨M′1↾ϕ1 , N′1↾ϕ1⟩ ∈
BΣ1 . Since S is stable under pushouts and ϕ ∈ S we have that ϕ1 ∈ S too, hence
ϕ1 lifts weakly B−1. Thus there exists a Σ′1-model P′1 such that P′1↾ϕ1 = M′1↾ϕ1 and
⟨P′1, N′1⟩ ∈ BΣ′1

. Then:

10 B−1
Σ′1

M′1 ⊆ BΣ′1
(F M′1) = M′1 {{∗}} ∈ F , 8

11 P′1 ∈ B−1
Σ′1

N′1 ⊆ B−1
Σ′1

M′1 ⟨P′1, N′1⟩ ∈ BΣ′1
, N′1 ∈M′1

12 P′1 ∈M′1 11, 10

13 M′1,P
′
1 |= θ′E ′ 12, M′1 = (θ′E ′ ∪{ρ})∗, M′1 |= θ′E ′

14 M′1↾θ′ ,P′1↾θ′ |= E ′ 13, Satisfaction Condition

15 M′1↾θ′↾ϕ = M′1↾ϕ1↾θ = P′1↾ϕ1↾θ = P′1↾θ′↾ϕ ϕ;θ′ = θ;ϕ1, M′1↾ϕ1 = P′1↾ϕ1

16 M′1↾θ′ = P′1↾θ′ 14, 15, ϕ implicitly defined by E ′.

By the uniqueness aspect of the model amalgamation property, from M′1↾ϕ1 = P′1↾ϕ1

and M′1↾θ′ = P′1↾θ′ (16), we get that M′1 = P′1. Thus M′1 |= ρ because P′1 ∈M′1 (12) and
M′1 = (θ′E ′∪{ρ})∗.

We have therefore shown that θ′E ′∪{ρ} |= ϕ1Eρ and θ′E ′∪ϕ1Eρ |= ρ. □

We may note a great similarity between the conditions of the definability Thm. 10.8
and the Craig interpolation Thm. 9.12. The differences are as follows:

• Thm. 10.8 requires a stronger form of model amalgamation than Thm. 9.12.

• Thm. 9.12 requires a stronger form of lifting than Thm. 10.8.

• Thm. 9.12 has a condition on lifting isomorphisms.
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How do these translate in the applications? Not much actually, they are merely technical
differences. It is rare to find institutions that have weak model amalgamation but not stan-
dard model amalgamation. The lifting of isomorphisms generally amounts to the mapping
on sorts being injective, which is a condition that pops up when lifting B−1. On the other
hand, the weakening of the lifting of B−1 may have more meaning in the applications.
For instance if we strengthen the concept of sub-model (Sw and Sc) to inclusions rather
than injections we can get that in FOL , the (∗e∗)-morphisms lift those precisely because
an expansion of the model N is already available. This class of signature morphisms is
wider than the class of the (ie∗)-morphisms from the applications of the interpolation
Thm. 9.12. But here it is crucial that we consider inclusions rather than injections in order
to be able to lift the sub-model homomorphisms also. However, if did that then we could
not use the sub-models relations directly as the Birkhoff relation B because this has to
be closed under isomorphisms. But, as it is often the case, technical differences have the
potential to translate into differences at the level of the applications, which means that
it is still an open issue to find meaningful applications that exploit the weakening of the
lifting condition.

In concrete terms, what do we really get from Thm. 10.8? We can use the lifting
properties of Prop. 9.13 and get from Thm. 10.8 some concrete definability results as
follows.

Corollary 10.9. In the following institutions, any signature morphism in S is defined
explicitly when it is defined implicitly.

institution S
UNIV ie∗

universal FOL∞,ω-sentences
HCL , HCL∞,ω, ∀∨, and ∀∨∞

universal FOL-atoms iei
EQL ie

The results of Cor. 10.9 allow us to have a more clear picture of the impact of the
general definability-by-axiomatizability result of Thm. 10.8.

• In the case of the institutions of Cor. 10.9, to great extent, the two sides of the defin-
ability property are mutually exclusive. On the one hand, we need the surjectivity of
the mapping on the sorts (see Prop. 10.1). On the other hand, we need the injectivity of
the same mapping (cf. Cor. 10.9). This means bijectivity. Furthermore, in this context,
the encapsulation condition leads also to the bijectivity of the mappings on the oper-
ation symbols. This means that the scope of the definability property gets restricted
quite severely, only to the relation symbols.

• This situation tells us also that from the general perspective that goes beyond first-
order logic, that the traditional view that one of the sides of the definability property
is trivial, and somehow taken for granted, namely the implication of the implicit from
the explicit definability, is a misconception.
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• The strong similarity between the conditions of Thm. 10.8 leads to the following ques-
tion: would it be possible to obtain meaningful definability properties for institutions
such as those from Cor. 10.9 by joining together the results of Theorems 9.12 and
10.5? The immediate answer is no, because because Thm. 9.12 is a Craig interpolation
result while Thm. 10.5 requires a Craig-Robinson interpolation property which in the
case of the institutions of Cor. 10.9 is not immediately available through something
like Prop. 9.24 because these lack implications.

• However, in Sec. 14.3 we will see how we can have a transition from Ci to CRi in
the absence of implications, based on the sophisticated technique of the ‘Grothendieck
institutions’. This means that we will be able to reverse the negative answer at the
previous item to a positive one. But in concrete situations, by this alternative route we
will not achieve more than Cor. 10.9 because the classes S of the signature morphisms
are identical.

Exercises
10.5. [204] Definability in PA by axiomatizability
By using the results of Ex. 8.13 and 8.9 develop definability properties in QE1(PA) and QE2(PA).
In the case of QE1(PA), do this in two alternative ways:

1. Directly by Thm. 10.8, and

2. By borrowing it from HCL∞,ω along the relational encoding comorphism PA → FOL th by
using the result of Ex. 10.2 in the style of Ex. 10.4.

Notes. The material of this chapter is based on [204]. This includes the concept of definability for
signature morphisms as well as the definability Theorems 10.5 and 10.8.

The definability by interpolation Thm. 10.5 is a generalization of the conventional concrete
Beth definability theorem in F OL1 of [21]. While traditional proofs of Beth’s theorem use Craig
interpolation and implication, the proof given in [204] uses only Craig-Robinson interpolation,
being thus applicable to institutions without semantic implication.

The reformulation of definability for sets of sentences rather than single sentences of [204]
settled the definability concept in a proper form applicable to institutions without conjunctions. The
general definability by axiomatizability Thm. 10.8 and its instances in logics such as HCL owe
much to this reformulation of definability.
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Extensions





Chapter 11

Institutions with Proofs

Logic is both the science and the art of reasoning. Not only of reasoning, but rather of
correct reasoning. These concepts are far from being straightforward. One of the greatest
achievements of mathematical logic is that it developed clear approaches to reasoning
concepts in form of mathematical objects. The central reasoning concept is that of (logi-
cal) consequence, which tells us when a certain sentence ρ can be ‘deduced’ from some
set of sentences E. From the point of view of model theory this means E |= ρ, i.e. that ρ is
a semantic consequence of E. This concept of logical consequence is prevalent in math-
ematical reasoning because mathematics is semantic. On the other hand, there is also the
idea of semantic-free reasoning – called natural deduction in some logic literature – that
is prevalent especially in the area of formal reasoning and the applications of that, es-
pecially in connection to various computing science paradigms. Ideally, this means zero
reliance on any aspect that is connected to models and the satisfaction relation. However,
this is an utopia, while it may appear like this in the foreground, in the background we
need the meta-level of models and satisfaction at least in order to support the concept of
correctness of reasoning. In principle, formal reasoning does not consider that, but then
one cannot ignore the issue of correctness, without which the very concept of reasoning
loses its meaning. We insist on the word ‘formal’ because in common practice, including
mathematical practice, reasonings / proofs have a rather strong informal character. Leav-
ing aside the semantic arguments, they still have the aspect of a social event in which
the audience just has to be convinced of the validity of the argument, many reasoning
steps that otherwise appear in formal arguments being skipped. Without such skips the
arguments tend to become monstrously complex and tedious, thus severely hindering un-
derstanding. Nevertheless, this informality does not necessarily impede the rigour of the
proofs as rigour is not equal to formality (although formalists may disagree with this).

Our aim in this chapter is to develop the mathematical logic theory of formal rea-
soning from the perspective of institution theory. We will do this as follows:

1. First we introduce the concept of (formal) proof in an axiomatic manner as a semantic-
free concept. Proofs can be regarded as a refined form of the consequence relations.
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Having a proof of ρ from E is more than saying that ρ can be deduced from E because
we can have more than one ‘proof’ of ρ from E. We will also see that in order to con-
struct semantic-free proofs we can aggregate iteratively atomic / primitive proofs in a
systematic way. The atomic / primitive proofs, often called proof rules, are institution-
dependent, but the way of aggregation is institution-independent and can be presented
as a free construction (adjunction). This gives a clear separation between the concrete
and the general in which the concept of proof is concerned.

2. While the general context of proofs consists of a sentence functor only, the concept
of correct proofs is relative to a semantic consequence relation, which requires a se-
mantic level. This is provided as an abstract institution. The correctness of proofs is
called soundness and is a must-to-have property. Thus, a proof of ρ from E is sound
when E |= ρ. Its opposite property is called completeness, which means that each se-
mantic consequence admits a proof. However, while there is a ‘logic life’ without
completeness, the soundness is absolutely mandatory. Such ‘institutions with proofs’
can function as a meta-theory for logical systems, that capture both the model and the
proof-theoretic sides of logics.

3. One aspect that supports a calculus of proofs, eventually leading to ‘mechanisation’, is
the possibility of finiteness of proofs. This is the proof-theoretic side of our old friend,
the compactness. We show how this compactness propagates through the general ag-
gregation of proofs.

4. The semantic logical connectives, such as the propositional ones and the quantifiers,
determine properties of the semantic consequence relations. We have met with them
in Chap. 5. At the more abstract level of proof systems, these properties can be formu-
lated as category-theoretic axioms, which define the proof-theoretic concepts of logical
connectives. In this context we show how proof systems can be enhanced freely with
connectives, and moreover, how this enhancement preserve crucial properties such as
soundness and compactness.

5. Mathematically, there is a sense in which proof systems are more general than insti-
tutions because the semantic consequence in any institution gives rise to a collapsed
proof system such that for any E and ρ there exists at most one proof of ρ from E.
Such proof systems are called ‘entailment systems’. Conversely, we show that each
entailment system determines also an institution by a generic canonical construction
of a model functor. This construction relies on a proof-theoretic concept of theory
morphism. Moreover, the institutions thus constructed from entailment systems enjoy
soundness and completeness.

6. The final parts of the chapter are devoted to a ‘layered’ methodology for building
sound and complete proof systems for institutions. The main idea of this approach is
to start with such a proof system from the simplest, most primitive, sentences of the
institution, and then gradually develop it for more complex sentences while preserv-
ing the soundness and the completeness. This process may involve several steps. For
instance, we may start with a proof system for the atomic sentences, then extend it for
quantifier-free Horn sentences, and finally extend it to the quantified Horn sentences.
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We develop this example at a general institution-independent level, but many other
completeness results can be approached in the same general way. The main message
that this methodology sends us is that the sound and complete proof systems have an
inherent layered structure that corresponds intimately to the layered structure of the
sentences (and implicitly of their satisfaction by the models).

The first five sections of this chapter have almost no model-theoretic content, so they can
be studied quite independently of the material from previous chapters. On the hand, the
sections 11.6 and 11.7 do have model-theoretic content and require familiarity with some
material only from the first of the four parts of the book (until Chap. 5 included).

11.1 What is a proof?
The concept of proof has many facets. Here we develop a concept of proof as a mathe-
matical object that suits institution theory.

Proof systems. So what is a proof? It is a one-way move from a set E to a set E ′ of
sentences, called E proves E ′, and meaning that E ′ is established ‘true’ on the basis of
E being established ‘true’. And there can be several different ways to prove E ′ from E.

Therefore proofs can be conveniently represented as labeled arrows E
p
//E ′ . Proofs

between sets of sentences have two natural compositionality properties:

• an associative horizontal one, meaning that proofs E
p
//E ′ and E ′

p′
//E ′′ deter-

mine a proof E
p;p′
//E ′′ , and

• a vertical one, meaning that for any E1, E2 such that E1∩E2 = /0, any proofs E
p1
//E1

and E
p2
//E2 determine uniquely a proof E

⟨p1, p2⟩
//E1∪E2

E1 E1∪E2oo // E2

E
p1

\\

p2

CC

⟨p1, p2⟩

OO

such that each pi can be ‘extracted’ from ⟨p1, p2⟩ by horizontal composition with a
canonical monotonicity proof E1∪E2 //Ei . Moreover, the monotonicity proofs are
unique, i.e. if E ⊆ Γ then there exists exactly one monotonicity proof Γ //E .

Thus horizontal composition gives proofs the structure of a category, whose objects
are the sets of sentences of a fixed signature Σ. Let us denote this category by Pf Σ

and name it the category of the Σ-proofs. The vertical composition, which we may
also call ‘union’, just says that Pf Σ has finite products of disjoint sets of sentences.
This disjointness condition enables us to distinguish conveniently between different
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proofs by designation. Suppose that there existed e ∈ E1∩E2. Then the proofs p1 and
p2 determine two different proofs q1,q2 of E1 ∪E2 because e can be proved either
through p1 or p2. The problem is that in such situations there is no convenient method
to trace different proofs.

• It is also natural to assume that any signature morphism ϕ : Σ→ Σ′ gives a translation
from Pf Σ to Pf Σ′ which extends the translation of the sentences to proofs in such a way
that both the horizontal and the vertical composition are preserved. The latter property
means we have a functor Pf ϕ : Pf Σ→ Pf Σ′. Moreover, for any signature morphisms
ϕ : Σ→ Σ′ and ϕ′ : Σ′→ Σ′′, Pf should preserve their composition.

All these are collected by the following proof-theoretic counterpart for the concept of
institution. A proof system (Sig,Sen,Pf ) consists of

• a category of ‘signatures’ Sig,

• a ‘sentence functor’ Sen : Sig→ Set, and

• a ‘proof functor’ Pf : Sig→ Cat (giving for each signature Σ the category of the Σ-
proofs)

such that

1. Sen;P ;(−)op is a sub-functor of Pf ,

Pf Σ
Pf ϕ

// Pf Σ′

(P (SenΣ),⊆)op
P (Senϕ)op

//
?�

OO

(P (SenΣ′),⊆)op
?�

OO
(11.1)

2. the inclusion (P (SenΣ),⊆)op ↪→ Pf Σ is broad, preserves finite direct products and
epics (epimorphisms) for each signature Σ, where P : Set→ Cat is the (Cat-valued)
power-set functor.

Note that:

• The inclusion (P (SenΣ),⊆)op ↪→ Pf Σ is broad means that Pf Σ has all subsets of SenΣ

as objects.

• For any E ⊆ Γ⊆ SenΣ, by ⊇Γ,E let us denote the image of E ⊆ Γ in Pf Σ. This is the
monotonicity proof corresponding to E ⊆ Γ.

• Since any arrow in (P (SenΣ),⊆) is monic, the axiom on the preservation of epics
means that each monotonicity proof is epic.

• The direct products in (P (SenΣ),⊆)op are the direct sums of (P (SenΣ),⊆) which
are the disjoint unions. Their preservation gives exactly the vertical composition of
proofs.
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• The commutativity of diagram 11.1, that expresses the sub-functor axiom, gives the
preservation of the monotonicity proofs by the sentence translations, i.e. ϕ ⊇Γ,E =
⊇ϕΓ,ϕE .

Within the context of proof systems, in order to simplify notation, singleton sets
{ρ} may be sometimes denoted just by their element ρ.

Infinitary proof systems. We can define an infinitary variant of the concept of proof
system by allowing infinitary vertical compositions of proofs. Although interesting in
itself, this extension has limited applicability because finiteness is a crucial aspect of the
concept of proof.

Concerning issues of finiteness, in many logic texts, entailments E ⊢ Γ are consid-
ered only for Γ a single sentence (which is equivalent to Γ being finite). Our definition
of proof systems represents a middle approach, it allows infinite Γ but only finite vertical
compositions (unions). By letting both the premises and the conclusions of proof to be po-
tentially infinite, we achieve a conceptual uniformity which enables the proofs-as-arrows
category-theoretic approach.

Entailment systems. Thin proof systems, i.e., such that Pf Σ are preorders, are called
entailment systems. The preorder Pf Σ is then called an entailment relation while its proofs
are called entailments. Thus entailment systems can only tell that a certain set of sentences
E is provable from another set of sentences Γ, without the possibility to distinguish be-
tween different proofs. Each proof system can be ‘flattened’ canonically to an entailment
system given by the preorder Γ ⊢ E on the sets of sentences defined by “there exists at
least one proof” from Γ to E, which can also be read as ‘Γ entails E’.

An important technical simplification which arises as a consequence of the fact
that there exists at most one entailment between any sets of sentences is the fact that the
vertical composition of entailments becomes total rather than partial. This is because with
entailment systems, the possibility of q1 ̸= q2, that was involved when we explained why
the disjointness of E1 and E2 is necessary in the general case, is not on the cards anymore.

Fact 11.1. In any entailment system, for any signature Σ and sets E, E1, E2 of Σ-
sentences,

E ⊢ E1 and E ⊢ E2 implies E ⊢ E1∪E2.

The semantic entailment system. In the light of the properties stated in Proposition
3.7, we can see that in any institution, the semantic consequence relation between sets
of sentences gives an example of an infinitary entailment system, which is called the
semantic proof system or the semantic entailment system of the institution. This is the
sense in which we can say that proof systems are more abstract than institutions.

Proof-theoretic equivalence. We are already familiar with the concept of semantic
equivalence, i.e. E |=|E ′ meaning E |=E ′ and E ′ |=E. We can extend this to proof systems.
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A weaker version of this extension is when we consider only the provability; given an en-
tailment system, we say that E and E ′ are entailment-theoretic equivalent when E ⊢ E ′

and E ′ ⊢ E. This is denoted E ⊢⊣ E ′. Note that this can be formulated in an equivalent
form as Γ ⊢ E if and only if Γ ⊢ E ′, for each set of Σ-sentences Γ. The full concept of
proof-theoretic equivalence is as follows. Given a proof system, we say that two sets E,E ′

of Σ-sentences are proof-theoretic equivalent if and only if for each Γ⊆ SenΣ, Pf Σ (Γ,E)
and Pf Σ (Γ,E ′) are naturally isomorphic.

Exercises

11.1. In any proof system (Sig,Sen,Pf ), for any Σ-proof E
p
//E ′ and any Γ ⊆ SenΣ, by p∪Γ

we denote the proof E ∪Γ //E ′∪Γ defined by the following commutative diagram in Pf Σ:

Γ\E ′ (Γ\E ′)⊎E ′
⊆

oo
⊇
// E ′

E ∪Γ

⊆

ee

⊇
//

p∪Γ

OO

E

p

OO

Show that for any proofs E
p
//E ′ and E ′

p′
//E ′′ , for each set of sentences Γ, if (Γ \E ′′) ⊆

(Γ\E ′) then (p∪Γ);(p′∪Γ) = (p; p′)∪Γ.

11.2 Free proof systems

In general, logic systems have infinite sets of sentences even for single signatures and
also infinite sets of proofs. To put proof systems at work it is important to be able to
provide finite specifications of such systems. This is actually a common practice in logic,
which goes like this: one writes down a finite set of ‘primitive’ proofs and then aggregates
them into more complex proofs by using the general properties of proof systems. By such
aggregations one obtains the whole proof system. In this section we

• formalise the primitive proofs by the concept of ‘system of (proof) rules’;

• show how such systems of proof rules generate freely proof systems;

• show that the free construction of the proof systems preserve the soundness property.
This represents the general method to establish the soundness of concrete institutions
with proof systems.

Systems of proof rules

Before discussing the general concept it is helpful to look at a classical example. Readers
familiar with conventional logic may recognize the following set of proof rules as defin-
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ing the proof system of propositional logic PL . The symbols p,q,r below represent PL
sentences of a fixed arbitrary PL signature.

(P1) /0 ⊢ p⇒ (q⇒ p)
(P2) /0 ⊢ (p⇒ (q⇒ r))⇒ ((p⇒ q)⇒ (p⇒ r))
(P3) /0 ⊢ (¬p⇒¬q)⇒ (q⇒ p)
(MP) {p, p⇒ q} ⊢ q

This is a rather typical case of presentations of proof systems as a set of rules written
in the form E ⊢ E ′. These rules are the primitive proofs from which the collection of all
proofs are generated by closure under the horizontal and vertical compositions of proofs
plus the monotonicity proofs. In general, this process can be explained as an adjunction
between proof systems and ‘systems of rules’. In this example, a proof /0 //(A⇒ A)
can be obtained as follows:

1 /0
p1
//A⇒ ((B⇒ A)⇒ A) instance of (P1)

2 /0
p2
//(A⇒ ((B⇒ A)⇒ A))⇒ ((A⇒ (B⇒ A))⇒ (A⇒ A)) instance of (P2)

Now let us abbreviate the conclusion of p1 by c1 and the conclusion of p2 by c2. Then

3 /0
p3
//{c1,c2} vertical composition of p1 and p2

4 {c1,c2}
p4
//(A⇒ (B⇒ A))⇒ (A⇒ A) instance of (MP)

5 /0
p5
//(A⇒ (B⇒ A))⇒ (A⇒ A) horizontal composition of p3 and p4

6 /0
p6
//A⇒ (B⇒ A) instance of (P1)

7 /0
p7
//{A⇒ (B⇒ A),(A⇒ (B⇒ A))⇒ (A⇒ A)} vertical composition of p5 and p6

8 {A⇒ (B⇒ A),(A⇒ (B⇒ A))⇒ (A⇒ A)}
p8
//A⇒ A instance of (MP)

9 /0
p9
//A⇒ A horizontal composition of p7 and p8.

In a compact way we can write the proof p9 in terms of primitive proofs and aggregations:

p9 = ⟨⟨p1, p2⟩; p4, p6⟩; p8

which can also be represented by the following commutative diagram in which the aggre-
gations can be seen in a categorical form:

/0

p1

�� ��

p2

��

��

p6

##

oo

p4

��

//

oo

p8
��

//

A⇒ A
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where the horizontal arrows represent monotonicity proofs and the dotted arrows repre-
sent respective vertical compositions.

Note that the set of rules presented above is in fact infinite since each of the (P1−3)
and (MP) are parameterised by the ρ’s, hence by giving values to the ρ’s as PL sentences,
each of them specifies an infinite set of rules. In developing the proof of /0 //A⇒ A
we have used this; for instance when considering the primitive proof p1 we have given
A and B⇒ A as values for p and q, respectively. Some other literature may use slightly
different terminology, such as calling the generic schemes (P1− 3) and (MP) ‘rules’.
Under that terminology our ‘rules’ would be called ‘rule instances’, whilst under our
terminology (P1− 3) and (MP) may be referred to as ‘rule schemes’. The specification
of the PL proof rules above defines an infinite set also for another reason, namely the
infiniteness of the class of the signatures in PL . But a crucial aspect of this specification
is that in itself it is finite, we can really write it down.

Systems of rules. The following defines the general concept of system of rules. A sys-
tem of (proof) rules (Sig,Sen,Rl,h,c) consists of

• a category of ‘signatures’ Sig,

• a ‘sentence functor’ Sen : Sig→ Set,

• a ‘(proof) rule functor’ Rl : Sig→ Set, and

• two natural transformations h,c : Rl⇒ Sen;P , where P : Set→ Set is the Set-valued
power-set functor.

Therefore, for each signature Σ, RlΣ gives the set of the Σ-proof rules, hΣ : RlΣ →
P (SenΣ) gives the hypotheses of the rules, and cΣ : RlΣ→ P (SenΣ) gives the conclu-

sions. A Σ-rule r can be therefore written as hΣr r
//cΣr . The functoriality of Rl and

the naturality of the hypotheses h and of the conclusions c, say that the translation of rules
along signature morphisms is coherent with the translation of the sentences.

It is also possible to define systems of rules as signature indexed families (rlΣ)Σ∈|Sig|
with rlΣ ⊆ P (SenΣ)×P (SenΣ). Note that this can be extended canonically to a system
of rules in the previous acceptation by adding freely the translations of the rules by the
signature morphisms. However, sometimes this may be redundant, like in the case of the
above PL example when we already have ϕ(rlΣ)⊆ rlΣ′

Proof-theoretic morphisms and comorphisms
To formulate the freeness of proof systems as a categorical universal propert we have to
organise proof systems and systems of rules as categories and define functors between
these. For instance, we can easily notice that each proof system can be seen as a system
of rules by regarding each proof as a rule (the hypotheses being given by the domain of
the proof, and the conclusions by the codomain). This can be understood as a forgetful
functor from the category of proof systems to the category of rule systems provided we
organize proof systems and systems of rules as categories. Defining mappings between
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proof systems, and systems of rules, respectively can be done in a straightforward manner
just by mimicking the institution-theoretic morphisms and comorphisms and by relying
on common sense.

Morphisms and comorphisms of proof systems. Let us consider first the case of co-
morphisms. A proof system comorphism between proof systems (Sig,Sen,Pf ) and
(Sig′,Sen′,Pf ′) consists of

• a ‘signature’ functor Φ : Sig→ Sig′,

• a ‘sentence translation’ natural transformation α : Sen⇒Φ;Sen′, and

• a ‘proof translation’ natural transformation γ : Pf ⇒ Φ;Pf ′ such that translation of
sets of sentences is compatible with translation of single sentences:

Pf Σ
γΣ
// Pf ′(ΦΣ)

SenΣ
αΣ

//
?�

OO

Sen′(ΦΣ)
?�

OO

Proof systems morphisms are defined by analogy with institution morphisms by
reversing the direction of the signature mapping (in the definition of the proof system
comorphisms). Let PfSys denote the category of proof system morphisms, and coPfSys
denote the category of proof system comorphisms.

Morphisms and comorphisms of systems of rules. A comorphism of systems of
(proof) rules between systems of rules (Sig,Sen,Rl,h,c) and (Sig′,Sen′,Rl′,h′,c′) con-
sists of

• a ‘signature’ functor Φ : Sig→ Sig′,

• a ‘sentence translation’ natural transformation α : Sen⇒Φ;Sen′,

• a ‘rule translation’ natural transformation γ : Rl⇒Φ;Rl′ which is compatible with the
hypotheses and the conclusions, i.e., the diagram below commutes:

Rl
γ %9

h c
��

Φ;Rl′

h′ c′
��

Sen;P
α
%9 Φ;Sen′;P

Morphisms of systems of rules are defined similarly by reversing the direction of the
signature mapping. Let RlSys denote the category of proof rule system morphisms, and
coRlSys denote the category of proof rule system comorphisms.



314 Chapter 11. Institutions with Proofs

Fact 11.2. There exist forgetful functors PfSys→ RlSys and coPfSys→ coRlSys map-
ping each proof system (Sig,Sen,Pf ) to the system of rules (Sig,Sen,Pf ,dom,cod) (i.e.,
the hypothesis of a Σ-proof is its domain and the conclusion is its codomain).

Free proof systems
The free proof system construction is a left adjoint to the forgetful functor coPfSys→
coRlSys when working with comorphisms, and a right adjoint to PfSys→ RlSys when
working with morphisms.

Theorem 11.3. Each system of proof rules such that its sentence translations are injective
generates freely a proof system.

Proof. The idea of this proof is to encode systems of proof rules as classes of PA (partial
algebra) theories formed by universally quantified quasi-existence equations and then use
the initial semantics of those (based on results from Sec. 4.6). The algebras of these
theories give proof systems where the proofs are elements in the algebras.

• Let (Sig,Sen,Rl,h,c) be a system of proof rules such that Senϕ is injective for each
signature morphism ϕ ∈ Sig. For any signature Σ ∈ |Sig| we define the single-sorted
PA signature consisting of the following:

– total constants: all sets of sentences E ⊆ SenΣ, all sets of sentences inclusions E ⊇
E ′, and all elements of RlΣ,

– unary total operation symbols: hΣ and cΣ, and

– binary partial operation symbols: ; and ⟨ , ⟩.

• Then the set of the axioms of any proof system generated by (SenΣ,RlΣ,hΣ,cΣ) can
be specified as a quasi-existence equational theory in PA in the same style of the well
known encoding of categories as partial algebras. We will not provide here the full
details of this specification; we will rather present only a sample, namely how the
vertical composition of proofs is encoded as a set of quasi-existence equations. All
other axioms of the proof systems generated by (SenΣ,RlΣ,hΣ,cΣ) can be dealt with
in a similar manner.

Let E
p−→ Γ abbreviate (hΣ p e

= E)∧ (cΣ p e
= Γ). The equations (P1Σ) below en-

code the existence side of the vertical composition, while (P2Σ) encode the uniqueness
side.

(P1Σ) (∀p, p′)(E
p−→ Γ)∧ (E p′−→ Γ′)⇒

⇒ (E
⟨p, p′⟩−→ Γ∪Γ′)∧ (⟨p, p′⟩;(Γ∪Γ′ ⊇ Γ)

e
= p)∧ (⟨p, p′⟩;(Γ∪Γ′ ⊇ Γ′)

e
= p′)

for all E,Γ,Γ′ ⊆ Sen(Σ) with Γ∩Γ′ = /0.

(P2Σ) (∀p, p′)(E
p−→ Γ∪Γ′)∧ (E p′−→ Γ∪Γ′)∧

∧(p;(Γ∪Γ′ ⊇ Γ)
e
= p′;(Γ∪Γ′ ⊇ Γ))∧ (p;(Γ∪Γ′ ⊇ Γ′)

e
= p′;(Γ∪Γ′ ⊇ Γ′))⇒

p e
= p′for all E,Γ,Γ′ ⊆ Sen(Σ) with Γ∩Γ′ = /0.
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• Let PT Σ be an initial partial algebra for the resulting quasi-existence theory. The cat-
egory Pf Σ of the Σ-proofs is defined by |Pf Σ| = P (SenΣ) and (Pf Σ)(Γ,E) = {p ∈
PT Σ | PT Σ

h p= Γ,PT Σ
c p= E}. The composition of proofs is given by p; p′ = p(PT Σ

; )p′

and the monotonicity proofs ⊇Γ,E : Γ→ E are defined as PT Σ
Γ⊇E . Notice also that

(PT Σ)E = E.

• Any signature morphism ϕ : Σ→ Σ′ induces a morphism ϕ between the theories cor-
responding to Σ and Σ′. The role of the injectivity of Senϕ is that ϕ maps P1Σ to P1Σ′

and P2Σ to P2Σ′ . In the absence of this injectivity these mappings are not guaranteed as
Γ∩E = /0 would not necessarily imply that ϕΓ∩ϕE = /0. Then we define the functor
Pf ϕ as the unique partial algebra homomorphism PT Σ→ PT Σ′↾ϕ. With this we have
defined a proof system (Sig,Sen,Pf ).

• It is a straightforward exercise to show that this is the free proof system over (Sig,Sen,Rl,h,c)
as each comorphism (Φ,α,γ) : (Sig,Sen,Rl,h,c)→ (Sig′,Sen′,Pf ′,dom,cod) and each
signature Σ ∈ |Sig| determine a partial algebra A of the theory of quasi-existence equa-
tions.

The diagram below represents the universal property of the free proof system.

(Sig,Sen,Rl,h,c)
(1Sig,1Sen,η)

//

(Φ,α,γ)
$$

(Sig,Sen,Pf ,dom,cod)

(Φ,α,γ′)xx

(Sig′,Sen′,Pf ′,dom,cod)

□

For the actual systems of rules, the injectivity of the sentence translations comes
as a consequence of the injectivity of the signature morphisms. For example this can
be noticed easily in the case of PL , FOL , etc. This means that we cannot have a proof
system for such institutions that is freely generated from rules unless we restrict to the
sub-institutions determined by the injective signature morphisms.

Free infinitary proof systems can be obtained by an infinitary version of Thm. 11.3.
This requires an extension of partial algebras with infinitary operations for dealing with
the infinitary vertical compositions of proofs. This is a straightforward step.

Free entailment systems. Thm. 11.3 and its proof can be downgraded to a theorem on
existence of free entailment systems. Of course, this requires downgrading also the system
of proof rules to a concept of system of entailment rules consisting for each signature Σ of
a binary relation ⊢Σ ⊆ P (SenΣ)×P (SenΣ) between sets of Σ-sentences such that for any
signature morphism ϕ : Σ→Σ′, if E ⊢Σ E ′ then ϕE ⊢Σ′ ϕE ′. In that situation the condition
of the injectivity of the sentence translation is not needed because this is used only for
translations of families of equations (P1Σ) and (P2Σ). In this highly simplified setting

defined by the equations (∀p, p′)(E
p
//Γ

e
= E

p′
//Γ , (P2Σ) holds trivially without
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the need of Γ∩Γ′ = /0, while (P1Σ) can be replaced by (E ⊢ Γ)∧(E ⊢ Γ′)⇒ (E ⊢ Γ∪Γ′),
again without the condition Γ∩Γ′ = /0. Hence we can formulate the following:

Corollary 11.4. Each system of entailment rules generates freely an entailment system.

Soundness of institutions with free proof systems
We can enhance institutions with proof systems by aggregating the two structures if they
agree on the sentence functor. In this way we get together both sides of the general concept
of logical system. An institution with proofs is a tuple (Sig,Sen,Mod, |=,Pf ) such that

• (Sig,Sen,Mod, |=) is an institution, and

• (Sig,Sen,Pf ) is a proof system.

The fundamental coherence relationship between the model theory and the proof theory
of any institution with proofs is that of soundness: an institution with proofs is sound
when for each proof E //E ′ we have that E |= E ′.

This property is difficult to establish if we think of checking all proofs because in
general this is an infinite process. In practice we rely on finite specifications of proof
systems by systems of rules. We first check the soundness of each rule (or rules scheme)
and then lift this to the free proof system. This lifting is supported by the general result of
Prop. 11.5.

Like in the case of institutions with proof systems, an institution with proof rules
(Sig,Sen,Mod, |=,Rl,h,c) combines an institution (Sig,Sen,Mod, |=) with a system of
rules (Sig,Sen,Rl,h,c). An institution with rules is sound when for each rule r ∈ RlΣ,
hΣr |= cΣr.

Proposition 11.5. The institution with proofs (Sig,Sen,Mod, |=,Pf ) such that the proof
system (Sig,Sen,Pf ) is freely generated by a system of rules (Sig,Sen,Rl,h,c) is sound
whenever the institution with rules (Sig,Sen,Mod, |=,Rl,h,c) is sound.

Proof. Because (Sig,Sen,Mod,Rl,h,c) is sound we consider the canonical comorphism
of systems of proof rules (1Sig,1Sen,γ) : (Sig,Sen,Rl,h,c)→ (Sig,Sen, |=,dom,cod) to

the institution with semantic proofs that maps any rule E r
//E ′ to the semantic proof

E |= E ′.

(Sig,Sen,Rl,h,c)
(1Sig,1Sen,η)

//

(1Sig,1Sen,γ) %%

(Sig,Sen,Pf )

(1Sig,1Sen,γ
′)

{{

(Sig,Sen, |=)

By the universal property of the free proof system (Sig,Sen,Pf ) (Thm. 11.3), (1Sig,1Sen,γ)
can be extended to a comorphism of proof systems

(1Sig,1Sen,γ
′) : (Sig,Sen,Pf )→ (Sig,Sen, |=).
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But the existence of such a comorphism represents the soundness of
(Sig,Sen,Mod, |=,Pf ). □

Completeness. This is the opposite property to soundness. Informally, it says that for
each semantic deduction / consequence there exists at least one proof. Usually, it is much
more difficult to establish completeness properties than soundness properties. We will un-
derstand this in the last parts of this chapter. An institution with proofs (Sig,Sen,Mod, |=
,Pf ) is complete when

E |=Σ Γ implies E ⊢Σ Γ

for all sets E,Γ ⊆ SenΣ with Γ finite. An institution with proof rules is complete if and
only if the corresponding institution with proofs freely generated by the system of proof
rules is complete.

There is a subtle aspect of completeness given by ‘Γ finite’. Soundness does not
require this condition, so, strictly technically, completeness is less than the opposite of
soundness. Since the common concrete proof systems are generated by systems of finitary
rules and also because the vertical composition of proofs is finite, it does make sense to
consider a concept of completeness extended to potentially infinite Γs. For instance, in
EQL let us consider a signature with two constants a and b, and a unary operation σ.
Then a = b |= {σka = σkb | k ∈ ω}. Although we will discuss the Birkhoff proof system
for EQL later on in this chapter, some degree of familiarity with algebraic deduction tells
us that under this proof system we cannot have a = b ⊢ {σka = σkb | k ∈ ω} in spite of
having a = b ⊢ σka = σkb for each k ∈ ω.

Exercises
11.2. From (P1−3) and (MP), prove by natural deduction the Reductio ad Absurdum principle by
constructing a proof /0 //(¬¬A⇒ A) .

11.3. Develop all details of the proof of Thm. 11.3.

11.4. The rules (P1−3) and (MP) which generate the proof system of PL are sound in any insti-
tution with semantic implications and negations.

11.3 Compactness
So far we have discussed two semantic notions of compactness: model compactness (m-
compactness) and semantic consequence-theoretic compactness. The former one is out-
side the scope of proof theory, but the latter one can be in fact formulated for any en-
tailment system. Thus, an entailment system (Sig,Sen,⊢) is compact whenever for each
E ⊢ ρ, where E ⊆ SenΣ, ρ ∈ SenΣ, there exists a finite subset E0 ⊆ E such that E0 ⊢ ρ.

In this section we refine this concept of compactness to proof systems in two ways.
On the one hand, compactness for proof systems means being able to extract a proof with
finite premises from any proof with a finite set of conclusions. This is stronger than hav-
ing that if a sentence is provable then it is also provable from a finite subset of premises.
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On the other hand, we extend the concept of compactness to proof with a potentially
infinite set of conclusions. What we get is a stronger concept than compactness. This
characterises proof systems that are obtained from finitary rules, while the ordinary con-
cept of compactness applies well to semantic entailments. The main result of this section
is that the free proof systems generated by finitary rules are compact in the stronger sense
announced above. This is crucial especially in the context of the mechanisation of reason-
ing as it guarantees that any proof obtained from finitary rules has itself a finitary nature.
Remember that computing-based reasoning is strictly confined to finite entities.

Finitary and quasi-finitary proofs. A proof E
p
//E ′ is finitary when both E and E ′

are finite. Similarly, a (proof) rule r is finitary when both the hypothesis hΣr and the con-
clusion cΣr are finite for each signature Σ. The main idea of a quasi-finitary proof is that its

non-trivial part is finitary. A proof E
p
//Γ is quasi-finitary when there exists a finitary

proof E0
p0
//Γ0 such that E0⊆E, Γ0⊆Γ, E ′=Γ\Γ0⊆E and p= ⟨⊇E,E ′ ,⊇E,E0 ; p0⟩.

E ′ Γ = E ′⊎Γ0
⊆

oo
⊇

// Γ0

E
⊆

dd

p

OO

⊇
// E0

p0

OO

This should be understood as follows. E ′ represents a part of the conclusion that gets
a trivial proof thus being also a part of the hypothesis E. By removing E ′ we are left
with a finite set of conclusions Γ0. Then there exists a proof p0 of Γ0 from a finite set of
hypotheses (E0). Moreover p is the aggregation of p0 with a trivial proof. Note that this
does not mean that E = E ′ ∪E0, nor that E ′ and E0 are disjoint. Also, p may have more
than one such representations in terms of finitary proofs. For instance, to any p0 we can
aggregate any admissible trivial proof that is finitary, and then a new such representation
for p is obtained. The main role of E ′ is to reduce the conclusion to a finite set, but not
necessarily a minimal one. The following result sheds a light on these aspects.

Proposition 11.6. Any quasi-finitary proof E //Γ with Γ finite can be written as a
composition between a monotonicity proof and a finitary proof.

Proof. Consider a quasi-finitary proof E
p
//Γ such that Γ is finite. Consider a repre-

sentation of p like in the definition above of quasi-finitary proofs. Consider the commu-
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tative diagram below where p′ = ⟨⊇E ′∪E0,E ′ ,⊇E ′∪E0,E0 ; p0⟩.

E ′ Γ = E ′⊎Γ0
⊆

oo
⊇
// Γ0

E ′∪E0

⊆

dd

p′

OO

⊇
// E0

p0

OO

E

⊆

VV

⊆

OO

⊇

99

• By the uniqueness property of the direct products we get that p = ⊇; p′.

• Since Γ is finite it follows that E ′ is finite too, hence E ′∪E0 is finite. This means p′ is
finitary.

□

The sub-system of quasi-finitary proofs. A proof system is quasi-finitary when each
of its proofs is quasi-finitary. It is compact when each proof E //Γ with Γ finite, is
quasi-finitary. So, quasi-finitary proof systems are compact. Viceversa is not necessarily
true. For instance, the semantic entailment system of FOL is compact (Cor. 6.24) but it
is not quasi-finitary. To see this, it is enough to consider a signature with two constants
a and b, and a unary operation σ. Then a = b |= {σka = σkb | k ∈ ω}, which is not
quasi-finitary.

The following result is a powerful technical tool that we will use for establishing
the quasi-finitary property for some important general proof systems.

Proposition 11.7. For any proof system (Sig,Sen,Pf ), the collection of its quasi-finitary
proofs form a proof system, denoted by (Sig,Sen,C(Pf )).

Proof. Note that all monotonicity proofs are trivially quasi-finitary. We therefore have to
show that quasi-finitary proofs form a sub-category of all proofs, that this sub-category
creates (binary) products of disjoint sets of sentences, and that translations along signature
morphisms preserve quasi-finitary proofs. In order to simplify a bit the notations, we will
systematically omit the subscripts in the notation of the monotonicity proofs, but only
when thy can be understood easily from the context.

1. Subcategory (horizontal compositions). Note that each identity proof is trivially quasi-

finitary. Consider two quasi-finitary proofs E
p
//Γ and Γ

q
//∆ . We represent

them in terms of finitary proofs p0 and q0, respectively, as shown in the diagram below:
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Γ1 E1

E

⊇
77

p
//

⊇
��

E ′⊎Γ0

⊇
OO

⊇
��

Γ

⊇
66

q
//

⊇
��

∆ = Γ′⊎∆0

⊇
OO

⊇
��

E0 p0
// Γ0 Γ′0 q0

// ∆0

(11.2)

The main idea of our argument is that, based on these representations of p and q we
construct new representations for them such that their finitary components compose.
Moreover, this composition should provide a representation for p;q in terms of a fini-
tary proof.

• We start with p. We split Γ differently, as Γ = (E \Γ′)⊎ (Γ0 ∪Γ′0) and consider
p′0 = ⟨⊇; p0, ⊇⟩ as shown in the diagram below:

E ′∩Γ′0 Γ = (E ′∩Γ′0)⊎Γ0
⊆

oo
⊇

// Γ0

E0∪ (E ′∩Γ′0)

⊆

gg

p′0

OO

⊇
// E0

p0

OO

All four set-inclusion claims in this diagram are trivial. That Γ0 and E ′∩Γ′0 are dis-
joint follows from the disjointness of Γ0 and E ′. Now we claim the commutativity
of the following diagram:

E ′ \Γ′0 (E ′ \Γ′0)⊎ (Γ0∪Γ′0)
⊆

oo
⊇

// Γ0

E

⊆

gg

p

OO

⊇
// E0∪ (E ′∩Γ′0)

p′0

OO
(11.3)

The correctness of this diagram requires the following couple of equalities.

1 Γ = (E ′ \Γ0)⊎ (Γ0∪Γ′0) Γ = E ′ ⊎Γ0, Γ′0 ⊆ Γ

2 Γ0∪Γ′0 = Γ0⊎ (E ′∩Γ′0) E ′ ∩Γ0 = /0, Γ′0 \Γ0 ⊆ E ′ ∩Γ′0.

While the commutativity of the left-hand side part of (11.3) (the triangle) just fol-
lows immediately from the representation of p in terms of p0 (diagram (11.2)),
to establish the commutativity of the right-hand side part of (11.3) (the square)
requires a bit of work. We use 2 and compose both side of the square with the
monotonicity proofs Γ0⊎ (E ′∪Γ′0)

//Γ0 and Γ0⊎ (E ′∪Γ′0)
//E ′∪Γ′0 . In

both cases we get equalities (we skip these straightforward calculations), and thus
the uniqueness aspect of the direct products solves the problem.
Now, because Γ′0,Γ0,E0 are finite we have that p′0 is finitary, hence (11.2) yields a
representation of p in terms of the finitary proof p′0.
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• Now, we deal with q. We claim that q can be represented as in the diagram below
in terms of the finitary proof ⟨⊇;q0, ⊇⟩.

Γ′∩ (E ′ \Γ′0) ∆ = (Γ′∩ (E ′ \Γ′0))⊎ (∆0⊎ (Γ′∩ (Γ0∪Γ′0)))
⊆

oo
⊇

// ∆0⊎ (Γ′∩ (Γ0∪Γ′0))

Γ = (E ′ \Γ0)⊎ (Γ0∪Γ′0)

⊆

jj

q

OO

⊇
// (Γ0∪Γ′0)

⟨⊇;q0,⊇⟩

OO
(11.4)

First we have to do the following straightforward checks that involve a bit of set-
theoretic calculations (which we skip):

3 ∆0∩ (Γ′∩ (Γ0∪Γ′0)) = /0 ∆0 ∩Γ′ = /0

4 (Γ′∩ (E ′ \Γ′0))∩ (∆0⊎ (Γ′∩ (Γ0∪Γ′0))) = /0 ∆0 ∩Γ′ = /0, E ′ ∩Γ0 = /0

5 Γ′ = (Γ′∩ (E ′ \Γ′0))∪ (Γ′∩ (Γ0∪Γ′0)) (E ′ \Γ′0)∪ (Γ0 ∪Γ′0) = Γ.

The commutativity of the left-hand side of (11.4) (triangle) follows immediately
from the representation of q in terms of q0 (diagram (11.2)). For establishing the
commutativity of the right-hand side of (11.4) (square) we compose both sides of
the square with the monotonicity proofs ∆0⊎ (Γ′∩ (Γ0∪Γ′0))

//∆0 and
∆0⊎ (Γ′∩ (Γ0∪Γ′0))

//Γ′∩ (Γ0∪Γ′0) . In both cases we get equalities (again,
we skip the straightforward calculations). Then we apply again the uniqueness prop-
erty of directed products.
Since ∆0,Γ0,Γ

′
0 are finite, ⟨⊇;q0, ⊇⟩ is finitary.

• Now, we can ‘compose’ the new representations of p and q:

E ′ \Γ′0
⊇

// Γ′∩ (E ′ \Γ′0)

E

⊇
55

p
//

⊇
��

Γ = (E ′ \Γ0)⊎ (Γ0∪Γ′0)

⊇
33

q
//

⊇
��

⊇

OO

∆ = (Γ′∩ (E ′ \Γ′0))⊎ (∆0⊎ (Γ′∩ (Γ0∪Γ′0)))

⊇
��

⊇

OO

E0∪ (E ′∩Γ′0) p′0
// Γ0∪Γ′0 ⟨⊇;q0, ⊇⟩

// ∆0⊎ (Γ′∩ (Γ0∪Γ′0))

and obtain a representation of p;q in terms of the finitary proof p′0;⟨⊇;q0, ⊇⟩.

2. Direct products (vertical compositions). Let us consider quasi-finitary proofs E
p
//Γ

and E
q
//∆ such that Γ∩∆ = /0. We prove that E

⟨p,q⟩
//Γ⊎∆ is quasi-finitary.

• Consider representations of p and q in terms of finitary proof like below:

Γ′ Γ = Γ′⊎Γ0
⊇
//

⊆
oo Γ0 ∆′ ∆ = ∆′⊎∆0

⊇
//

⊆
oo ∆0

E
⊆

dd

⊇
//

p

OO

E0

p0

OO

E
⊆

dd

q

OO

⊇
// E1

q0

OO
(11.5)

Since Γ∩∆ = /0 it follows Γ0∩∆0 = /0.
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• Consider the proof r0 = ⟨⊇; p0,⊇;q0⟩ defined in the commutative diagram below:

Γ0 Γ0⊎∆0
⊇

//
⊆

oo ∆0

E0

p0

OO

E0∪E1⊆
oo

r0

OO

⊇
// E1

q0

OO

Since Γ0,∆0,E0,E1 are finite, r0 is finitary.

• We claim that the following diagram commutes:

Γ′⊎∆′ (Γ′⊎∆′)⊎ (Γ0⊎∆0)
⊇
//

⊆
oo Γ0⊎∆0

E

⟨p,q⟩

OO

⊆

hh

⊇
// E0∪E1

r0

OO
(11.6)

The left-hand side of (11.6) is obtained by applying the monotonicity proofs
Γ′⊎∆′ //Γ′ and Γ′⊎∆′ //∆′ to the two sides of the triangle and by us-
ing the commutativity of the left-hand sides of the diagram (11.5). Through easy
diagram chasing we obtain equalities, which by the uniqueness of the mediating
arrows to direct products yield the desired commutativity.
The commutativity of the right-hand side of (11.6) can be obtained similarly, by
applying the two monotonicity proofs to both sides of the square.

Then (11.6) gives a representation of ⟨p, q⟩ in terms of the finitary proof r0.

3. Translations of proofs along signature morphisms. We have to prove that for any sig-

nature morphism ϕ : Σ→ Σ′ we have that ϕ(C(Pf Σ))⊆C(Pf Σ′). Let E
p
//Γ be a

quasi-finitary proof represented by a finitary proof E0
p0
//Γ0 as shown by the dia-

gram below:

E ′ Γ = E ′⊎Γ0
⊆

oo
⊇

// Γ0

E
⊆

dd

p

OO

⊇
// E0

p0

OO
(11.7)

In principle, a representation of ϕp by a finitary proof should be obtained by applying
Pf ϕ to diagram (11.7). There is a little problem though, the possibility that ϕE ′∩ϕΓ0 ̸=
/0. The solution to this is to split ϕΓ as (ϕE ′ \ϕΓ0)⊎ϕΓ0. Then we get the following
representation of ϕp by the finitary proof ϕp0:

ϕE ′ \ϕΓ0 ϕΓ = (ϕE ′ \ϕΓ0)⊎ϕΓ0
⊆

oo
⊇

// ϕΓ0

ϕE
⊆

ii

ϕp

OO

⊇
// ϕE0

ϕp0

OO
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□

Quasi-finitary free proof systems. Now we are able to prove the main result of this
section, that was announced before. Its proof relies heavily on the exquisite power of
Prop. 11.7.

Corollary 11.8. The proof system freely generated by a system of finitary rules is quasi-
finitary. Consequently, it is compact too.

Proof. Consider a proof system (Sig,Sen,Pf ) generated freely by a system of finitary
proof rules (Sig,Sen,Rl,h,c), with (1Sig,1Sen,η) universal arrow.

• By Prop. 11.7 let (Sig,Sen,C(Pf )) be the proof-system of the quasi-finitary proofs in
(Sig,Sen,Pf ). Because each proof rule of (Sig,Sen,Rl,h,c) is finitary, it means that
ηΣ(RlΣ) ⊆C(Pf )Σ for each signature Σ, hence (1Sig,1Sen,η) is a comorphism of sys-
tems of proof rules (Sig,Sen,Rl,h,c)→ (Sig,Sen,C(Pf ),dom,cod).

• By the universal property of (1Sig,1Sen,η) there exists a unique comorphism of proof
systems (1Sig,1Sen,γ) : (Sig,Sen,Pf )→ (Sig,Sen,C(Pf )) such that the diagram below
commutes:

(Sig,Sen,Rl,h,c)
(1Sig,1Sen,η)

//

(1Sig,1Sen,η)
**

(Sig,Sen,Pf ,dom,cod)

(1Sig,1Sen,γ)

��

(Sig,Sen,C(Pf ),dom,cod)

(1Sig,1Sen,γ
′)

OO

• Let (1Sig,1Sen,γ
′) be the embedding sub-system comorphism (Sig,Sen,C(Pf )) →

(Sig,Sen,Pf ). The above diagram commutes. By the uniqueness part of the universal
property for the free proof system, we get that γ;γ′ = 1, and because γ′ are inclusions,
we obtain that C(Pf ) = Pf , which means that each proof of (Sig,Sen,Pf ) is quasi-
finitary.

□

The result of Cor. 11.8 can be used to obtain the compactness of institutions. So far,
we have a route to compactness through model-theoretic compactness (m-compactness)
given by Prop. 6.18, but that does not apply to institutions without negation, such as EQL ,
HCL , UNIV , etc. Ironically, in HCL and in EQL , m-compactness is trivialised by each
theory being consistent (by initial semantics).

Corollary 11.9. Any complete institution with proofs such that the proof system is freely
generated by a system of finitary rules, is compact.

When obtaining compactness through Cor. 11.9, the hard part is the completeness
property. In Sections 11.6 and 11.7 we will obtain proof systems for UNIV , HCL , EQL
that fit the requirements of Cor. 11.9.
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11.4 Proof-theoretic internal logic
In Chap. 5 we introduced an institution-independent semantics for propositional con-
nectives and quantifiers. Here we introduce proof-theoretic definitions for these logical
connectives. Moreover, the proof-theoretic connectives can be seen as extensions of their
semantic counterparts by considering the proof system of the institution defined by the
semantic consequence relation. When doing that, the definition of the proof-theoretic log-
ical connectives appear as properties of the semantic consequence relation.

In this section we do the following:

1. We introduce the proof-theoretic interpretation of the propositional and the quantifica-
tion connectives as universal properties in the categories of proofs.

2. We show how the proof-theoretic interpretations of the logical connectives can be
added freely (in the sense of free constructions) to proof systems. This constitutes
a an important step of a straightforward method for building sound an complete proof
systems for institutions with semantic logical connectives.

3. We show that the free construction of proof system with connectives preserve the cru-
cial properties of soundness and quasi-finitarity of the original proof systems.

Some of the definitions and proofs of results in this section, albeit straightforward, may be
technically tedious. Because of this we will afford to skip some details and present only
the important ideas. All skipped details can be easily recovered by the interested reader.
For this, all that is needed is patience.

Propositional connectives
Conjunctions. A Σ-sentence ρ′ is a proof-theoretic conjunction of Σ-sentences ρ1 and
ρ2 when ρ′ is the direct product of ρ1 and ρ2 in Pf Σ.

ρ1 ρ′
p1
oo

p2
// ρ2

E
∀q1

__

∃!q
OO

∀q2

??

In the language of adjunctions this can be expressed as a natural isomorphism

Pf Σ (E,ρ1)×Pf Σ (E,ρ2) ∼= Pf Σ(E,ρ′).

Fact 11.10. In any institution, a semantic conjunction is the same with a proof-theoretic
conjunction in the semantic proof system.

Disjunctions, true, false. These can be defined in the same manner as the conjunctions.
As expected, proof-theoretic disjunctions are dual to the conjunctions, disjunctions being
co-products in the category of proofs. Proof-theoretic true and false, respectively, are
defined as terminal and initial objects, respectively. Identity situations like that described
in Fact 11.10 hold also for these three propositional connectives.
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Negations. A Σ-sentence ρ′ is a proof-theoretic negation of a Σ-sentences ρ when for
each Γ⊆ SenΣ and for each false sentence false, we have the natural isomorphism:

Pf Σ (Γ∪{ρ}, false) ∼= Pf Σ (Γ,ρ′).

Proposition 11.11. If ρ′′ is a double-negation of a Σ-sentence ρ then there exists a canon-
ical proof ρ //ρ′′ .

Proof. Let ρ′ be a negation of ρ such that ρ′′ is a negation of ρ′. We have the following
isomorphisms:

Pf Σ (ρ′,ρ′)∼= Pf Σ ({ρ,ρ′}, false)∼= Pf Σ (ρ,ρ′′).

Since Pf Σ (ρ′,ρ′) ̸= /0 (it contains the proof 1ρ′ ), it follows that Pf Σ (ρ,ρ′′) ̸= /0. □

When for each sentences ρ and ρ′′ such that ρ′′ is a double negation of ρ, ρ and ρ′′

are proof-theoretic equivalent, then we say that the proof system has ¬¬-elimination.

Fact 11.12. For any institution with semantic negations, its semantic entailment system
has ¬¬-elimination.

Implications. A Σ-sentence ρ′ is proof-theoretic implication of a Σ-sentence ρ from γ

when for each Γ⊆ SenΣ there exists a bijective correspondence between Pf Σ (Γ∪{γ},ρ)
and Pf Σ (Γ,ρ′), which is natural in Γ. The conventional logic version of this property is
known under the name of Deduction Theorem.

Fact 11.13. Let false be a proof-theoretic false sentence. Then ρ′ is a negation of ρ when
it is an implication of false from ρ.

The identity between semantic and proof-theoretic implications holds in the proof-
theoretic semantic system of any institution (like in Fact 11.10).

Quantifiers
Let χ : Σ→ Σ′ be a signature morphism in a proof system. Then for any Σ-sentence ρ

and for any Σ′-sentence ρ′, ρ is a universal χ-quantification of ρ′ when for each set of
Σ-sentences E we have the natural isomorphism:

Pf Σ (E,ρ) ∼= Pf Σ (χE,ρ′).

On the other hand, ρ is an existential χ-quantification of ρ′ when:

Pf Σ (ρ,E) ∼= Pf Σ
′(ρ′,χE).

The isomorphism defining the proof-theoretic universal quantification is known in con-
ventional logic as the ‘Generalization Rule’. Of course, this may appear in other forms,
such as an equivalence between entailments, etc. This is rather a property of the proof sys-
tem than a generating rule, hence calling it ‘meta-rule’ instead of ‘rule’ would be more
appropriate.

Finally, the identity between semantic and proof-theoretic quantifications holds in
the proof-theoretic semantic system of any institution (like in Fact 11.10).
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Designated connectives and adjunctions
Like in the case of the semantic connectives, the proof-theoretic connectives may receive
syntactic support at the level of the sentence functor. For instance, in the case of desig-
nated conjunctions, this means that for any Σ-sentences ρ1 and ρ2, there exists a desig-
nated sentence, commonly denoted ρ1 ∧ρ2, that is the proof-theoretic conjunction of ρ1
and ρ2. Designations of the other connectives are defined similarly. Then the definitions
of connectives amount to adjunctions. For instance, the natural isomorphism

Pf Σ (E,ρ1)×Pf Σ (E,ρ2) ∼= Pf Σ (E,ρ1∧ρ2) (11.8)

says that for each pair (ρ1,ρ2) there exists an universal arrow from the diagonal functor
∆ : Pf Σ→ (Pf Σ)2 to (ρ1,ρ2). This consists of the pair of projections proofs

ρ1 ρ1∧ρ2
p1

oo
p2

// ρ2

If we consider proofs only between single sentences then we get the designation of the
conjunctions as a right adjoint ∧ : (Pf Σ)2→ Pf Σ to the diagonal functor ∆ : Pf Σ→
(Pf Σ)2.

Another aspect of these designations is the naturality with respect to the translations
of signatures. For instance, the isomorphism (11.8) should be natural also in Σ, not only
in E,ρ1,ρ2. From the perspective of designation-as-adjunction this means that each sig-
nature morphism ϕ : Σ→ Σ′ gives a morphism between the corresponding adjunctions
and, moreover, this mapping is functorial. All these are of course expected coherence
properties.

The special case of the quantifications. The adjunction view on proof-theoretic des-
ignated quantifications, either universal or existential, comes with a complication at the
level of the naturality with respect to signature translations. This is because the context
of the quantifications is a signature morphism (χ : Σ→ Σ′ in the above definition of the
proof-theoretic quantifications) rather than a single signature. Thus, a translation from
χ : Σ→ Σ′ to χ1 : Σ1 → Σ′1 means a pair (θ,θ′) of signature morphisms such that the
square below commutes:

Σ

χ

��

θ
// Σ1

χ1

��

Σ′
θ′
// Σ′1

Moreover, we do not consider all such squares, but only those that are pushout squares.
In other words, the signature morphisms that quantify (χ) are not translated to any signa-
ture morphism. In this sense FOL is a good example, the translation squares are always
pushout squares and this is intimately related to the model amalgamation property that
enables the satisfaction condition for the quantified sentences.

It is also helpful to consider a designated class D of signature morphisms from
which χ and χ1 are taken. For instance, in FOL this class D consists of the signature
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extensions with finite blocks of variables. In this case, it is technically convenient to ax-
iomatise that D is stable under pushouts. Note that this is indeed the case in FOL . All
these structures and conditions imposed on the quantifications have little direct proof-
theoretic relevance, they really come from the model theory side of logics. Since we are
interested to aggregate our proof theory to institutions in a meaningful way, these struc-
tures and conditions are needed.

Proof systems with connectives everywhere. As a matter of terminology, we say that
a proof system has a certain connective when this exists for all sentences. For instance, a
proof system has conjunctions if any two Σ-sentences have a conjunction. When we say
that it is also designated, then this designation has to obey the coherence conditions just
discussed. For instance, it is possible to define PL only with conjunction and negation as
designated connectives, all other PL connectives being there but not in a designated way.

Free proof systems with connectives
Suppose that we have an institution where the sentences are constructed inductively by
using certain connectives, and that the satisfaction relation follows the structure of the
sentences. We know that most ‘logical’ institutions are like that as their satisfaction re-
lation follows the ‘Tarskian’ definition of semantic truth. Suppose we want to build a
proof system for the institution such that it is sound and complete. To achieve complete-
ness, we have to address each connective proof-theoretically. A way to do this is first to
build a sound and complete proof system for the atomic part of the institution and then
enforce the properties of the respective connectives on the proof system. The resulting
proof system should retain the soundness and the completeness. Moreover, this can be
further iterated. This process can be regarded as a free construction, as represented by the
diagram below:

(Sig,Sen,Pf )

∀(Φ,α,γ)
%%

(1Sig,1Sen,ω)
// (Sig,Sen,Pf )

∃!(Φ,α,γ)
yy

(Sig′,Sen′,Pf ′)

where (1Sig,1Sen,ω) is the universal arrow from the original proof system to the forgetful
functor from proof systems with connectives to just proof systems.

The following result is of the same species as Thm. 11.3 (the free construction of
proof systems from systems of rules).

Theorem 11.14. Consider a proof system (Sig,Sen,Pf ) such that its sentences have des-
ignated syntax for certain connectives (propositional or quantifications). Then there exists
a free proof system over (Sig,Sen,Pf ) that has the respective connectives in a designated
form.

Proof. The main idea of this proof is shared with the proof of Thm. 11.14, namely to
encode the problem as a free construction problem along a morphism of quasi-existence
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equational theory in PA . This works well because the definitions of all proof-theoretic
connectives that we have introduced above give rise to quasi-existence theories. □

The result of Thm. 11.14 applies well to the situations that interest us most, when
we have an institution with proofs, that have designated semantic connectives but the
existing proof system does not support them. Then we can use this result for enhancing
the proof system with new proofs corresponding to the proof-theoretic interpretation of
the respective connectives.

The free constructions of Thm. 11.14 preserve the crucial properties of soundness
and quasi-finitary as shown by the following couple of corollaries.

Corollary 11.15. The free proof system with connectives over a quasi-finitary proof sys-
tem is quasi-finitary too.

Proof. We replicate the argument of Cor. 11.8

• by taking the quasi-finitary proof (sub-)system (Sig,Sen,C(Pf )) (which exists cf. Prop. 11.7)
of the free proof system with connectives (Sig,Sen,Pf ), and

• by noting that proof system comorphisms preserve quasi-finitary proofs (this fact be-
ing similar to the fact that the translations along signature morphisms preserve quasi-
finitary proofs; see third part of the proof of Prop. 11.7).

This means that if we assume that (Sig,Sen,Pf ) is quasi-finitary, then the universal co-
morphism (Sig,Sen,Pf )→ (Sig,Sen,Pf ) goes de facto to (Sig,Sen,C(Pf )). □

Proposition 11.16. Let (Sig,Sen,Mod, |=,Pf ) be any sound institution with proofs and
with certain semantic connectives. Let (1Sig,1Sen,ω) : (Sig,Sen,Pf ) →
(Sig,Sen,Mod, |=,Pf ) be a free proof system with connectives corresponding to the exist-
ing semantic connectives. Then (Sig,Sen,Mod, |=,Pf ) is a sound institution with proofs.

Proof. We replicate the proof of Prop. 11.5

• by expressing soundness as comorphisms of proof systems to the semantic proof sys-
tem (Sig,Sen, |=) (which is possible because for all connectives in the semantic en-
tailment system we have an identity between the respective semantic and the proof-
theoretic connective, a fact that has always been mentioned whenever we introduced
each proof-theoretic connective), and

• by using the universal property given by Thm. 11.14:

(Sig,Sen,Pf )
(1Sig,1Sen,ω)

//

(1Sig,1Sen,γ) $$

(Sig,Sen,Pf )

(1Sig,1Sen,γ)zz

(Sig,Sen, |=)

□
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Exercises
11.5. In any entailment system, the entailment-theoretic equivalence ρ1 ⊢⊣ ρ2 determines for each
signature Σ a quotient of the preorder (SenΣ,⊢) to a partial order (SenΣ/⊢⊣,≤). If the entailment
system has conjunctions, disjunctions, true, false, and implications, then (SenΣ/⊢⊣,≤) is a Heyting
algebra.

11.6. Any entailment system with conjunctions, negations, and ¬¬-elimination has disjunctions
and implications. (Hint: Define ρ1 ∨ρ2 as ¬(¬ρ1 ∧¬ρ2)) and ρ1 ⇒ ρ2 as ¬ρ1 ∨ρ2. Use the fact
that in any entailment system with negations and ¬¬-elimination we have that ρ ⊢ ρ′ is equivalent
to ¬ρ′ ⊢ ¬ρ.) Does this result generalize to proof systems?

11.7. Collapsing theorem
In any proof system with implication, false, and ¬¬-elimination, there exists at most one proof
between any two finite sets of sentences. (Hint: By using implications and the initiality of false, we
have that for each finite set of sentences E there exists at most one proof E ∪{false} //E ∪{false} .
Use this for showing that the existence of a proof E // false implies E ∼= false. The conclusion
follows by ¬¬-elimination which gives that proofs E //ρ′ are in natural bijective corrrespon-
dence to proofs E ∪{¬ρ′} // false .)

11.8. Maximally consistent sets, proof theoretically
Consider an entailment system (Sig,Sen,⊢) with negations and false. A set of Σ-sentences Γ is
consistent when Γ ̸⊢ false. It is maximally consistent when it is consistent and it is maximal with
respect to this property, i.e., for any other consistent set Γ′ such that Γ⊆ Γ′ we have that Γ = Γ′.
For each signature Σ we let ModΣ = {M ⊆ SenΣ |M maximally consistent} and for each signature
morphism ϕ : Σ→ Σ′ we let Modϕ : ModΣ′→ModΣ be defined by (Modϕ)M′= ϕ−1M′. We may
define a satisfaction relation |=Σ ⊆ ModΣ×SenΣ by M |= ρ if and only if ρ ∈M.

1. (Sig,Sen,Mod, |=,⊢) is an institution with proofs that is sound and has semantic negations.

2. If in addition we assume that (Sig,Sen,⊢) is compact, then (Sig,Sen,Mod, |=,⊢) is complete if
and only if (Sig,Sen,⊢) has ¬¬-elimination. (Hint: Prove and use the generalization of Linden-
baum’s Thm. of Ex. 7.2 to entailment systems.)

11.9. Craig interpolation, proof theoretically
The proof-theoretic concept of interpolation refines the semantic concept of interpolation by con-
sidering the interpolant to be a set of sentences together with two corresponding proofs. In any
proof system, a square of signature morphisms

Σ
ϕ1
//

ϕ2

��

Σ1

θ1

��

Σ2
θ2

// Σ′

is a Craig Interpolation square if and only if for each set E1 of Σ1-sentences and finite set E2
of Σ2-sentences and each proof p : θ1E1 → θ2E2 there exists a set E of Σ-sentences and proofs
p1 : E1→ ϕ1E and p2 : ϕ2E→ E2 such that p = θ1 p1 ; θ2 p2.

1. Proof-theoretic Craig interpolation squares are closed under both the ‘vertical’ and the ‘hori-
zontal’ compositions (in the sense of Ex. 9.2).
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2. Formulate a ‘single sentence’ version for proof-theoretic interpolation and prove that this is
a consequence of the ‘multiple sentence’ version when the proof system is compact and has
conjunctions.

11.10. Craig-Robinson interpolation, proof theoretically
Craig interpolation (abbreviated Ci) for proof systems (see Ex. 11.9 above) can be refined to Craig-
Robinson interpolation (abbreviated CRi) by generalizing the concept of model-theoretic CRi of
Sect. 9.5.

1. Extend the result of Prop. 9.24 (which gives sufficient conditions for the equivalence between
CRi and Ci) from semantic entailment systems to arbitrary entailment systems.

2. Try to further extend the result at the previous item from entailment systems to proof systems.

11.11. [135] Proof-theoretic implicit definability
We say that a signature morphism ϕ : Σ→ Σ′ in a proof system is defined implicitly (proof theoret-
ically) by E ′ ⊆ SenΣ′ if for each signature morphism θ : Σ→ Σ1 and each Σ′1-sentence ρ,

(θ′;u)E ′∪ (θ′;v)E ′∪{uρ} ⊢ vρ and (θ′;u)E ′∪ (θ′;v)E ′∪{vρ} ⊢ uρ

for all pushout squares of the form

Σ′
θ′
// Σ′1

u

��

Σ
θ
//

ϕ ��

ϕ
@@

Σ1
ϕ1

��

ϕ1

??

Σ′′

Σ′
θ′
// Σ′1

v

??

In any institution with model amalgamation a signature morphism ϕ

1. is defined implicitly proof theoretically by E ′ for the semantic entailment system if it is defined
implicitly model theoretically by E ′ (in the sense of Chap. 10), and

2. is defined implicitly model theoretically by E ′ if it is defined implicitly proof theoretically by
E ′ when it is ι-tight for a system ι of diagrams of the institutions.

11.12. [135] Definability by interpolation, proof theoretically
Given a proof system, we say that a signature morphism ϕ is defined explicitly by E ′ ⊆ SenΣ′ when
for each pushout square

Σ
ϕ
//

θ

��

Σ′

θ′

��

Σ1
ϕ1
// Σ′1

and for each ρ ∈ SenΣ′1, there exists a set of sentences Eρ ⊆ SenΣ1 such that

θ
′E ′ ∪ {ρ} ⊢ ϕ1Eρ and θ

′E ′ ∪ ϕ1Eρ ⊢ ρ.

The following constitute proof theoretic variants of Prop. 10.4 and Thm. 10.5, respectively.

1. Any signature morphism is defined implicitly by a theory if it is defined explicitly by that theory.
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2. If the entailment system has Craig-Robinson (L ,R )-interpolation (see Ex. 11.10) for classes L
and R of signature morphisms that are stable under pushouts, any signature morphism in L∩R
is defined explicitly if it is defined implicitly.

11.13. Express proof-theoretic designated disjunctions, negations and implications as adjunctions.

11.14. Develop the details of the proof of Thm. 11.14 for each of the propositional and quantifica-
tion connectives.

11.5 The entailment institution
In any institution the satisfaction relation between models and sentences determine the se-
mantic consequence which has the properties of an entailment system. At this consequence-
theoretic level of the semantic entailment system the concepts of models and satisfaction
are absent, so this move puts us beyond the model theory realm. In this section we study
the possibility to move in the opposite direction, namely to build institutions from entail-
ment systems in a general meaningful way.

Entailment-theoretic theories and their morphisms. Our construction of free institu-
tions over entailment systems requires entailment-theoretic concepts of theory and mor-
phism of theories. These are quite straightforward to come up with if we express the
corresponding institution-theoretic concepts in terms of the semantic consequence rela-
tion, and then just replace |= by ⊢. The entailment-theoretic concept of theory is the same
as in institutions, a signature and a set of sentences for that signature. The definition
of the proof-theoretic concept of morphism of theories requires more attention. For any
E ⊆ SenΣ let E• = {e | E |= e}. Then a morphism of theories ϕ : (Σ,E)→ (Σ′,E ′) is
defined as a signature morphism ϕ : Σ→ Σ′ such that ϕE ⊆ E ′•. Now, it is important that
such morphisms of theories do compose. In general, they do not. The solution to this is to
assume compactness.

Proposition 11.17. In any compact entailment system the composition of theory mor-
phisms, defined by the composition of the underlying signature morphisms, yields a theory
morphism.

Proof. Consider theory morphisms ϕ : (Σ,E)→ (Σ′,E ′) and ϕ′ : (Σ′,E ′)→ (Σ′′,E ′′).
We prove that ϕ;ϕ′ : (Σ,E)→ (Σ′′,E ′′) is a theory morphism, which amounts to proving
that for each e ∈ E, E ′′ ⊢ ϕ′(ϕe). We have that:

1 E ′ ⊢ ϕe ϕ : (Σ,E)→ (Σ′,E ′) theory morphism, e ∈ E

2 there exists E ′0 ⊆ E ′ finite such that E ′0 |= ϕe 1, compactness

3 ϕ′E ′0 ⊢ ϕ′(ϕe) 2, translation of entailment

4 E ′′ ⊢ ϕ′E ′0 ϕ′ : (Σ′,E ′)→ (Σ′′,E ′′), E ′0 finite, union of entailment

5 E ′′ ⊢ ϕ′(ϕe) 3, 4, transitivity of entailment.

□
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An alternative way to define morphisms of theories, that would avoid the compact-
ness condition, would be to ask that E ′ ⊢ ϕE. However, this definition is too strong as
there can be theory morphisms in the former acceptation that are not theory morphisms in
the latter acceptation. This is so because entailment systems do not always admit infinite
unions. In itself this perhaps is not convincing enough, but it becomes a good argument
when we lean towards the idea that the provability of everything in ϕE is what is relevant,
and not necessarily the provability of ϕE as a whole entity.

The canonical institution over an entailment system. We first define the institution,
then prove its soundness and completeness properties.

Proposition 11.18 (Entailment institution). Each compact entailment system
E = (Sig,Sen,⊢) determines an institution I (E) = (Sig,Sen,Mod, |=), called the entail-
ment institution of E , where for each signature Σ ∈ |Sig|,

• the Σ-models are pairs (ψ,E ′), where ψ : Σ→ Σ′ is a signature morphism and E ′ is
a Σ′-theory,

• a Σ-model homomorphism ϕ : (ψ : Σ→ Σ′, E ′)→ (ψ′ : Σ→ Σ′′, E ′′) is a theory
morphism ϕ : (Σ′,E ′)→ (Σ′′,E ′′) such that ψ ; ϕ = ψ′,

• a Σ-model (ψ,E ′) satisfies a Σ-sentence ρ if and only if E ′ ⊢ ψρ,

• model reducts are obtained just by composition to the left.

Proof. Apart of the Satisfaction Condition, the other institution axioms are trivial to check
on the entailment institution. The compactness hypothesis is necessary for getting the
categories of Σ-homomorphisms through the result of Prop. 11.17. For proving the Satis-
faction Condition, we consider a signature morphism ϕ : Σ→ Σ′, any Σ′-model (ψ′,E ′′),
and any Σ-sentence ρ. Then the following relations are equivalent:

(Modϕ)(ψ′,E ′′) |= ρ

(ϕ;ψ′, E ′′) |= ρ definition of reduct

E ′′ ⊢ ψ′(ϕρ) definition of satisfaction (Σ)

(ψ′,E ′′) |= ϕρ definition of satisfaction (Σ′).

□

Soundness and completeness. With the entailment institutions, soundness and com-
pleteness come by default.

Proposition 11.19. Let E = (Sig,Sen,⊢) by any compact entailment system and let
I (E) = (Sig,Sen,Mod, |=) be its associated institution (according to Prop. 11.18). Then
(Sig,Sen,Mod, |=,⊢) is sound and complete.

Proof.

• Soundness. Let us assume that E ⊢ ρ. Consider any Σ-model (ψ,E ′) such that (ψ,E ′) |=
E. We prove that (ψ,E ′) |= ρ too.
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– (ψ,E ′) |=E means ψ : (Σ,E)→ (Σ′,E ′) is a proof-theoretic morphism of theories.

– E ⊢ ρ means 1Σ : (Σ,ρ)→ (Σ,E) is a morphism of theories too.

– By Prop. 11.17, by using the compactness hypothesis, we obtain that ψ = 1Σ;ψ is
a morphism of theories (Σ,ρ)→ (Σ′,E ′). This means E ′ ⊢ ψρ.

• Completeness. Let us assume E |=ρ. We consider the Σ-model (1Σ,E). Then (1Σ,E) |=
E, hence (1Σ,E) |= ρ. By the definition of |= it follows that E ⊢ ρ.

□

The following result is an immediate consequence of Prop. 11.19.

Corollary 11.20 (Compactness). Let (Sig,Sen,⊢) be a compact entailment system. Then
its associated entailment institution is compact too. Moreover, it is trivially model com-
pact.

Exercises
11.15. Theory morphisms in proof systems
Given a proof system (Sig,Sen,Pf ), a theory is a pair (Σ,E) where Σ is a signature and E ⊆ SenΣ.
This is like in institutions or in entailment systems. A theory morphism (ϕ, p) : (Σ,E)→ (Σ′,E ′)
consists of a signature morphism ϕ : Σ→ Σ′ and a family of proofs p = (pe)e∈E such that pe ∈
Pf Σ′ (E ′,ϕe).

1. Are proof-theoretic morphisms of theories an extension of the concept of entailment-theoretic
morphism of theories?

2. Define a composition of proof-theoretic morphisms of theories and then generalise the result
of Prop. 11.17 to compact proof systems.

11.16. Special theory morphisms in entailment / proof systems
A theory morphism ϕ : (Σ,E)→ (Σ′,E ′) in a compact entailment system

• is closed when E• = ϕ−1E ′•; and

• is strong when (ϕE)• = E ′•.

1. Do the concepts of closed / strong morphisms of theories in a semantic entailment system
coincide with the corresponding institution-theoretic concepts (as introduced in Sec. 4.5)?

2. Show that the closed /strong morphisms of theories form sub-categories of the category of
theory morphisms.

3. Extend the concepts of closed / strong theory morphisms from entailment systems to proof
systems (see Ex. 11.15).

11.17. Modularization squares and interpolation
In any compact entailment system a commutative square of signature morphisms

Σ
ϕ1
//

ϕ2

��

Σ1

θ1

��

Σ2
θ2

// Σ′
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is said to be a modularization square when for any commutative square of theory morphisms like
below

(Σ,E)
ϕ1

//

ϕ2

��

(Σ1,E1)

θ1

��

(Σ2,E2)
θ2

// (Σ′,θ1E1 ∪ θ2E2)

if θ1 is closed (in the sense introduced in Ex. 11.16) then θ2 is closed too.
Prove that modularization squares are exactly the Craig-Robinson interpolation squares. Does this
equivalence also hold in proof systems?

11.18. Propositional connectives in entailment institutions
Consider an entailment system E and let I (E) be its entailment institution.

1. If E has conjunctions, then I (E) has conjunctions too.

2. When E has disjunctions, implications, negations, or false, I (E) does not necessarily have the
corresponding connectives.

11.19. The entailment system of theories
Consider a compact entailment system E = (Sig,Sen,⊢). Let Th be the category of its theories.

1. Then E th = (Th,Senth,⊢th) is the entailment system of theories where Th is the category of
theories, Senth(Σ,E) = SenΣ, and

Γ ⊢th
(Σ,E) Γ

′ if and only if Γ∪E ⊢Σ Γ
′.

is an entailment system.

2. E th has conjunctions, false, negations, and implications, respectively, when E has conjunc-
tions, false, negations, and implications, respectively.

3. E th has disjunctions if E has disjunctions and implications.

4. If E has universal D-quantification, then E th has universal D th-quantification where D th =
{χ : (Σ,E)→ (Σ′,E ′) strong theory morphism | χ ∈D} (see Ex. 11.16).

11.20. Co-limits of theories in entailment systems
In any compact entailment system the forgetful functor from the category of theory morphisms
to the category of signatures lifts limits and co-limits. Do we have a similar property for proof
systems?

11.21. Basic model-theoretic properties of I (E)
Let E be a compact entailment system and I (E) be its entailment institution. Then

1. If E has pushouts for signatures, then I (E) is semi-exact and liberal.

2. In I (E) each sentence is basic.

3. In I (E) each signature morphism is representable.

4. In I (E) the categories of models have the limits / co-limits that the category of the signatures
has.

5. I (E) has diagrams such that it is elementary.

11.22. Give an example of an entailment system in which the composition of theory morphisms
does not necessarily yield a theory morphism.
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11.6 Universal completeness

Until now we have developed a very general categorical theory of proof systems that
provides a conceptual environment for developing specific general proof systems for in-
stitutions, that enjoy the good properties of soundness and completeness. Now we will do
this in relation to ‘Birkhoff completness’. In the traditional context, Birkhoff complete-
ness means that the proof system of equational logic (EQL) is complete, its soundness
being somehow straightforward. This can be extended to conditional equational logic
(CEQL), and then to Horn clause logic (HCL) by letting relations in the picture. These
Birkhoff proof systems, which are sound and complete with respect to the respective in-
stitutions, are very important for computing as they serve as the basis for the operational
semantics of equational and logic programming, two important declarative programming
paradigms.

What we will do in what follows is to develop the Birkhoff completeness at a high
abstract level, which means first defining a general proof system for a class of abstract
Horn sentences, and then prove its soundness and completeness. For this, we will employ
a particular method that emphasises a stepwise definition of the proof systems based on
the structure of the sentences involved. In the case of Birkhoff completeness this goes as
follows:

1. We assume a sound and complete abstract institution with proofs I1 and extend its
proof system to the universal quantifications of the sentences in I1 such that the re-
sulting institution with proofs (I ) is sound and complete.

2. We get a bit more concrete about I1. In the role of I1 we take an institution of some
quantifier-free Horn clauses that are defined over a sound and complete abstract insti-
tution with proofs I0. The proof system of I1 is defined as an extension of the proof
system of I0.

3. We set I0 to some concrete institution with proofs. For instance, if I0 is the sub-
institution of FOL whose sentences are the atomic equations (i.e. quantifier-free equa-
tions), we can think of I1 as being the quantifier-free sub-institution of CEQL . Then
I can be CEQL .

If this is not yet clear, the let us say it explicitly: I , I1 and I0 share the same signature
category and the same model functor, while Sen0 ⊆ Sen1 ⊆ Sen (sub-functor relations)
and also |=0 ⊆ |=1 ⊆ |=.

In this section we develop the first of the two steps above while in the next section
we will continue with the second step. An important note is that these two have a life
of their own, this being one of the great benefits of this method. For instance I1 can be
any sound and complete institution with proofs that satisfy certain axioms allowing the
development of step one. While institutions of quantifier-free Horn sentences fit the role
of I1, there can be also other possibilities for I1. We will see how some of such choices
for I1 determine interesting sound and complete proof systems for concrete institutions
and are by no means Horn institutions. The structure of this section is as follows:
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• We define axiomatically the relationship between I1 and I . This has two components,
the institution and the proof system.

• We prove the soundness of I1, which will be easy.

• We prove the completeness of I1, which will not be easy and will require some addi-
tional specific conditions.

• We develop an analysis of some of the conditions underlying the completeness theo-
rem, in the direction of the applicability to concrete situations.

Universal institutions. Let I = (Sig,Sen,Mod, |=) be an institution and:

• Let Sen1 be a sub-functor of Sen. This means that for each signature Σ, Sen1Σ⊆ SenΣ

and these inclusions form a natural transformation Sen1 ⇒ Sen. The natural trans-
formation property boils down to ϕ(Sen1Σ) ⊆ Sen1Σ′ for each signature morphism
ϕ : Σ→ Σ′.

• Let D ⊆ Sig be a class of signature morphisms.

We say that I is a D-universal institution over I1 = (Sig,Sen1,Mod, |=), when the I -
sentences are precisely all universal D-quantifications of the I1-sentences.

Let us look at some examples. If D is the class of all signature extensions with a
set of cardinality less than β, UNIV α,β / HCLα,β are D-universal institutions over their
quantifier-free sub-institutions.

The generic universal proof system
Now we address the proof system side of the relationship between I1 and I . In brief, the
proof system of I is obtained by inheriting the proof system of I1 and by enhancing it in
two ways.

• By adding a new rule, called ‘Substitutivity’, which abstracts the common practice to
substitute variables by terms. This abstraction relies on the concept of ‘representable
substitution’ of Sec. 5.4. Although ‘representable’, which is responsible for staying
within an essentially first-order context, is not necessary for defining the rule of Sub-
stitutivity, it is required for the completeness.

• Then we also have to impose the universal quantification property on the proof system,
which, as we already discussed in Sec. 11.4, is often traditionally known as the ‘meta-
rule of Generalization’.

(D,Sen0)-substitutivity. The straightforward abstraction of the common substitutivity
can be formulated as

(∀ϕ)ρ ⊢ (∀χ)θρ, for any D-substitution θ : ϕ→ χ. (11.9)

While this works in most cases of interest, there are important situations calling for a more
refined approach. For this we need a new parameter, which is a designated sub-functor
Sen0 ⊆ Sen1 satisfying the following axiom:
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BA: For each finite B⊆ Sen0Σ and any e ∈ Sen1Σ, there exists a sentence in Sen1Σ which
is semantically equivalent to B⇒ e.

A couple of remarks on axiom BA:

• The way this axiom is formulated does not require that I1 must have semantic con-
junctions and implications, definitely not in a designated form. What is required is
that there exists a sentence which behaves semantically like B⇒ e, in other words a
sentence γ such that γ∗ = (ModΣ\B∗)∪ e∗.

• With the quantifier-free sub-institution of UNIV in the role of I1 and Sen0 the sub-
functor of the atomic sentences, we get the axiom BA satisfied. This is the case when
B⇒ e exists in a designated form as I1 has all designated propositional connectives.

• The quantifier-free sub-institution of HCL with the same Sen0 as above provides
another example when the axiom BA holds because B⇒ (H ⇒ C) is semantically
equivalent to (∧B)∧H ⇒ C. This is different from the UNIV case since now I1
does not enjoy the designated propositional connectives, it does not have designated
conjunction nor implications.

Then a (D,Sen0)-substitution is any D-substitution θ : (Σ
ϕ
//(Σ1, /0))→ (Σ

χ
//(Σ2,B))

in I th
1 where B is any finite set of Sen0-sentences.

(Σ1, /0) (Σ2,B)

Σ
ϕ

cc

χ

;;

Given such substitution θ we define the following proof rule:

(∀ϕ)ρ ⊢ (∀χ)(B⇒ θρ) (D,Sen0)-Substitutivity

Like we often do, this proof rule does not require any designated connectives, such as
quantifiers, conjunctions, implications. The rule of (D,Sen0)-Substitutivity relies on the
axiom BA. Although (we will see this later on in the section) in many concrete cases
of interest the rule of (D,Sen0)-Substitutivity takes the form (11.9), there are significant
situations when its general form is useful because it can cover situations when θρ should
be conditioned. A prominent such example comes from PA (partial algebra). There, the
variables are total, and when substituting them by terms we have to make sure that those
terms do exist semantically, or in the jargon of PA , that they are defined. In that case B is
a set of sentences of the form def t. Ex. 11.27 below builds on this idea.

Universal proof systems. Given a proof system (Sig,Sen1,Pf 1) for I1, D ⊆ Sig sub-
category, Sen0 ⊆ Sen1 sub-functor, the (D,Sen0)-universal proof system for I is the free
proof system such that

• it contains (Sig,Sen1,Pf 1),

• it contains the rules of (D,Sen0)-substitutivity, and
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• has universal D-quantifications.

The existence of this can be established in the style of Theorems 11.3 / 11.14 by encoding
to PA theories and using the PA initial semantics properties.

Abstract universal soundness
Soundness of I is established from the soundness of I1 and the soundness of (D,Sen0)-
Substitutivity. While the former is assumed, the latter has to be proved.

Proposition 11.21. The rule of (D,Sen0)-Substitutivity is sound.

Proof. We have to prove that (∀ϕ)ρ |= (∀χ)B⇒ θρ. Let M be a model such that M |=
(∀ϕ)ρ. Let M2 be a χ-expansion of M such that M2 |= B. Then

1 ((Modθ)M2)↾ϕ = M2↾χ = M θ : ϕ→ χ substitution, M2 ∈Mod(Σ2,B), M2↾χ = M

2 (Modθ)M2 |= ρ 1, M |= (∀ϕ)ρ

3 M2 |= θρ 2, Satisfaction Condition of θ.

□

Corollary 11.22 (Universal soundness). If I1 is sound then I is sound too.

Proof. By a process similar to that of Prop. 11.5 we lift the soundness from the proof
system of I1 to the proof system that adds freely the rules of (D,Sen0)-Substitutivity.
Then by Prop. 11.16 we lift soundness further to the free proof system with universal
D-quantification. □

Note that the soundness of I is obtained for the broadest concept of universal quan-
tifications since we have not imposed any conditions on D . This means the soundness of
I holds also in genuine higher-order concrete contexts. But for the completeness we will
have to assume conditions on D that in practice mean a first-order context.

Abstract universal completeness
Completeness of the universal proof systems is significantly more difficult than the sound-
ness property and therefore requires more conceptual infrastructure. With Thm. 11.23
below we distill a set of conditions that enable the completeness of I , the D-universal
institution with proofs over I1. Some of them are straightforward to understand, but other
are quite abstract and technical, although these may help us grasp better the fabric of the
completeness property. After the proof of the theorem we will have an extensive analysis
on how to get them at work in concrete cases, and in the process will appreciate their
naturalness.

Theorem 11.23 (Universal completeness). I is complete if

1. I1 is complete and compact,

2. every signature morphism in D is finitely representable,
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3. every set of Sen0-sentences is epic basic,

4. I th
1 has representable (D,Sen0)-substitutions, and

5. for each E ⊆ Sen1Σ, e ∈ Sen1Σ we have that

E |= e if and only if MB |= (E⇒ e) for each B⊆ Sen0Σ

(where MB denotes an initial model of B, thus defining B as basic sets of sentences).

Proof. In this proof by (∀ζ)γ′ we mean any sentence γ which is an universal ζ-quantification
of γ′. This is just a convention that eases the writing and the reading, and it does not
assume designated quantification. Let us assume that Γ |=Σ (∀χ)e′ for Γ ⊆ SenΣ and
e′ ∈ Sen′1Σ′ where (χ : Σ→ Σ′) ∈ D . We have to show that Γ ⊢Σ (∀χ)e′. We do this
by Reductio as Absurdum, by performing the following three steps:

A/ We suppose Γ ̸⊢ (∀χ)e′.

B/ We prove that there exists B⊆ Sen0Σ′ such that MB↾χ ̸|= (∀χ)e′, where MB is a basic
model for B.

C/ We prove that MB↾χ |= Γ.

The latter two conclusions together contradict Γ |=Σ (∀χ)e′, hence the supposition Γ ̸⊢
(∀χ)e′ is false, which proves the theorem.

B/ To prove this we define Γ
χ

1 = {ρ′ ∈ Sen1Σ′ | Γ ⊢ (∀χ)ρ′} and prove

1 Γ
χ

1 ̸⊢ e′

By Reductio ad Absurdum suppose Γ
χ

1 ⊢ e′. By the compactness of I1, there exists a
finite Γ′ ⊆ Γ

χ

1 such that Γ′ ⊢ e′. Then:

2 χΓ ⊢ Γ′ Γ′ ⊆ Γ
χ

1 , union (vertical composition) of ⊢

3 χΓ ⊢ e′ 2, Γ′ ⊢ e′, transitivity of ⊢

4 Γ ⊢ (∀χ)e′ 3, the proof system has universal D-quantification

Since 4 contradicts the supposition A/, it follows that the supposition Γ
χ

1 ⊢ e′ is false,
hence 1 is proved. Then

5 Γ
χ

1 ̸|= e′ 1, completeness of I1

By the latter hypothesis of the theorem (i.e. (5.)) there exists B ⊆ Sen0Σ such that
MB |= Γ

χ

1 , MB ̸|= e′. Hence MB↾χ ̸|= (∀χ)e′.

C/ Let (∀ϕ)e1 ∈ Γ with (ϕ : Σ→ Σ1) ∈D . We prove that MB↾χ |= (∀ϕ)e1. Let N be any
ϕ-expansion of MB↾χ. We show that N |= e1. For this we use the following lemma
(which we prove later):
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Lemma 11.24. There exists a finite B′ ⊆ B and a homomorphism h : Mϕ → MB′↾χ

such that the diagram below commutes:

MB′↾χ

µB′↾χ
// MB↾χ = N↾ϕ

Mϕ

h

bb

iϕN

99
(11.10)

where µB′ is the unique homomorphism MB′ → MB (because B′ is epic basic and
B′ ⊆ B).

The representability property of χ in I1 can be transfered to I th
1 , by going down

to quasi-representability, and then involving the fact that Mod(Σ′,B′) has MB′ as initial
model (recall Fact 5.16).

6 χ : Σ→ (Σ′,B′) representable in I th
1 and its representation is MB′↾χ.

We consider the homomorphism h provided by Lemma 11.24 and by the hypothesis
that I th

1 has representable (D,Sen0)-substitutions, there exists a substitution θ : (ϕ : Σ→
Σ1)→ (χ : Σ→ (Σ′,B′)) such that the following diagram commutes (as an instance
of diagram 5.2 in Prop. 5.19.)

Mod(Σ′,B′)
iB
′

χ

∼=
//

Modθ

��

MB′↾χ/ModΣ

h/ModΣ

��

ModΣ1 iϕ

∼=
// Mϕ/ModΣ

(11.11)

Then:

7 (Modθ)MB = N diagram 11.11, iB
′

χ MB = µB′ ↾χ, diagram 11.10

8 (∀ϕ)e1 ⊢ (∀χ)(B′⇒ θe1) (D,Sen0)-substitutivity

9 Γ ⊢ (∀χ)(B′⇒ θe1) (∀ϕ)e1 ∈ Γ, 8, monotonicity and transitivity of ⊢

10 B′⇒ θe1 ∈ Γ
χ

1 9, definition of Γ
χ

1

11 MB |= (B′⇒ θe1) 10, MB |= Γ
χ

1 (definition of MB)

12 MB |= θe1 11, MB |= B′ (B′ ⊆ B)

13 N |= e1 7, 12, Satisfaction Condition for θ.

With this, the proof of the theorem is completed modulo the proof of Lemma 11.24, which
we do now.
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Proof of Lemma 11.24. We write B as the directed co-limit of its finite subsets,
as in the left-hand side triangle in the below:

B′
⊆

//

⊆
��

B′′

⊆
��

MB′
hB′,B′′

//

µB′ ��

MB′′

µB′′��

MB′↾χ

hB′,B′′↾χ
//

µB′↾χ

""

MB′′↾χ

µB′′↾χ||

B MB Mϕ

h
==

iϕN
// MB↾χ

• Then we consider the directed diagram (hB′,B′′)B′⊆B′′⊆B finite determined by the initial-
ity properties of the basic models MB′ (as B′ are epic basic).

• The co-cone (µB′)B′⊆B finite is determined by the same initiality properties, and this is
a co-limit of (hB′,B′′)B′⊆B′′⊆B finite.

• (µB′↾χ)B′⊆B finite is a directed co-limit (cf. Prop. 6.9 since χ is representable).

• Mϕ is finitely presented since ϕ ∈D is finitely representable (definition).

• Hence there exists a finite B′ ⊆ B and a model homomorphism h : Mϕ→MB′↾χ such
that h ; µB′↾χ = iϕN.

□

Approaching concrete universal completeness
In what follows we study the applicability of the universal completeness result of Thm. 11.23
by analysing its conditions and by bridging some gaps from abstract to concrete.

1. The completeness of I1 is the basis for the completeness of I and is a highly ex-
pected condition. In practice, the compactness of I1 is determined by the proof system
of I1 being generated by finitary rules. Moreover, since I adds only the (D,Sen0)-
substitutivity rules, which are also finitary, the compactness of I1 extends to I , of
course by applying also results from Cor. 11.15 about preservation of quasi-finitary
under connectives (such as the universal quantifications, but also those eventually in-
volved in the build of the proof system of I1).

2. Finitary representable signature morphisms represent an abstract way to capture fini-
tary first-order quantifications and from our conventional logic experience we know
that in general beyond that the hope for proper completeness is very slim. Hence this
condition is a no surprise.

3. In concrete applications Sen0 consists of atomic sentences. In general, epic basic prop-
erty covers the atomic sentences.

4. That I th
1 has representable substitutions is a mere technical condition and below we

provide a general method to establish it easily and that works in most concrete con-
texts.
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5. The latter (fifth) condition of the theorem is technical and, from all conditions, is the
one that requires most effort to establish it in concrete situations. We will illustrate
how this works in HCL and UNIV . In this section we will do the UNIV example
and in the next section we will do the HCL example in an abstract general setup.

6. Furthermore, besides the analysis of the conditions underlying Thm. 11.23 we will
also provide general conditions, widely and easily applicable, that allow to replace the
(D,Sen0)-Substitutivity by its simpler form given by (11.9).

Representable (D,Sen0)-substitutions in I th
1 . This rather technical condition can be

easily passed to I1 as follows.

Proposition 11.25. If in I1

1. D consists of representable signature morphisms,

2. every set of Sen0-sentences is epic basic, and

3. the representation Mϕ of any signature morphism ϕ ∈ D is projective with respect
to D-reducts of model homomorphisms of the form 0Σ → MB for all sets B of Sen0-
sentences,

then the institution of theories I th
1 has representable (D,Sen0)-substitutions whenever I1

has representable D-substitutions.

Proof. We rely on the notations used so far in this section. Let us consider ϕ : Σ→
Σ1, χ : Σ → Σ2 signature morphisms and B ⊆ Sen0Σ2. We have to show that any Σ-
homomorphism h′ : 0Σ1↾ϕ → MB↾χ determines a (D,Sen0)-substitution in I th

1 ,
θ : (ϕ : Σ→ Σ1)→ (χ : Σ→ (Σ2,B)), such that the diagram below commutes:

Mod(Σ2,B) ∼=

iBχ
//

Modθ

��

MB↾χ / ModΣ

h′/ModΣ

��

ModΣ1
∼=
iϕ
// 0Σ1↾ϕ / ModΣ

(11.12)

• Because Mϕ = 0Σ1↾ϕ is projective with respect to Mχ = 0Σ2↾χ→MB↾χ there exists a
homomorphism h such that the diagram below commutes:

Mχ = 0Σ2↾χ

iχMB
// MB↾χ

Mϕ = 0Σ1↾ϕ

h

dd

h′

==
(11.13)
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• Because I1 has representable D-substitutions there exists a D-substitution θ : ϕ→ χ

in I1 such that the diagram below commutes:

ModΣ2 ∼=

iχ
//

Modθ

��

Mχ/ModΣ

h/ModΣ

��

ModΣ1
∼=
iϕ
// Mϕ/ModΣ

(11.14)

• Then θ gives the desired (D,Sen0)-substitution in I th
1 . For this we only have to show

the commutativity of (11.12). This follows by combining the commutativity of (11.13)
and (11.14).

□

The conditions underlying the reduction of the issue of the representability of (D,Sen0)-
substitutions in I th

1 to the existence of representable D-substitutions in I1 are covered by
the conditions of the universal completeness result of Thm. 11.23, with the exception
of the projectivity condition. In most concrete situations of interest this projectivity is a
consequence of the surjectivity of 0Σ2 →MB. One notable exception comes from partial
algebra with existence equations. In that case, the representable (D,Sen0)-substitutions in
I th

1 are obtained by following a route that is different from the one given by Prop. 11.25,
a situation that suggests that the conditions of Thm. 11.23 have been formulated at an
appropriate level of abstraction.

The fifth condition. This is the only ‘interesting’ condition of Thm. 11.23, the other
ones being expected and easy to ‘digest’ and to establish in concrete situations. None of
these attributes may apply to the fifth condition. As an example case, now we show how
this works when I is UNIV and I1 is its quantifier-free sub-institution. In the next section
we will see how this works for HCL and similar institutions. We will also understand that
in each of these two cases the fifth condition is established in a particular way. Let us recall
that UNIV is the sub-in of FOL whose sentences are the universal quantifications of the
quantifier-free FOL sentences.

Proposition 11.26. If Sen0 is the sub-functor of the FOL atomic sentences, then the
quantifier-free sub-institution of UNIV satisfies the fifth condition of Thm. 11.23.

Proof. As the implication from the left to the right is trivial, we do the other implication.
We assume that for each B⊆ Sen0Σ, MB |= E implies MB |= e. By Reductio ad Absurdum
we suppose E ̸|= e. Then

• There exists a model M such that M |= E ∪{¬e}.
• We factor the unique model homomorphism 0Σ → M through the closed inclusion

system of the category of FOL Σ-models:

0Σ
// N // M.
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• Let B = {ρ atom | N |= ρ}. Then we can take MB = N because we can prove that N
is an initial model of B.

• Because the UNIV sentences are preserved by closed sub-models (for instance, cf.
Cor. 8.4) it follows that MB |= E ∪{¬e}.

• Hence, MB |=E and MB ̸|= e which contradicts the right hand side of the fifth condition.
Thus our Reductio ad Absurdum supposition is false, which means that E |= e.

□

Substitutivity revisited. The projectivity condition of Prop. 11.25 allows to replace the
(D,Sen0)-substitutivity rule in the universal completeness Thm. 11.23 by its simpler form
(11.9).

Proposition 11.27. Under the conditions of Thm. 11.23 and Prop. 11.25, the (D,Sen0)-
substitutivity rule is equivalent to its form (11.9).

Proof. Let us consider a (D,Sen0)-substitutivity rule

1 (∀ϕ)ρ ⊢ (∀χ)(B⇒ θρ)

where B⇒ θρ stands for any semantic implication of θρ from B. The I th
1 (D,Sen0)-

substitution θ gets extended to a D-substitution, denoted θ, by following the proof of
Prop. 11.25. First, from θ we get h′, then by the projectivity property we get h, and finally
by representability we get θ : ϕ→ χ as a D-substitution in I1. ‘Extension’ means just that
Modθ gets extended from a functor Mod(Σ2,B)→ModΣ1 to a a functor Modθ : ModΣ2→
ModΣ1. Then:

2 (∀ϕ)ρ ⊢ (∀χ)θρ assuming (11.9)

3 θρ ∪ B |= θρ monotonicity of |=

4 θρ |= B⇒ θρ 3, B⇒ θρ semantic implication

5 θρ ⊢ B⇒ θρ 4, completeness of I1

6 (∀χ)θρ ⊢ (∀χ)θρ monotonicity of ⊢

7 χ((∀χ)θρ) ⊢ θρ 6, universal D-quantification property of ⊢

8 χ((∀χ)θρ) ⊢ B⇒ θρ 7, 5, transitivity of ⊢

9 (∀χ)θρ ⊢ (∀χ)(B⇒ θρ) 8, universal D-quantification property of ⊢.

By taking into account that Senθ= Senθ, now 1 is obtained from 2 and 9 by the transitivity
of ⊢. □

Like with Prop. 11.25, QEω(PA) (the institution of quasi-existence equations in PA
with finite premises) is outside the scope of Prop. 11.27. In this case the proof calculus
involves (D,Sen0)-substitutivity in its general form, and this cannot be avoided.



11.6. Universal completeness 345

A sound and complete proof system for UNIV . The universal completeness Thm. 11.23
has the potential to generate, with minimal effort, manifold concrete completeness results.
In Sec. 11.7 we will use it for obtaining a generic completeness result for Horn clause
logics. But now, as an exercise, we sketch the steps for developing a sound and complete
proof calculus for UNIV .

1. We set I = UNIV , I1 to be the quantifier-free sub-institution of UNIV , and Sen0 the
sub-functor of the atomic FOL-sentences.

2. We need a sound and complete proof calculus for I1. We develop this in two steps as
follows:

• First for AFOL (the atomic sub-institution of FOL / UNIV ). We will skip this
now but will do it after we present the other parts of the UNIV proof calculus.

• Then we add to the proof rules of AFOL any sound and complete system of proof
rules for PL . For instance, we may employ the system consisting of the rules (P1−
3), MP introduced in Sec. 11.2. This is known to be complete. This trick works
because at this layer the FOL-atoms can be assimilated to propositional variables.

3. The other conditions of Thm. 11.23 and of Prop. 11.25 can be checked easily with the
exception of the fifth condition of Thm. 11.23, but this one has been already solved in
Prop. 11.26.

The end result of this process is a system of proof rules consisting of

1. the rules for AFOL ;

2. the rules for PL (with the propositional variables representing FOL atoms);

3. D-substitutivity rules where D is the class of the signature extensions with finite
blocks of variables; and

4. which is factored through the meta-rule of universal D-quantification.

A sound and complete AFOL proof system. The only missing piece in the puzzle of
the definition of the UNIV proof system above is a sound and complete proof calculus
for AFOL . We do this now.

Proposition 11.28. The following system of proof rules for AFOL is sound and complete:

(R) /0 ⊢ t = t for each term t
(S) t = t ′ ⊢ t ′ = t for any terms t, t ′

(T ) {t = t ′, t ′ = t ′′} ⊢ t = t ′′ for any terms t, t ′, t ′′

(F) {ti = t ′i | 1≤ i≤ n} ⊢ σ(t1, . . . , tn) = σ(t ′1, . . . , t
′
n) for any operation symbol σ

(P) {ti = t ′i | 1≤ i≤ n}∪{π(t1, . . . , tn)} ⊢ π(t ′1, . . . , t
′
n) for any relation symbol π.

Proof. Soundness follows by a simple routine check. Now we prove the completeness.
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• for any set E of atoms for a fixed signature we define

≡E = {(t, t ′) | E ⊢ t = t ′}.

• By (R), (S), (T ) and (F) this is a congruence on the initial (term) algebra.

• Then we define a model ME as follows:

– the algebra part of ME is defined as the quotient of the initial (term) algebra by ≡E ,
and

– for each relation symbol π ∈ P, we define (ME)π = {x/≡E | E ⊢ πx}.

The definition of (ME)π is correct because of the rule (P). Now we note that for each
atomic sentence ρ,

E ⊢ ρ if and only if ME |= ρ.

• If E |= ρ then ME |= ρ because ME |= E. Hence E ⊢ ρ. The proof is thus completed.

As a side additional remark, the notation ME is precisely what it suggests, ME being
indeed a basic (and initial) model of E. □

Exercises
11.23. [135] Translating D-substitutivity
Consider an institution I1 with a sub-category D of representable signature morphisms such that

1. I has weak model amalgamation,

2. I has representable D-substitutions,

3. D is stable under pushouts,

4. for each pushout of signature morphisms such that χ ∈D

Σ
ϕ
//

χ

��

Σ′

ϕ′

��

Σ1
χ1
// Σ′1

for any Σ′-sentence ρ′ and Σ1-sentence ρ1 if ϕ′ρ′ = χ1ρ1, then there exists a Σ-sentence ρ

such that ρ′ = ϕρ and ρ1 = χρ. (Compare this condition with the co-amalgamation property of
Ex. 4.20.)

Then the translation of any D-Substitutivity rule along a signature morphism yields a D-Substitutivity
rule.

11.24. Birkhoff calculus for EQL
Derive a sound and complete proof calculus for EQL from the universal completeness result of
Thm. 11.23. (Hint: Set I1 to AFOL and let Sen0 to be empty.)
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11.7 Birkhoff completeness

In this section we develop an important application of the universal completeness Thm. 11.23,
namely a generic sound and complete system of proof rules for Horn clause institutions.
In other words, we treat the proof calculus of HCL in a general abstract manner by con-
sidering an institution-independent abstraction of HCL . This means that the collection
of FOL-atoms are abstracted to a sentence functor Sen0, and the sentences of I1 are
quantifier-free Horn clauses over Sen0. Then, in the universal institution I we quantify
universally over I1, as we did in the theory of universal completeness. By assuming a
sound and complete proof system for Sen0, we lift it to I1, and it remains only to make
sure that all conditions of Thm. 11.23 are fulfilled. From this succint presentation you
may probably guess that Sen0 here is exactly the Sen0 that is used in Thm. 11.23.

Horn clause institutions. Previously in this book we introduced an institution-independent
abstraction of ordinary Horn clauses (i.e. HCL sentences) under the name of ‘D-universal
Horn sentences’. This was in Sec. 5.5, for the long purpose of obtaining the axiomatiz-
ability by Horn theories of quasi-varieties in abstract institutions (Sec. 8.4). Here we
introduce another abstraction of Horn clauses that is motivated by proof-theoretic devel-
opments. The difference between these two concepts is slight, it is essentially a matter of
different axiomatisations of the same concrete concept. Their strong convergence can be
understood even at the abstract level, as, in order to apply Thm. 11.23, Sen0 is supposed
to consist of epic basic sentences. Of course, albeit this strong convergence, in concrete
situations the two concepts of Horn sentence / clause may not overlap perfectly.

I = (Sig,Sen,Mod, |=) is a D-Horn institution over I0 = (Sig,Sen0,Mod, |=) when
there exists an institution I1 = (Sig,Sen1,Mod, |=) such that

• I is a D-universal institution over I1, and

• I0 is the sub-institution of I1 determined by a sub-functor Sen0 of Sen1 such that the
I1-sentences are precisely all sentences semantically equivalent to H⇒C where H is
any finite set of Sen0-sentences and C is any Sen0-sentence. The sentences of I1 may
be referred to as ‘quantifier-free Horn clauses over I0’.

For example, HCL is a finitary D-Horn institution over AFOL , where D is the class
of all signature extensions with a finite block of variables. This layered structure can be
visualised as follows:

I universal D-institution HCL

I1

OO

quantifier-free Horn institution quantifier-free HCL

OO

I0

OO

base (‘atomic’) institution AFOL

OO
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Birkhoff proof systems. Given a D-Horn institution as above, a Birkhoff proof system
for I is a (D,Sen0)-universal proof system such that

• the proof system of I1 is freely generated by a given proof system (Sig,Sen0,Pf 0) for
I0, such that

• it satisfies the following Modus Ponens for Sen0 property expressed by the following
natural isomorphism

(MP0) Pf 1Σ (Γ∪B,e) ∼= Pf 1Σ (Γ,B⇒ e)

where Γ⊆ Sen1Σ, B finite ⊆ Sen0Σ, e ∈ Sen1Σ.

Note that (MP0) is a weaker form of proof-theoretic implication since B consists of
Sen0-sentences (rather than Sen1-sentences). As we often mean, in (MP0) B⇒ e does not
denote necessarily a designated semantic implication but rather any sentence which is a
semantic implication. What (MP0) does is that it adds proofs for the quantifier-free Horn
clauses H⇒C on the basis of proof in I0. Recall also from Thm. 11.3 that to consider free
proof systems we should have injective sentence translation functions (which in concrete
institutions means injective signature morphisms). But if we work only at the level of
entailment systems, then this restriction is not required anymore.

Abstract Birkhoff soundness
Proposition 11.29 (Birkhoff soundness). If I0 is sound then I1 is sound too. Conse-
quently, the D-Horn institution I over I0 endowed with the Birkhoff proof system, is
sound too.

Proof. The latter conclusion follows from the former by universal soundness (Cor. 11.22).
The former soundness is justified like in Prop. 11.16 by regarding (MP0) as a form of
proof-theoretic implication. □

Abstract Birkhoff completeness
To derive the completeness of I through Thm. 11.23 we have to address the conditions of
Thm. 11.23 one by one as follows:

1. We establish the completeness and the compactness of I1 by assuming them for I0.

2. We assume that every signature morphism in D is finitely representable. This property
does not depend on whether we consider it in I0, I1 or in I because it refers to the
model functor, which is shared across this hierarchy of institutions.

3. We also have to assume that each set of Sen0-sentences is epic basic.

4. We will show that if I th
0 has representable (D,Sen0)-substitutions then I th

1 has them
too. This will be an easy piece.

5. We will prove the fifth condition of Thm. 11.23 under conditions that are already
assumed in the context of the completeness of I1.
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Before doing 1., 4., and 5., we develop a couple of technical lemmas that will support our
proofs of these conditions.

Two technical lemmas. We assume that any set of Sen0-sentences is basic. For the
purpose of applying Thm. 11.23 they should be epic basic, but in the context of the fol-
lowing two lemmas the epic basic property is unnecessarily strong. For each Γ ⊆ Sen1Σ

let Γ0 = {e ∈ Sen0Σ | Γ ⊢ e}. Since Γ0 is basic, let MΓ0 denote one of its basic models.

Lemma 11.30. If I0 is complete then for each e ∈ Sen0Σ, MΓ0 |= e if and only if Γ ⊢ e.

Proof. The implication from the right to the left holds by the definition of Γ0. For the
reverse implication we consider e such that MΓ0 |= e. Let us show that

1 Γ0 |= e.

Let M ∈ |ModΣ| such that M |= Γ0. Also let Me denote a basic model for e. Then

2 there exists homomorphism MΓ0 →M M |= Γ0, Γ0 basic

3 there exists homomorphism Me→MΓ0 MΓ0 |= e, e basic

4 there exists homomorphism Me→M 2, 3

5 M |= e 4, e basic.

Thus 1 is proved. Then

6 Γ0 ⊢ e 1, I0 complete

7 Γ ⊢ e 6, Γ0 ⊆ Γ, monotonicity and transitivity of ⊢.

□

Lemma 11.31. If I0 is complete then MΓ0 |= Γ.

Proof. Let H⇒C be a quantifier-free Horn clause in Γ. Assume MΓ0 |= H. Then

1 Γ ⊢ H MΓ0 |= H, Lemma 11.30, union (vertical composition) of ⊢

2 Γ ⊢ H⇒C H⇒C ∈ Γ, monotonicity of ⊢

3 Γ∪H ⊢C 2, (MP0)

4 Γ ⊢ Γ monotonicity of ⊢

5 Γ ⊢ Γ∪H 1, 4, union (vertical composition) of ⊢

6 Γ ⊢C 3, 5, transitivity of ⊢

7 MΓ0 |=C 6, Lemma 11.30.

Hence MΓ0 |= H⇒C. □
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Completeness of I1.

Proposition 11.32. If I0 is complete and each set of Sen0-sentences is basic, then I1 is
complete too.

Proof. Let Γ |= H⇒C where Γ⊆ Sen1Σ, H⇒C ∈ Sen1Σ. Then

1 Γ∪H |=C Γ |= H⇒C, semantic implication

2 M(Γ∪H)0 |= Γ∪H Lemma 11.31

3 M(Γ∪H)0 |=C 1, 2

4 Γ∪H ⊢C 3, Lemma 11.30

5 Γ ⊢ H⇒C 4, (MP0).

□

Compactness of I1. This is something we have already discussed in Sec. 11.6. Once
more, if the proof system of I0 is quasi-finitary, then (MP0) preserves this quasi-finitary
property (cf. Cor. 11.15).

I th
1 has representable (D,Sen0)-substitutions. This property is inherited immediately

from I th
0 , the argument being almost trivial.

Proposition 11.33. If I th
0 has representable (D,Sen0)-substitutions then I th

1 has them
too.

Proof. Let us consider ϕ : Σ→ Σ1, χ : Σ→ Σ2 signature morphisms and B ⊆ Sen0Σ2.
We are under the hypothesis that Sen0 consists of epic basic sets of sentences, otherwise
we cannot talk about representability of (D,Sen0)-substitutions.

• Any homomorphism h′ : 0Σ1↾ϕ → MB↾χ yields an I th
0 (D,Sen0)-substitution; this is

what representability means.

• Furthermore, this can be extended canonically to a I th
1 (D,Sen0)-substitution just by

extending the sentence translation Sen0θ to Sen1-sentences by defining (Sen1θ)(H ⇒
C) = (Sen0θ)H ⇒ (Sen0θ)C. On the model reducts nothing happens, and the Satis-
faction Condition for θ in I th

1 follows immediately from I th
0 .

□

The fifth condition.

Proposition 11.34. Under the conditions of Prop. 11.32 and if I0 is sound, then the fifth
condition of Thm. 11.23 does hold.

Proof. We employ the notations from the statement of Thm. 11.23 and from Lemmas
11.30 and 11.31. Let e= (H⇒C) with H ⊆ Sen0Σ, C∈ Sen0Σ. We assume MB |=(E⇒ e)
for each B⊆ Sen0Σ. Then
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1 M(E∪H)0 |= (E⇒ e) let B = (E ∪H)0, MB |= (E⇒ e)

2 M(E∪H)0 |= E ∪H Lemma 11.31

3 M(E∪H)0 |= E 2, monotonicity and transitivity of |=

4 M(E∪H)0 |= e 1, 3, semantic implication

5 M(E∪H)0 |= H 2, monotonicity and transitivity of |=

6 M(E∪H)0 |=C 4, 5, e = (H⇒C), semantic implication

7 E ∪H ⊢C 6, Lemma 11.30

8 E ∪H |=C 7, I1 sound (cf. Prop. 11.29)

9 E |= e 8, e = (H⇒C), semantic implication.

□

Abstract Birkhoff completeness. Now we can collect all ingredients for a direct for-
mulation of a general Birkhoff completeness result where everything is stated in terms of
the base institution I0.

Corollary 11.35 (Birkhoff completeness). We consider a D-Horn institution I endowed
with a Birkhoff proof system. If

1. I0 is sound and complete and its entailment system is quasi-finitary,

2. D contains only finitely representable signature morphisms,

3. every set of Sen0-sentences is epic basic, and

4. I th
0 has representable (D,Sen0)-substitutions,

then I is sound and complete too.

The sound and complete Birkhoff proof system for HCL . Let us see what we get
when applying the general result of Cor. 11.35 to what is perhaps its most emblematic
application. The parameters in Cor. 11.35 are set up as expected:

• I = HCL ,

• I0 = AFOL considered with its proof system as defined by Prop. 11.28, and

• D is the class of all signature extensions with finite blocks of variables.

Then the Birkhoff proof system for HCL is obtained as the free proof system generated
by

1. the proof rules of AFOL (as given in Prop. 11.28), and

2. the substitutivity rules (∀X)ρ ⊢ (∀Y )θρ, for any substitution θ : X → TΣY

and which satisfies

3. universal D-quantification, and
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4. Pf Σ (Γ∪H,C) ∼= P f Σ (Γ,H⇒C) for any set Γ of quantifier-free Horn clauses, set
H of atomic sentences, and atomic sentence C.

Since this Birkhoff proof system for HCL is not a literal instance of the abstract Birkhoff
proof system, some explanations as necessary.

• The (D,Sen0)-substitutivity rules can be replaced by the simple substitutivity rules
above by using the result of Prop. 11.27.

• Although the form of Modus Ponens that we are using for the HCL proof system is
apparently more restrictive that (MP0), in reality they are equivalent as shown by the
following natural isomorphisms:

Pf Σ (Γ∪B,H⇒C) ∼= Pf Σ (Γ∪B∪H,C) ∼= Pf Σ (Γ,B∪H⇒C) ∼= Pf Σ (Γ,B⇒ (H⇒C)).

Exercises
11.25. Birkhoff calculus for preordered algebras
HPOA , the institution of Horn preordered algebras, gets a sound and complete proof system ob-
tained as the free proof system

• with universal quantification, and
• such that for each quantifier-free Horn sentence H ⇒ C and all sets Γ of quantifier-free Horn

sentences there exists a natural isomorphism Pf Σ (Γ∪H,C) ∼= Pf Σ (Γ,H⇒C)

and which is generated by the following system of finitary rules for a signature Σ (where t, t ′, t ′′ are
any Σ-terms, σ is any operation symbol, ρ is any Σ-sentence, and θ : X → TΣY is any substitution):

(R) /0 ⊢ t = t
(RP) /0 ⊢ t ≤ t
(S) t = t ′ ⊢ t ′ = t
(T ) {t = t ′, t ′ = t ′′} ⊢ t = t ′′

(TP) {t ≤ t ′, t ′ ≤ t ′′} ⊢ t ≤ t ′′

(F) {ti = t ′i | 1≤ i≤ n} ⊢ σ(t1, . . . , tn) = σ(t ′1, . . . , t
′
n)

(FP) {ti ≤ t ′i | 1≤ i≤ n} ⊢ σ(t1, . . . , tn)≤ σ(t ′1, . . . , t
′
n)

(Comp) {t ′1 = t1, t1 ≤ t2, t2 = t ′2} ⊢ t ′1 = t ′2
(Subst) (∀X)ρ ⊢ (∀Y )θρ.

11.26. [48] Let I0 be an institution with a sub-category D of representable signature morphisms
such that
1. every set of sentences is epic basic, and
2. for any signature morphism χ1 : Σ→ Σ1 and χ2 : Σ→ Σ2 in D and any set E2 of Σ2-sentences,

every homomorphism h : Mχ1 →ME2↾χ2 determines an I th
0 -substitution θh : (χ1 : Σ→ Σ1)→

(χ2 : Σ→ (Σ2,E2)) such that the diagram below commutes:

Mod(Σ2,E2)
iχ2
//

Modθh

��

(ME2↾χ2)/ModΣ

h/ModΣ

��

ModΣ
iχ1

// ModΣ1
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Then the institution of theories I th
0 has representable D-substitutions. (Note that by Ex. 5.29 each

I0-theory morphism from D is representable.)

11.27. [48] Birkhoff calculus for partial algebras
QEω(PA), the institution of partial algebras with finitary quasi-existence equations as sentences,
gets a sound and complete proof system obtained as the free proof system

• with universal D-quantification for D the class of the injective signature extensions with a finite
block of variables, and

• such that for each quantifier-free Horn clause H ⇒ C and all sets Γ of quantifier-free Horn
clauses there exists a natural isomorphism Pf Σ (Γ∪H,C) ∼= Pf Σ (Γ,H⇒C)

which is generated by the following system of finitary rules for a signature Σ (where t, t ′, t ′′ are
any Σ-terms, σ is any operation symbol, τ is any total operation symbol, ρ is any Σ-sentence, and
θ : X → TΣY is any substitution):

(S) t e
= t ′ ⊢ t ′ e

= t

(T ) {t e
= t ′, t ′ e

= t ′′} ⊢ t e
= t ′′

(F) {ti
e
= t ′i | 1≤ i≤ n}∪{defσ(t1, . . . , tn),defσ(t ′1, . . . , t ′n)} ⊢ σ(t1, . . . , tn)

e
= σ(t ′1, . . . , t

′
n)

(Totality) {defti | 1≤ i≤ n} ⊢ defτ(t1, . . . , tn)
(Subterm) {defσ(t1, . . . , tn)} ⊢ {defti | 1≤ i≤ n}
(Subst) (∀X)ρ ⊢ (∀Y )(

∧
x∈X def(θx)⇒ θρ)

(Hint: Since the second condition of Prop. 11.25 does not hold, apply the result of Ex. 11.26.)

Notes. Usually, categorical logic works with categories of sentences, where morphisms are (equiv-
alence classes) of proof terms [158]. However, this captures provability between single sentences
only, while logic traditionally studies provability from a set of sentences. Proof systems have been
defined in [191] that reconcile both approaches by considering categories of sets of sentences. This
also avoids one of the big faults of categorical logic, that the definition of implication depends on
(the existence of) conjunctions. Systems of proof rules were introduced in [68] which also devel-
oped the free proof system Thm. 11.3 and its compactness Cor. 11.8. Note that our concept of proof
rules admits multiple conclusions, which constitute a slight generalization of the usual practice in
actual logics which use only single conclusion rules. There are several complete systems of rules
for PL , by Russel, Frege, Hilbert, Łukasiewicz, Sobociński, etc.; the one presented in Sec. 11.2
is due to Jan Łukasiewicz. Lawvere [160] defined quantification as adjoint to substitutions, while
[191] defines quantification as adjoint to sentence translation along signature morphisms. In [68]
we developed the free proof system with (universal) quantification and proved its compactness and
soundness; that technique works for any logical connective.

Entailment systems were probably defined for the first time under the name of π-institutions
in [108], and later modified by [175] in order to formalize the notion of syntactic consequence.
[143] gives a similar definition but restricted to finite sets of sentences. Meseguer [175] showed
how to construct an institution from an entailment system by producing a model theory directly
from a comma category construction on theories, and [96] extends this construction by embedding
the category of entailment systems into the category of [ordinary] institutions.

The general soundness results given by Prop. 11.5 and 11.16 are due to [68].
Birkhoff calculus and its completeness result have been developed for a single-sorted con-

ditional version of EQL in [27]; this has been extended to many sorts in [127], and to arbitrary
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institutions in [48]. The layered approach to institution-independent completeness was invented by
[33] within the framework of specification theory. Later this was extended to Gödel completeness
[203] and Birkhoff completeness [48]. The latter work revealed the surprisingly close relationship
between the completeness of the institution of universal sentences (UNIV ) and the general concept
of Birkhoff completeness.



Chapter 12

Models with States

Sometimes in logic and especially in computing we consider models that admit internal
states that occur as parameters in the satisfaction relation. Recall the modal logic institu-
tions introduced in Sec. 3.2 whose models are Kripke models (W,M); then the possible
worlds |W | are the internal states of (W,M) which are structured by the corresponding
Kripke frame W = (|W |,Wλ). In those institutions there is a local satisfaction arising as
a ternary relation (W,M) |=w ρ where w ∈ |W | was a ‘world’ of (W,M), in more general
terms just an internal state of (W,M). Another class of notorious examples is given by
various kinds of automata, when these are viewed with a model theoretic eye. The refined
institution theoretic treatment of the phenomenon of models with states is given by the
theory of stratified institutions which is the very topic of this chapter. But this extension
of ordinary institution theory is capable to capture many more situations, than those men-
tioned above, when models with states are involved. The concept of stratified institution
has a higher mathematical / categorical complexity than that of ordinary institution. For
instance, a bit of familiarity with 2-categorical thinking is helpful. This higher mathemat-
ical complexity reflects an increased difficulty when doing ‘non-classical’ model theory.
Then an important question arises naturally: is it not possible to treat models with states
only within the framework of ordinary institution theory? A proper understanding-based
answer to this question may emerge while advancing through this chapter. We will see
how we can ‘reduce’ or ‘flatten’ stratified institutions to ordinary institutions, and how
this will provide us with opportunities to import developments from ordinary institution
theory to stratified institutions. However, while this reduction is very useful to a large
extent, it cannot support the real specificities of models with states. For instance, while
the Boolean and the quantifier connectives can be addressed through this reduction, the
axiomatic semantics of modalities falls outside its scope. We will also understand other
reasons for the theory of stratified institutions. This chapter is structured as follows:

1. We first introduce the concept of stratified institution and related concepts, develop
some general basic facts around this, and discuss some concrete examples.

2. We extend the internal logic of Chap. 5 to stratified institutions and we add to that a
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semantics for modal logic connectives (such as possibility, necessity, nominals, etc.).

3. In another section we introduce a ‘decomposition technique’ that defines a class of
stratified institutions that, on the one hand, cover most concrete examples of interest,
and, on the other hand, is technically convenient.

4. Another section is devoted to a general construction that adds explicit Kripke structure
to abstract stratified institutions. While the decomposition technique can be regarded
as a top-down technique, the general Kripke construction represents its reverse, being
a bottom-up technique.

5. The last part of the chapter is concerned with the extension of the method of ultra-
products of Chap. 6 to stratified institutions.

As prerequisites, this chapter relies mainly on matter from Chapters 3, 4, 5 and 6. Matter
from Chap. 6 is required only in Sec. 12.5.

12.1 Stratified institutions

In a stratified institution each model M comes equipped with a set [[M]]. This has to be
structurally coherent with respect to the model functor. But more importantly the elements
of [[M]] are parameters of the satisfaction relation. In fact this is the main novelty with
respect to the ordinary concept of institution. A typical example is given by the Kripke
models, where [[M]] is the set of the possible worlds in the Kripke structure M.

A stratified institution S = (SigS ,SenS ,ModS , [[ ]]S , |=S ) consists of:

– a category SigS of signatures,

– a sentence functor SenS : SigS → Set;

– a model functor ModS : (SigS )op→ Cat;

– a “stratification” lax natural transformation [[ ]]S : ModS ⇒ SET , where SET is the
constant functor mapping each signature to Set, and

– a satisfaction relation M (|=S )w
Σ

ρ between models and sentences which is parameter-
ized both by signatures and by ‘model states’ w ∈ [[M]]S

Σ
such that

(ModS
ϕ)M (|=S )

[[M]]Sϕw
Σ

ρ if and only if M (|=S )w
Σ′ (SenS

ϕ)ρ (12.1)

holds for any signature morphism ϕ : Σ→Σ′, Σ′-model M, w∈ [[M]]S
Σ′ , and Σ-sentence

ρ.

Like with ordinary institutions, when appropriate we shall also use simplified notations
without superscripts or subscripts that are clear from the context.
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The lax natural transformation property of [[ ]] is depicted in the diagram below

Σ′′ ModΣ′′
[[ ]]

Σ′′
//

Mod(ϕ′)
�� ��

,,

Set

[[ ]]
ϕ′

n� =

��

Σ′

ϕ′

OO

ModΣ′

Mod(ϕ)
��

[[ ]]
Σ′ //

��
,,

Set

=

��
[[ ]]ϕ
m�

Σ

ϕ

OO

ModΣ
[[ ]]Σ

// Set

with the following compositionality property for each Σ′′-model M′′:

[[M′′]](ϕ′;ϕ) = [[M′′]]ϕ′ ; [[(Modϕ
′)M′′]]ϕ.

Moreover, the natural transformation property of each [[ ]]ϕ is given by the commutativity
of the following diagram:

M′

h′

��

[[M′]]Σ′
[[M′]]ϕ

//

[[h′]]
Σ′
��

[[(Modϕ)M′]]Σ

[[(Modϕ)h′]]Σ
��

N′ [[N′]]Σ′
[[N′]]ϕ

// [[(Modϕ)N′]]Σ

(12.2)

When the stratification [[ ]] is a strict natural transformation (i.e. [[ ]]ϕ are identities), we
say that S is a strictly stratified institution. Note that ordinary institutions are strictly
stratified institutions for which [[M]]Σ is always a singleton set.

The following notation is useful for what follows. For any Σ-model M and any Σ-
sentence ρ we let

[[M,ρ]] = {w ∈ [[M]]Σ |M |=w
ρ}.

Assumption on closure under isomorphism: As in the case of ordinary institutions,
the following very expected property does not follow from the axioms of stratified in-
stitutions above, hence we impose it explicitly. In all considered stratified institutions
the satisfaction is preserved by model isomorphisms, i.e. for each Σ-model isomorphism
h : M→ N, each w ∈ [[M]]Σ, and each Σ-sentence ρ,

M |=w
ρ if and only if N |=[[h]]w

ρ.

Semantically equivalent sentences. Two Σ-sentences ρ1, ρ2 are called semantically
equivalent when [[M,ρ1]] = [[M,ρ2]] for each Σ-model M.
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Examples
We limit the examples presented here only to four. Each of them goes in a particular differ-
ent direction. Three of these directions admit multiple examples of stratified institutions
that share a same central idea.

Modal logics as stratified institutions. The institutions of first order and propositional
modal logics discussed in Sec. 3.2 constitute the most emblematic examples of strati-
fied institutions. For instance the stratified institution MFOL of first-order modal logic
is defined by letting SigMFOL , SenMFOL , and ModMFOL be like in the corresponding ex-
ample presented in Sec. 3.2. Recall that the MFOL-signatures are structures of the form
(S,S0,F,F0,P,P0), ModMFOL consists of Kripke frames (W,M) with the corresponding
sharing property of the interpretations of the rigid symbols, SenMFOL consist of the first
order modal sentences with quantification restricted to rigid variables, etc. Then the strat-
ification [[ ]] extracts the possible worlds from the Kripke models, i.e. [[(W,M)]] = |W |.
The same can be applied to the hybrid modal logics HPL and HFOL in order to capture
them as stratified institutions.

Note that in these examples [[ ]] is a strict rather than a lax natural transformation
since for each signature morphism ϕ we have that [[(W,M)]]ϕ are identities. Although this
situation is rather common among the concrete examples, there are however meaningful
examples when [[ ]] is a proper lax natural transformation, like the following one.

Open first-order logic (OFOL). The main idea of the stratified institution OFOL is
to consider valuations of variables as internal states of FOL-models. Hence an OFOL
signature is a pair (Σ,X) consisting of FOL signature Σ and a finite block of variables for
Σ. An OFOL signature morphism ϕ : (Σ,X)→ (Σ′,X ′) is just a FOL signature morphism
ϕ : Σ→ Σ′ such that X ⊆ X ′.

We let SenOFOL((S,F,P),X) = SenFOL(S,F +X ,P) and ModOFOL((S,F,P),X) =
ModFOL(S,F,P). For each ((S,F,P),X)-model M, we let |M|X denote the set of the S-
sorted functions X → (Ms)s∈S. For each w ∈ |M|X , and each ((S,F,P),X)-sentence ρ we
define

(M(|=OFOL
(S,F,P),X )

w
ρ) = (Mw |=FOL

(S,F+X ,P) ρ)

where Mw is the expansion of M to (S,F+X ,P) such that Mw
x = w(x) for each x∈ X . This

is a stratified institution with [[M]]Σ,X = |M|X for each (Σ,X)-model M. For any signature
morphism ϕ : (Σ,X)→ (Σ′,X ′) and any (Σ′,X ′)-model M′, [[M′]]ϕ : |M′|X ′ → |M′|X is
defined by [[M′]]ϕ(w′) = w′|X (i.e. the restriction of w′ to X). Note that [[ ]] is a proper lax
natural transformation.

Automata (SAUT ). The automata example AUT of Section 3.2 can be better framed
as a stratified institution because of the centrality of the states within the concept of au-
tomata. We can re-introduce automata as models in a stratified institution, denoted SAUT .
Moreover we take this opportunity to expand the concept of sentence.
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• The category of the signatures of SAUT is Set.

• For each set V (of ‘input symbols’) a V -sentence is a regular expression formed with
symbols from V , i.e. defined by the following grammar:

S ::= ε | V | SS | S+S | S∗.

• The V -models are the V -automata A = ([[A]], At : V × [[A]]→ [[A]], AF ⊆ [[A]]).

In automata theory terminology, [[A]] is the set of the ‘states’ of A (in AUT denoted Astate),
At is the ‘transition function’, and AF is the set of the ‘final states’. In this definition note
the absence of a designated ‘initial state’. For any ρ ∈ Sen(V ) and w ∈ [[A]] we define

A |=w
ρ if and only if A[ρ,w]⊆ AF ,

where A[ρ,w]⊆ [[A]] is defined by induction on the structure of ρ as follows:

A[ε,w] = {w};

A[v,w] = {At(v,w)} for each v ∈V ;

A[ρ1ρ2,w] =
⋃

w1∈A[ρ1,w] A[ρ2,w1];

A[ρ1 +ρ2,w] = A[ρ1,w]∪A[ρ2,w];

A[ρ∗,w] =
⋃

n∈ω A[ρn,w] (where ρ0 = ε and ρn+1 = ρnρ).

Modulo some straightforward missing details this yields a strict stratified institutions.
Other kind of automata or even computational models (such as Turing machines)

should be framed as stratified institutions in a similar manner.

Abstract connectives. A connective signature C is just a single sorted signature of op-
eration symbols, which are called connectives. Let TC denote the set of all C -terms. A
C -algebra A consists of a set [[A]] and a mapping A : TC → P [[A]]. A C -homomorphism
h : A→ B is a function h : [[A]]→ [[B]] such that 2h ◦A = B. If η ∈ [[A]] and ρ ∈ TC then
A |=η

C ρ holds when η ∈ Aρ. All these define the stratified institution of abstract connec-
tives CON that has the connectives signatures as its signatures, C -algebras as C -models,
TC as the set of C -sentences, the stratification being given by [[A]] and the satisfaction
relation defined as above.

CON is a rather abstract construction, so an example may help clarifying its mean-
ing. Let us consider the stratified institution MPL . Then any MPL signature P (aka set
of propositional variables) determines a connective signature C(P) where C(P)0 = P,
C(P)1 = {¬,2}, C(P)2 = {∨,∧, . . .}, C(P)n = /0 for n > 2. Each MPL yields a C(P)-
algebra A defined by [[A]] = |W |, Aρ = [[(W,M),ρ]] for each ρ ∈ TC(P).

Another example can be constructed from OFOL , where each ((S,F,P),X)-model
yields an A such that [[A]] = |M|X .
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Morphisms of stratified institutions
They extend the concept of institution morphism from ordinary institutions to stratified
institutions. The 2-dimensional aspect of the stratified institutions leads to a higher com-
plexity of the definition of morphisms of stratified institutions. This concept will be in-
strumental later on in the chapter.

Given two stratified S and S ′, a stratified institution morphism (Φ,α,β) : S ′→ S
consists of

• a functor Φ : Sig′→ Sig,

• a natural transformation α : Φ;Sen⇒ Sen′, and

• a lax natural transformation β : Mod′⇒Φop;Mod such that β;Φop[[ ]] = [[ ]]′,

and such that the following Satisfaction Condition holds for any S ′-signature Σ′, any Σ′-
model M′, any w ∈ [[M′]]Σ′ and any ΦΣ′-sentence ρ:

M′ |=w′
αΣ′ρ if and only if βΣ′M

′ |=w′
ρ.

When β is strict, (Φ,α,β) is called strict too. The condition on β means the following:

• for each S ′-signature Σ the following diagram commutes

Mod′Σ
βΣ
//

[[ ]]′
Σ

��

Mod(ΦΣ)

[[ ]]ΦΣ
yy

Set

(12.3)

• for each S ′-signature morphism ϕ : Σ→Ω

[[βΩ ]]Φϕ ; [[βϕ ]]ΦΣ = [[ ]]′ϕ (12.4)

which can be visualised as the commutativity of the following diagram:

Mod′Ω
βΩ
//

Mod′ϕ

��

��

[[ ]]′
Ω

((

��''

Mod(ΦΩ)

Mod(Φϕ)

��

βϕ

q�

��

[[ ]]ΦΩ

vv

[[ ]]′ϕ %9 Mod′Σ
βΣ
//

[[ ]]′
Σ

��

Mod(ΦΣ)

[[ ]]ΦΣ

��

[[ ]]Φϕey

Set = Set

The morphisms of stratified institutions form a category SIns under a composition
that is defined component-wise like in the case of morphisms of ordinary institutions:

(Φ′,α′,β′) ; (Φ,α,β) = (Φ;Φ , αΦ
′;α
′ , β

′;βΦ
op).
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Reducing stratified institutions to ordinary institutions
Some situations are greatly helped by the possibility to mathematically transfer concepts
and results from ordinary institution theory to stratified institutions. This can be achieved
due to a general canonical interpretation of stratified institutions as ordinary institutions,
which arises as a left adjoint functor SIns→ Ins. Its right adjoint will be instrumental in
Sec. 12.3.

The left adjoint SIns→ Ins. The idea of this functor is to flatten the satisfaction relation
of a stratified institution by bringing the states at the frontend of the concept of model.
More precisely, the left adjoint maps each stratified institution S = (Sig,Sen,Mod, [[ ]], |=)
to the ordinary institution S ♯ = (Sig,Sen,Mod♯, |=♯) where

– the objects of Mod♯
Σ are the pairs (M,w), called pointed models, such that M ∈

|ModΣ| and w ∈ [[M]]Σ;

– the Σ-homomorphisms (M,w)→ (N,v) are the pairs (h,w) such that h : M→ N and
[[h]]Σw = v;

– for any signature morphism ϕ : Σ→ Σ′ and any Σ′-model (M′,w′)

(Mod♯
ϕ)(M′,w′) = ((Modϕ)M′, [[M′]]ϕw′);

– for each Σ-model M, each w ∈ [[M]]Σ, and each ρ ∈ SenΣ

((M,w) |=♯
Σ

ρ) = (M |=w
Σ ρ). (12.5)

The right adjoint Ins→ SIns. It maps each ordinary institution B to the stratified in-
stitution B̃ where

– SigB̃ = SigB and SenB̃ = SenB ,

– |ModB̃
Σ|= {(W,B : W → |ModB

Σ|) |W set},

– ModB̃
Σ((W,B),(V,N)) consists of h = (h0 : W →V,(hw : Bw→ Nh0w)w∈W ),

– for each signature morphism ϕ : Σ→ Σ′ and each Σ′-model (W ′,B′):
(ModB̃

ϕ)(W ′,B′) = (W ′, B′;(ModB
ϕ)),

– [[W,B]]B̃
Σ
=W and [[h]]Σ = h0,

– [[ ]]ϕ are identities, and

– (W,B) (|=B̃
Σ
)w ρ if and only if Bw |=B

Σ
ρ.

Proposition 12.1. ( )♯ is a left adjoint to (̃ ).

Proof. The proof that B̃ is a stratified institution consists of straightforward verifications.
Let us do only the Satisfaction Condition. We consider a signature morphism ϕ:
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(W ′,B′) |=w ϕρ = B′w |= ϕρ definition of satisfaction in B̃

= (ModB
ϕ)B′w |= ρ Satisfaction Condition in B

= (W ′, B′;(Modϕ)) |=w ρ definition of satisfaction in B̃

= (ModB̃
ϕ)(W ′,B′) |=w ρ definition of reduct.

In order to prove that (̃ ) is a right adjoint to ( )♯ we first define the co-unit of the
adjunction as follows. For each institution B we let the institution morphism εB : B̃♯→
B have identities for the signature and sentence translation functors and maps each B̃♯

Σ-model ((W,(Bw)w∈W ),w) to Bw. Then we prove the universal property of B̃ , namely
that for each institution morphism (Φ,α,β) : S ♯ → B there exists an unique stratified
institution morphism (Φ,α, β̃) : S → B̃ such that the following diagram commutes:

B B̃♯
εB

oo B̃

S ♯

(Φ,α,β)

^^

(Φ,α,β̃)♯

??

S
(Φ,α,β̃)

@@
(12.6)

Because the signature and the sentences translation functors of εB are identities, there is
no other choice for the signature and the sentence translation functors of (Φ,α, β̃). By
(12.3) and by the commutativity (12.6) it follows that for each signature Σ and for each S
Σ-model M, the definition of β̃ is constrained to

β̃ΣM = ([[M]]Σ,(βΣ(M,w))w∈[[M]]Σ).

Similarly, by (12.4) and by (12.6) it follows that for each signature morphism ϕ : Σ→ Σ′

and each Σ′-model M′

β̃ϕM′ = ([[M′]]ϕ,(1βΣ(ϕM′,[[M′]]ϕw′))w′∈[[M′]]
Σ′
).

We may skip a few straightforward things related to establishing that (Φ,α, β̃) is
indeed a strict stratified institution morphism and only show its Satisfaction Condition:

β̃M |=w ρ = β(M,w) |= ρ definition of β̃, of satisfaction in B̃

= (M,w) |= αρ Satisfaction Condition of (Φ,α,β)

= M |=w αρ definition of satisfaction in S ♯.

□

Note that the ‘local satisfaction’ institution of first order modal logic, MFOL♯, al-
ready introduced in Sec. 3.2 is precisely the result of applying the left adjoint SIns→ Ins
to MFOL . SAUT ♯ adds initial states to automata, so it is AUT enhanced with more syn-
tax. In general, S ♯ is called the institution of ‘local satisfaction’ associated to the stratified
institution S .
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The institution of ‘global satisfaction’. The other institution determined by MFOL ,
namely the ‘global satisfaction’ institution MFOL∗, can also be explained as a result of a
general construction by letting for any stratfied institution S

M |=∗ ρ if and only if [[M,ρ]] = [[M]].

Let us say that [[ ]] is surjective when for each signature morphism ϕ : Σ→ Σ′ and each
Σ′-model M′, [[M′]]ϕ : [[M′]]Σ′ → [[Mod(ϕ)M′]]Σ is surjective.

Fact 12.2. If the stratification [[ ]] is surjective then S∗ = (Sig,Sen,Mod, |=∗) is an insti-
tution, called the global institution of S .

While the local satisfaction |=♯ gives a complete account of the satisfaction rela-
tion of the stratified institution, the global one encapsulates information. Therefore it is
expected that the local semantic consequence is stronger than the global one:

Fact 12.3. Let S be a stratified institution S with [[ ]] surjective. For each E ⊆ SenΣ and
each ρ ∈ SenΣ, we have that

E |=♯
ρ implies E |=∗ ρ.

Model amalgamation

The concept of model amalgamation in stratified institutions takes two forms. The first
one ignores the stratifications and is just the ordinary model amalgamation (as introduced
in Sec. 4.3). The second one is more refined as it considers the stratification.

Consider a stratified institution S and a commutative square of signature morphisms
like below:

Σ
ϕ1
//

ϕ2

��

Σ1

θ1
��

Σ2
θ2

// Σ′

(12.7)

Then this square is a stratified model amalgamation square when for each Σk-model Mk
and each wk ∈ [[Mk]]Σk , k = 1,2, such that M1↾ϕ1 = M2↾ϕ2 and [[M1]]ϕ1w1 = [[M2]]ϕ2w2
there exists an unique Σ′-model M′ and an unique w′ ∈ [[N′]]Σ′ such that M′↾θk = Mk and
[[M′]]θk w′ = wk, k = 1,2. The model M′ is called the stratified amalgamation of M1 and
M2.

This amalgamation concept can be extended in an obvious manner to other variants
of model amalgamation such as (semi-)exactness, weak amalgamation, etc.

Stratified model amalgamation is just ordinary model amalgamation in the institu-
tion of local satisfaction:

Fact 12.4. A commutative square of signature morphisms like (12.7) is a stratified model
amalgamation square in S if and only if it is a model amalgamation square in S ♯.
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A couple of categorical conditions almost characterise stratified model amalgama-
tion. They are sufficient but fall short of being also necessary conditions. In particular
this situation shows that plain model amalgamation cannot be derived from the seem-
ingly more refined concept of stratified model amalgamation.

Proposition 12.5. A commutative square of signature morphisms like (12.7) is a stratified
model amalgamation square if

• ModΣ ModΣ1
Modϕ1
oo

ModΣ2

Modϕ2

OO

ModΣ′
Modθ2

oo

Modθ1

OO

is a pullback in |Cat|, and

• for each Σ′-model M′

[[M′↾θ↾ϕ]]Σ [[M′↾θ1 ]]Σ1

[[θ1M′]]ϕ1
oo

[[M′↾θ2 ]]Σ2

[[θ2M′]]ϕ2

OO

[[M′]]Σ′
[[M′]]θ2

oo

[[M′]]θ1

OO

is a pullback in Set.

Proof. Note that the first condition just says that (12.7) is a model amalgamation square.
We consider M1, w1, M2 and w2 like in the definition of stratified model amalgamation.
Then we consider M′ to be the unique amalgamation of M1 and M2 and apply the second
condition for w1 and w2. □

Note that stratified model amalgamation implies the second condition of Prop. 13.39
(by considering Mk = M′↾θk ) but it does not technically imply the first condition. When
the stratification is strict then the concept of stratified model amalgamation collapses to
that of ordinary model amalgamation because the latter pullback of Prop. 13.39 is trivial.
For instance this is the case in MPL , MFOL , etc. Otherwise, ordinary model amalgama-
tion and stratified model amalgamation are different concepts. Let us look in some detail
into the OFOL case where the stratification is a proper lax natural transformation. Let us
consider a pushout square of FOL signature morphisms

Σ
ϕ1
//

ϕ2

��

Σ1

θ1
��

Σ2
θ2

// Σ′

(12.8)
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and sets of variables X ,X1,X2,X ′ such that X = X1∩X2 and X ′ = X1∪X2. Then

(Σ,X)
ϕ1
//

ϕ2

��

(Σ1,X1)

θ1
��

(Σ2,X2)
θ2

// (Σ′,X ′)

is a stratified model amalgamation square in OFOL because

• it is an ordinary model amalgamation square since (12.8) is a model amalgamation
square in FOL as FOL is semi-exact, and

• for each (Σ′,X ′)-model M′ (aka FOL Σ′-model) and each wk : Xk → |Mk|, k = 1,2,
such that w1x = w2x for each x∈ X , w′ : X ′→ |M′| defined by w′x = wkx when x∈ Xk
is unique such that [[M′]]θk w′ = wk, k = 1,2. (Note that |M1|= |M2|= |M′|). Then we
apply Prop. 13.39.

Exercises

12.1. In SAUT , for any V -sentences a,b,c prove that (ab)c |=| a(bc), (a∗)∗ |=| a∗, (a + b)c |=|
ac+bc.

12.2. The satisfaction relation of a stratified institution can be presented as a natural transformation
|= : Sen⇒ [[Mod( )→ Set]] where the functor [[Mod( )→ Set]] : Sig→ Set is defined by

– for each signature Σ ∈ |Sig|, [[ModΣ→ Set]] denotes the set of all the mappings f : |ModΣ| →
Set such that f M ⊆ [[M]]Σ; and

– for each signature morphism ϕ : Σ→ Σ′, ([[Modϕ→ Set]] f )M′ = [[M′]]−1
ϕ f ((Modϕ)M′).

Then the Satisfaction Condition (12.1) appears exactly as the naturality property of |=.

12.3. Define a suitable concept of comorphism for stratified institutions by replicating ideas from
the definition of morphisms of institutions.

12.2 The internal logic of stratified institutions

We start by extending the definition of the semantics of Boolean connectives and quan-
tifiers from ordinary institutions of Chap. 5 to stratified institutions. After this, based on
the stratified structure of stratified institutions, we define semantics for modalities and
for hybrid features (i.e. nominals, @) at the level of abstract stratified institutions. Unlike
in the case of the Boolean connectives, in each of the latter cases a minimally sufficient
particular condition is imposed on the stratification.
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Boolean connectives
Given a signature Σ in a stratified institution, a Σ-sentence ρ′ is a semantic

• negation of ρ when [[M,ρ′]] = [[M]]\ [[M,ρ]];

• conjunction of ρ1 and ρ2 when [[M,ρ′]] = [[M,ρ1]]∩ [[M,ρ2]];

• disjunction of ρ1 and ρ2 when [[M,ρ′]] = [[M,ρ1]]∪ [[M,ρ2]];

• implication of ρ1 and ρ2 when [[M,ρ′]] = ([[M]]\ [[M,ρ1]]) ∪ [[M,ρ2]];

• etc.,

for each Σ-model M.
A stratified institution has (semantic) negation when each sentence of the institu-

tion has a negation. It has (semantic) conjunctions when each two sentences (of the same
signature) have a conjunction. Similar definitions can be formulated for disjunctions, im-
plications, and equivalences. Like in ordinary institution theory, distinguished negations
are usually denoted by ¬ , distinguished conjunctions by ∧ , distinguished disjunctions
by ∨ , distinguished implications by ⇒ , distinguished equivalences by ⇔ , etc.

Note that MFOL , MPL together with their hybrid extensions HFOL , HPL , as
well as OFOL have all these semantics Boolean connectives. SAUT has conjunctions
(ρ1 +ρ2).

Fact 12.6. When they exist, the negations, conjunctions, disjunctions, implications, nega-
tions, coincide in S and S ♯.

This identity between the Boolean connectives at the level of the stratified institution
S and its associated local institution S ♯ does not carry in general to the global institution.

Quantifiers
Given a morphism of signatures χ : Σ→ Σ′, a Σ-sentence ρ is a semantic

• universal χ-quantification of a Σ′-sentence ρ′ when

[[M,ρ]] =
⋂

M′↾χ=M

{w ∈ [[M]]Σ | [[M′]]−1
χ w⊆ [[M′,ρ′]]}, and

• existential χ-quantification of a Σ′-sentence ρ′ when

[[M,ρ]] =
⋃

M′↾χ=M

[[M′]]χ([[M′,ρ′]]),

for any Σ-model M.
A stratified institution has (semantic) universal D-quantification for a class D of

signature morphisms when for each (χ : Σ→ Σ′) ∈ D , each Σ′-sentence has a universal
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χ-quantification. A similar definition applies to existential quantification. Distinguished
universal / existential quantifications are denoted by (∀χ)ρ′ / (∃χ)ρ′.

The following table shows the situation of the semantic quantification in some con-
crete stratified institutions. In all cases we have both universal and existential quantifica-
tions; these can be checked easily by making the corresponding definitions explicit.

χ-quantification
MPL none

MFOL χ : Σ→ Σ+X X block of rigid first-order variables
HPL χ : (Nom,Σ)→ (Nom+N,Σ) N block of nominal variables

HFOL χ : (Nom,Σ)→ (Nom+N,Σ+X) X block of rigid first-order variables,
N block of nominal variables

OFOL χ : Σ→ Σ+Y Y block of first-order variables

Fact 12.7. When they exist, the universal and the existential χ-quantifications, respec-
tively, coincide in S and S ♯.

On the one hand, the concepts of semantic Boolean connectives and quantifications
in ordinary institutions arise as an instance of those of stratified institutions when the
underlying set of each [[M]]Σ is a singleton set. On the other hand, Facts 12.6 and 12.7
shows that the stratified institution concepts of Boolean connectives and quantifications
are in substance no more general than their ordinary institution theoretic correspondents.
Therefore an alternative equivalent way to introduce the stratified institution semantics of
Boolean connectors and quantifications would be to turn Facts 12.6 and 12.7 into defini-
tions and then infer the current definitions as properties.

Modalities

Stratified institutions allow for a very abstract interpretation of modalities as semantic
connectives. This is beyond ordinary institution theory, something for which the technique
of flattening to S ♯ is useless.

Frame extractions (binary). In order to define semantic possibility (3) and necessity
(2) in a stratified institution we have to be able to ‘extract’ Kripke frames from the strat-
ification. Let REL1 denote the single sorted version of REL in which we retain only the
signatures without constants.

A binary frame extraction assumes that for each signature Σ the stratification [[ ]]Σ is
a composition between a functor FrΣ : ModΣ→ModREL1

(λ : 2) and the forgetful func-
tor ModREL1

(λ : 2)→ Set, where ModREL1
(λ : 2) is the category of the FOL-models
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for a single sorted signature with one binary relation symbol λ.

ModΣ
[[ ]]Σ

//

FrΣ &&

Set

ModREL1
(λ : 2)

forgetful

OO

Note that the models of ModREL1
(λ : 2) are exactly the Kripke frames W = (|W |,Wλ)

of the modal logic examples (introduced in Sec. 3.2). Since |FrΣM| = [[M]]Σ we can
write FrΣM = ([[M]]Σ,(FrΣM)λ). The FrΣ functors are also required to form a lax natural
transformation from Mod to the constant functor mapping any signature to the category
ModREL1

(λ : 2).
Concretely, in the stratified institutions MFOL , MPL , HFOL , HPL , the Fr maps

the Kripke models (W,M) to their underlying Kripke frames W = (|W |,Wλ).

Frame extractions (general). In the most general situation, when we allow polyadic
modalities, i.e. modalities with more than one argument, first we need a functor L : SigS →
SigREL1

such that LΣ represents the relation symbols corresponding to the modalities of
Σ (we allow a flexible approach where the modalities may change with the signature).
Then we have a more general concept of frame extraction. In the binary case LΣ is always
{λ : 2} and hence no reason to have λ as part of the signatures.

A (general) frame extraction (L,Fr) is a stratified institution morphism

(L, /0,Fr) : S → REL1

where REL1 is considered as a stratified institution with no sentences and for each
REL1-model M, [[M]] is the underlying set of M and the satisfaction is invariant with
respect to the states, i.e. M |=w ρ is M |= ρ. Commonly, in concrete examples, it happens
that frame extractions are in fact strict institution morphisms.

Semantic modalities. In any stratified institution endowed with a binary frame extrac-
tion Fr, a Σ-sentence ρ′ is a semantic

• possibility (3) of ρ when [[M,ρ′]] = (FrΣM)−1
λ
[[M,ρ]];

• necessity (2) of ρ when [[M,ρ′]] = {i | (FrΣM)λi⊆ [[M,ρ]]},

for each Σ-model M.
Obviously, in MPL , MFOL , HPL , HFOL we have that each 3ρ / 2ρ is a semantic

possibility / necessity of ρ in the sense of our definitions above.
The concept of semantic possibility / necessity admits an obvious extension to

polyadic modalities by using general frame extractions.
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Nominals

Nominals extraction. In order to define the semantics of hybrid features such as nomi-
nals and the satisfaction operator (@) in stratified institutions we need to be able to extract
nominals data from the corresponding stratification. Let SETC be the sub-institution of
REL that restricts the signatures to single-sorted ones and without relation symbols, so
only constants being admitted.

A nominals extraction assumes two additional data:

• a functor N : SigS → SigSETC , i.e. each NΣ is a single-sorted FOL signature having
only constants; and

• that for each signature Σ the stratification [[ ]]Σ is a composition between a functor
NmΣ : ModS

Σ→ModSETC (NΣ) and the forgetful functor ModSETC (NΣ)→ Set,

ModS
Σ

[[ ]]Σ
//

NmΣ &&

Set

ModSETC (NΣ)

forgetful

OO

such that the NmΣ functors are also required to form a lax natural transformation
ModS ⇒ Nop ; ModSETC .

Hence, a nominals extraction (N,Nm) is a stratified institution morphism

(N, /0,Nm) : S → SETC

where SETC is considered as a stratified institution in the same manner we considered
REL1 as stratified institution.

Concretely, in the stratified institutions of the hybrid modal logics HFOL , HPL ,
we have that N maps each signature (Nom,Σ) to the single-sorted signature of constants
Nom, and that Nm(Nom,Σ) maps each Kripke model (W,M) to the ModSETC (Nom)-model
(|W |,(Wi)i∈Nom), so from the Kripke models it forgets both the M part as well as the
accessibility relation Wλ.

Semantic nominals. In any stratified institution endowed with a nominals extraction N,
Nm, for each signature Σ and each i ∈ NΣ,

• a Σ-sentence ρ′ is an i-sentence when [[M,ρ′]] = {(NmΣM)i};

• a Σ-sentence ρ′ is the satisfaction of ρ at i when

[[M,ρ′]] =

{
[[M]], (NmΣM)i ∈ [[M,ρ]]

/0, (NmΣM)i ̸∈ [[M,ρ]]
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for each Σ-model M.
In HPL and HFOL we have that each nominal i of the signature is an i-sentence and

each sentence @iρ is a satisfaction at i in the sense of the above definitions. In general, for
the designated i-sentences and satisfaction at i we will use the notations i-sen and @iρ,
respectively. Moreover we say that a stratified institution has explicit local satisfaction
when there exists a satisfaction at i for each sentence and each appropriate i.

Exercises
12.4. In any stratified institution S with surjective stratification,

1. any semantic conjunction in S is a semantic conjunction in S∗ too, and

2. any semantic universal χ-quantifications in S is a semantic universal χ-quantifications in S∗ too.

12.5. Give an example of a stratified institution S that has semantic disjunctions but such that S∗
does not have them.

12.6. Extend the definition of SAUT with all Boolean connectives, quantifications, and nominal
related sentences.

12.7. [87] Local versus global interpolation.
Let S be any stratified institution. Formulate a set of general conditions such that Craig interpo-
lation in S ♯ implies Craig interpolation in S∗. (Hint: In HPL , the stratified institution of hybrid
propositional logic, for any signature (Nom,P), if i ̸∈ Nom then we can add it to Nom and obtain
a signature inclusion ι : (Nom,P)→ (Nom∪{i},P). Then for each (Nom,P)-model (W,M) and
each w ∈ [[(W,M)]] there exists a ι-expansion (W ′,M′) of (W,M) such that

[[(W ′,M′)]]i(Nm(Nom∪{i},P)(W
′,M′))i = w.

Moreover, for each θ1 : (Nom1,P1)→ (Nom′,P′) and ι′ : (Nom′,P′)→ (Nom′∪{i′},P′) there ex-
ists ι1 : (Nom1,P1)→ (Nom1∪{i},P1), i ̸∈Nom1, and θ′1 : (Nom1∪{i},P1)→ (Nom′,∪{i′},P′)
such that (ι1,θ1,θ

′
1, ι
′) is a stratified model amalgamation square. At the general level these prop-

erties can be expressed as axioms. Further assume universal quantifications for the signature exten-
sions ι.)

12.8. Preservation of semantic connectives along signature morphisms.
In any institution I , if ρ is a semantic conjunction of Σ-sentences ρ1 and ρ2 then for any sig-
nature morphism ϕ : Σ→ Σ′ we can prove easily that ϕρ is a semantic conjunction of ϕρ1 and
ϕρ2. Similar preservation properties hold also for the other Boolean connectives and for quantifica-
tions. Replicate these results for stratified institutions. What does it take to establish such preserva-
tion properties also for semantic modalities and nominals? (Hint: For the Boolean connectives and
quantifications we may use the result of Fact 12.7.)

12.3 Decompositions of stratified institutions
An analysis of the structure of conventional Kripke semantics reveals the following situ-
ation for an individual Kripke model:

• There is a family of models in a “lower” logical system, usually propositional or first
order logic. The indexing of the family is what is usually referred to as “worlds”.
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• Then there is a certain structure imposed upon this family of models. This happens at
the level of the “worlds” commonly in the form of relations.

We address this general structure of Kripke semantics from an abstract axiomatic per-
spective. The result is a general abstract class of stratified institutions that does not neces-
sarily consider explicitly Kripke frames nor modalised sentences, but which retains in an
abstract form the essential idea of a stratified institution in which a “header” institution
structures a certain multiplication of a “base” institution.

Bases for stratified institutions
In a concrete stratified institution S with Kripke semantics, if M is a Kripke model and
w ∈ [[M]] then the model (M,w) of S ♯ represents a “localisation” in M of the “world” w.
This corresponds to a model in “lower” institution. However the construction of S ♯, being
fully abstract, is independent of the fact that M is really a Kripke model. On the other
hand, we should be able to have the (syntax of the) “lower” logic available at the level of
S . These ideas are captured by the following definition: a base for a stratified institution
S is an institution morphism (Φ,α,β) : S ♯→ B . Let us look into a couple of examples
of this.

A base for MPL . For the stratified institutions that are based on some form of Kripke
semantics we may consider B to be the institution that at the syntactic level removes
from S all syntactic entities that involve modalities, and whose models are the individual
“worlds” of the respective Kripke semantics. For instance, in the case of MPL :

• B = PL and Φ is the identity functor on Set,

• αP is the inclusion SenPL P⊆ SenMPL P,

• βP(M,w) = Mw, etc.

A base for MFOL .

• We let B = AFOL (the sub-institution of FOL determined by its atomic sentences)
and let Φ forget the rigid symbols, i.e. Φ(S,S0,F,F0,P,P0) = (S,F,P).

• α consists of the canonical inclusions of sets of sentences.

• β(S,S0,F,F0,P,P0)(M,w) = Mw (as (S,F,P)-model).

As a matter of notation, in what follows, for any base (Φ,α,β) : S ♯→ B we will
denote its correspondent through the natural isomorphism Ins(S ♯,B) ∼= SIns(S , B̃) by
(Φ,α, β̃). The idea here is that while β gives the ‘local’ / ‘base’ model corresponding to
certain point / world from a Kripke model, β̃ gives the whole bunch of ‘local’ / ‘base’
models of a Kripke model. Of course, this intuition applies to Kripke semantics, while
the natural isomorphism from above is more abstract.
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Decompositions of stratified institutions
Model constraints. In many Kripke semantics examples the models are subject to cer-
tain constraints. For instance,m in MFOL the interpretations of the rigid symbols are
shared. This means that β̃M is not any bunch of ‘base’ models, but a bunch of models that
is subject to a certain constraint, in this example the mentioned sharing. At the level of B̃
such constraints are treated abstractly by the concept of sub-fucntor. Let S be a strict strat-
ified institution and (Φ,α,β) : S♯→ B be a base for S . A constraint model sub-functor

ModC ⊆ModB̃ is a sub-functor such that for each signature Σ,

β̃Σ(ModS
Σ)⊆ModC(ΦΣ).

By B̃C we denote the stratified sub-institution of B̃ induced by ModC.

Decompositions. A decomposition of S consists of two strict stratified institution mor-
phisms like below

S 0 S
(Φ0,α0,β0)
oo

(Φ,α,β̃)
// B̃C

such that for each S -signature Σ

Mod0(Φ0Σ)

[[ ]]0
Φ0Σ ((

ModS
Σ

β0
Σ

oo
β̃Σ

//

[[ ]]S
Σ

��

ModC(ΦΣ)

[[ ]]B̃
ΦΣvv

Set

is a pullback in Cat.
Let us note the following aspects emerging from the concept of decomposition.

• The models of S can be represented as pairs of S 0-models and families of B-models
satisfying certain constraints (hence B̃C models) such that the “worlds” of the corre-
sponding B̃C model constitutes the stratification of the corresponding S 0-model. This
means that at the semantic level S is completely determined by the two components
of the decomposition.

• The situation at the syntactic level is different. The syntax (signatures and sentences)
of each of the two components is represented in the syntax of S , but the latter is not
completely determined by the former syntaxes. In other words S may have signatures
and sentences that do not originate from either of the two components. This is what
the definition gives us. However, while there are hardly any examples / applications
where all sentences come from either one of the two components, in many examples
the signatures of S are composed from the signatures of S 0 and those from B .

Now we present some examples of decompositions of some of the most common stratified
institutions from modal logic.
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A decomposition of MPL . We let

• S 0 = REL1 (regarded as a trivially stratified institution like in the definition of frame
extractions), Φ0P = {λ : 2}, α0 is empty, β0

P(W,M) =W .

• B = PL , ΦP = P, αP is the inclusion SenPL P⊆ SenMPL P, ModC is just ModB̃ (there
are no constraints), and βP(W,M) = (|W |,(Mw)w∈|W |).

A decomposition of HPL . This is quite similar to the decomposition of MPL . The
differences are:

• Now S 0 = RELC 1, which is the single-sorted sub-institution of FOL determined by
the signatures without operation symbols other than constants. Consequently Φ0(Nom,P)=
(Nom,λ : 2).

• α0 is not empty anymore, it is rather defined by

α
0
(Nom,P)λ(i, j) = @i3 j(= @i¬2¬ j)

for the atoms, and then for any sentence by induction on the structure of the respective
sentence such that α0

(Nom,P) commutes with the connectives (Boolean and quantifiers).

A decomposition of MFOL . Like with MPL , S 0 is REL1, and consequently (Φ0,α0,β0)

is similar to that in the decomposition of MPL . But on the side of B̃C the situation is more
complicated than in the previous examples. Although we may be tempted to use AFOL
as the base for MFOL (as we have done above), that would not work because AFOL does
not have enough syntax to specify the sharing of the rigid symbols. So we have to upgrade
it essentially by allowing the MFOL signatures at the level of the base institution too. So,
let the institution AFOLR be defined by

• SigAFOLR = SigMFOL ,

• SenAFOLR (S,S0,F,F0,P,P0) consists of all (S,F,P)-atoms,

• ModAFOLR (S,S0,F,F0,P,P0) = ModFOL(S,F,P), and

• the satisfaction relation is inherited from FOL .

Then we let B = AFOLR and ModC(S,S0,F,F0,P,P0) consist of the B̃-models (W,M)
such that for each w,v ∈W and each x rigid symbol, Mw

x = Mv
x .

All these can be extended to a meaningful decomposition of HFOL by defining
(Φ0,α0,β0) like in the example of the decomposition of HPL .

The concept of decomposition has a theoretical potential related to the S 0 compo-
nent that may generate situations much beyond Kripke semantics in its common accepta-
tions. For instance we may consider S 0 to be an institution of algebras, which will mean
algebraic operations on the “worlds” in S models. To unleash the full potential of this
concept in this direction is an interesting topic of further investigation.
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Implicit frame and nominal structures via decompositions. In the applications the
eventual frame / nominal structures of S may come from S 0 as follows:

Fact 12.8. Consider a decomposition of a stratified institution

S 0 S
(Φ0,α0,β0)
oo

(Φ,α,β̃)
// B̃C.

Then any frame / nominals extraction of S 0 induces canonically a frame / nominals ex-
traction of S by composition with (Φ0,α0,β0).

Note how the decompositions of MPL , HPL , MFOL , HFOL discussed above fall
within the scope of Fact 12.8.

Exercises
12.9. [88] Preservation of pushouts in a decomposition
If the decomposition of the stratified institution has the property that

Sig0 SigSΦ0
oo

Φ
// SigB

is a product in Cat, then both Φ0 and Φ preserve pushouts. Moreover any pair of pushout squares
of signatures, one from S0 and the other one from B , determine canonically a pushout square of S
signatures. Is it possible to use this result to explain pushout squares of MFOL signatures?

12.10. [88] Model amalgamation via decomposition
Let B be any institution. A constraint model sub-functor ModC ⊆ModB̃ preserves amalgamation
when for any pushout square of signature morphisms

Σ
ϕ1
//

ϕ2

��

Σ1

θ1

��

Σ2
θ2

// Σ′

and for any B̃ Σ′-model (W,B′), (W,B′)↾θk ∈ |ModC
Σk|, k = 1,2, implies (W,B′) ∈ |ModC(Σ′)|.

Consider a decomposition of a stratified institution S such that (1) S0 is strict, (2) Φ and Φ0

preserve pushouts, (3) B and S0 are semi-exact, and (4) ModC preserves amalgamation. Then S is
semi-exact too.

12.4 Modalised institutions
In this section we develop an generic class of examples of stratified institutions by en-
dowing abstract strictly stratified institutions S , referred to as base stratified institutions,
with Kripke semantics. On the one hand, this means an extension of the syntax of S with
modalities, and on the other hand it means to have Kripke models based on the models of
S . This process will produce a new stratified institution that will be denoted K (S). For ex-
ample, the stratified institutions MFOL , MPL may arise as such K (S) under a suitable
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choice for the parameters of our construction. The K (S) construction can be regarded
as a bottom-up counterpart of the decompositions of stratified institutions. In K (S) the
stratified institution S plays a role similar to that played by B in decompositions.

Let us make the definition of K (S) explicit by taking three steps: first the syntax,
then the semantics, and finally the satisfaction relation.

Modal syntax in stratified institutions

Signatures. The K (S) signatures are just the S signatures, i.e. SigK (S) = SigS .

Sentences. For any signature Σ we let SenK (S)
Σ be constructed from SenS

Σ (whose
elements are considered atomic sentences at the level of K (S)) by the usual Boolean
connectives ¬, ∧, etc., by the unary modal connectives 3 and 2, and by designated uni-
versal and existential quantifications. The latter means that we fix a quantification system
D ⊆ SigS (recall the concept from Sec. 5.2). The quantification system D is a parame-
ter of our construction but which, for reasons of simplicity, is omitted from the notation
K (S). Thus, more formally, SenK (S)

Σ is the least set such that

• SenS
Σ⊆ SenK (S)

Σ;

• is closed under the unary connectives ¬, 3, 2 and under the binary connective ∧; and

• is closed under quantifications (∀χ)ρ′ and (∃χ)ρ′ where χ : Σ→ Σ′ ∈ D and ρ′ ∈
SenK (S)

Σ′.

Sentence translations. For any signature morphism ϕ : Σ→ Σ1 the sentence trans-
lation SenK (S)

ϕ extends canonically the sentence translation SenS
ϕ, the only step that

requires a bit more explanation being the translation of the quantifiers. For any χ : Σ→
Σ′ ∈D and any ρ′ ∈ SenK (S)

Σ′ we define

(SenK (S)
ϕ) (∀χ)ρ′ = (∀χ(ϕ))(SenK (S)

ϕ[χ])ρ′.

(Recall the notational convention for the designated pushout squares of the quantification
systems

Σ
ϕ
//

χ

��

Σ1

χ(ϕ)

��

Σ′
ϕ[χ]
// Σ′1

). The functoriality of SenK (S) follows now easily from the functoriality of SenS and from
the axioms of the quantification system D .
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MFOL syntax as K (S) syntax. In this example the role of S is played by AFOLR
considered trivially as a stratified institution, each [[M]] being the same singleton set {∗}.
The quantification system extends the quantification system of FOL presented in Section
5.2 by letting D to consist of the signature extensions (S,S0,F,F0,P,P0)→ (S,S0,F +
X ,F0 +X ,P,P0) with finite blocks X of rigid variables. Under this setup we have that
SenMFOL is just SenK (S).

Kripke models in abstract stratified institutions

We define them in two steps: first for the unconstrained case, and then for the constrained
case.

Unconstrained models. For any signature Σ a unconstrainted Kripke model over S is a
pair (W,M) where

• W =(|W |,Wλ) is a Kripke frame like in MFOL or MPL , i.e. a model in ModREL1
(λ : 2);

and

• M is a function |W | → |ModS
Σ| such that [[Mw]]S

Σ
= [[Mv]]S

Σ
for all w,v ∈ |W |. This

condition is essential for having a stratification for (W,M) in a natural and simple
way that works.

Note that although we call these Kripke models ‘unconstrained’ their components still
share the same set of ‘internal states’. This allows us to abbreviate [[Mw]]S

Σ
by [[M]]S

Σ
.

Stratification. For the Kripke models of KMod we define a stratification by

[[(W,M)]]
K (S)
Σ

= |W |× [[M]]S
Σ
.

Model homomorphisms. A homomorphism of unconstrainted Kripke models h : (W,M)→
(W ′,M′) consists of a pair aggregating

• a model homomorphism h0 : W →W ′ in ModREL1
(λ : 2), i.e. a function h0 : |W | →

|W ′| such that h0Wλ ⊆W ′
λ
; and

• a |W |-indexed family of Σ-model homomorphisms h1 = (hw
1 : Mw → M′h0w)w∈|W |

such that [[hw]]S
Σ
= [[hv]]S

Σ
for all w,v ∈ |W |.

The composition of homomorphisms is defined component-wise by (h;h′)0 = h0;h′0 and
(h;h′)w

1 = hw
1 ;(h′1)

h0w. It is easy to check that unconstrained Kripke models and their
homomorphism form a category, denoted KModS

Σ.
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Model reducts. Given a signature morphism ϕ : Σ → Σ′, the corresponding reduct
functor KModS

Σ′→ KModS
Σ is defined on the basis of models reducts in S , i.e.

(KModS
ϕ)(W ′,M′) = (W ′, M′;ModS

ϕ).

In order for (W ′, M′;ModS
ϕ) to qualify as Kripke model we need that [[(ModS

ϕ)M′w]]S
Σ
=

[[(ModS
ϕ)M′v]]S

Σ
. This holds by the natural transformation property of [[ ]]S , the strictness

assumption, and the respective property for M′ as follows:

[[(ModS
ϕ)M′w]]S

Σ
= [[M′w]]Σ′ = [[M′v]]Σ′ = [[(ModS

ϕ)M′v]]S
Σ
.

Constrained models. When dealing with constrained models, we adopt the same strat-
egy like in the theory of decompositions, namely to stay abstract by employing abstract
sub-functors. A constrained Kripke model functor is a sub-functor ModK (S) ⊆KMod that
satisfies the following condition:

(CAMG) any designated pushout of the quantification system D is a model amalgama-
tion square for ModK (S).

Note that due to its abstractness, ModK (S) is an implicit parameter of our construction
alongside the base stratified institution S , and the quantification system D . The axiom
(CAGM) will be necessary for the Satisfaction Condition of K (S). This kind of reliance
on model amalgamation is typical for institutions with quantifications, which we have
first met with, in an implicit form, when we proved the Satisfaction Condition of FOL in
Chap. 3. But here this has to be treated axiomatically.

∆-rigid Kripke models. The constraints on the Kripke model can be of various types,
this is why it is appropriate to treat them abstractly. For instance, some constraints may
come as property of the frames, such as T , S4, or S5 in MPL or MFOL , etc. Other con-
straints can be of a very different nature. As we have already seen, the sharing constraints
are very important, they are even crucial in the context of quantifications. These can be
defined at the general level by assuming an additional structure, namely a morphism of
strict stratified institutions:

∆ = (Φ∆, /0,β∆) : S → S ∆ = (Sig∆, /0,Mod∆, [[ ]]∆, /0)

(the sentences functor of S ∆ is empty which also implies the emptiness of the satisfaction
relation and of the sentence translation). ∆ is subject to the following axiom, which causes
(CAGM) to hold:

(∆-AMG) Φ∆ maps any designated pushout square of the quantification system D
to a model amalgamation square.

We then define ModK (S) ⊆KModS as the sub-functor of the ∆-rigid Kripke models,
which are the Kripke models that satisfies the following sharing conditions:

(SH) for each Kripke model (W,M) and all w,w′ ∈ |W |, β∆
Σ

Mw = β∆
Σ

Mw′ ; and
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(SHH) for each homomorphism h : (W,M)→ (W ′,M′) of Kripke models and all w,w′ ∈
|W |, β∆

Σ
hw

1 = β∆
Σ

hw′
1 .

With these definitions we have that the ∆-rigid models qualify indeed as constrained
Kripke models.

Proposition 12.9. Suppose that any designated pushout of D is a model amalgamation
square in S . Then the ∆-rigid Kripke models functor ModK (S) satisfies the amalgamation
condition (CAMG).

Proof. Consider a designated pushout square in D like below:

Σ
ϕ
//

χ

��

Σ1

χ(ϕ)

��

Σ′
ϕ[χ]
// Σ′1

and (W,M1) ∈ |ModK (S)
Σ1|, (W,M′) ∈ |ModK (S)

Σ′| such that (W,M1)↾ϕ = (W,M′)↾χ.

• For each w ∈ |W | we have Mw
1 ↾ϕ = M′w↾χ. In S , let M′w1 be the unique amalgamation

of Mw
1 and M′w.

• First we have to show that (W,M′1) ∈ |ModK (S)
Σ′1|, which means that that we have to

prove the sharing condition (SH) for (W,M′1). Let w,v ∈ |W |. Then

1 (Mod∆(Φ∆χ(ϕ)))(β∆

Σ′1
M′w1 ) = β∆

Σ1
((ModS

χ(ϕ))M′w1 ) naturality of β∆

2 (Mod∆(Φ∆χ(ϕ)))(β∆

Σ′1
M′v1) = β∆

Σ1
((ModS

χ(ϕ))M′v1) naturality of β∆

3 (ModS
χ(ϕ))M′w = Mw

1 definition of M′w1

4 (ModS
χ(ϕ))M′v = Mv

1 definition of M′v1

5 β∆
Σ1

Mw
1 = β∆

Σ1
Mv

1 (W,M1) satisfies (SH)

6 (Mod∆(Φ∆χ(ϕ)))(β∆

Σ′1
M′w1 ) = (Mod∆(Φ∆χ(ϕ)))(β∆

Σ′1
M′v1) 1, 2, 3, 4, 5

7 (Mod∆(Φ∆ϕ[χ]))(β∆

Σ′1
M′w1 ) = (Mod∆(Φ∆ϕ[χ]))(β∆

Σ′1
M′v1) like 6

8 β∆

Σ′1
M′w1 = β∆

Σ′1
M′v1 6, 7, (∆-AMG).

□

MFOL models as ∆-rigid Kripke models. We continue the presentation of MFOL as
a K (S). At the syntax part we have already set S to AFOLR . Now we also set S ∆ to the
reduced variant of AFOLR , without any sentences and regarded trivially as a stratified
institution (the stratification consists of a singleton set {∗}). We also let

• Φ∆ maps each AFOLR signature (S,S0,F,F0,P,P0) to its rigid part (S0,F0,P0);
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• each β∆

(S,S0,F,F0,P,P0)
is the FOL-model reduct ModFOL(S,F,P)→ModFOL(S0,F0,P0);

and

Under this setup, clearly the ∆-rigid Kripke models are precisely the MFOL models.
However it remains to establish the model amalgamation condition (∆-AMG), but this is
straightforward by using the semi-exactness of FOL (see Ex. 12.11).

The K (S) Satisfaction Relation

Now, we define a stratified satisfaction relation |= in K (S) between the Kripke models
of ModK (S) and the K (S)-sentences by induction on the structure of K (S)-sentences as
follows. The induction steps of this definition are similar to those from the definition of
the satisfaction relation in MFOL , the only difference being that now quantifiers are more
abstract that in MFOL . Let Σ be a signature, (W,M) be any Kripke Σ-model, w1 ∈ |W |,
and w0 ∈ [[M]]S

Σ
. We define:

• (W,M) |=w1,w0
ρ iff Mw1

(|=S )w0
ρ; when ρ ∈ SenS

Σ,

• (W,M) |=w1,w0
ρ1∧ρ2 iff (W,M) |=w1,w0

ρ1 and (W,M) |=w1,w0
ρ2,

• (W,M) |=w1,w0 ¬ρ iff (W,M) ̸ |=w1,w0
ρ,

• (W,M) |=w1,w0
2ρ iff for any (w1,v1) ∈Wλ we have that (W,M) |=v1,w0

ρ,

• (W,M) |=w1,w0
3ρ iff there exists (w1,v1) ∈Wλ such that (W,M) |=v1,w0

ρ,

• (W,M) |=w1,w0
(∀χ)ρ iff (W,M′) |=w1,w0

ρ for any (W,M′) such that
(ModK (S)

χ)(W,M′) = (W,M),

• (W,M) |=w1,w0
(∃χ)ρ iff (W,M′) |=w1,w0

ρ for some (W,M′) such that
(ModK (S)

χ)(W,M′) = (W,M).

Note that with respect to this definition, the eventual constraints on the Kripke models
do not really play any role, not even at the level of the quantification because once the
constraint model functor ModK (S) is established, the semantics of the quantifications is
taken care only by the model reducts. However, the sharing constraints have the effect
of representing model expansions (W,M′) as uniform valuations of the variables. For
instance, in MFOL , an expansion (W,M′) of (W,M) along a signature extension with a
block of rigid variables is the same with a mapping X →Mw, for all w. In the absence of
the sharing constraint, a single variable is evaluated differently according to w.

MFOL satisfaction. Under the setup that explained MFOL syntax and semantics in
terms of K (S) note that the MFOL satisfaction relation is that defined for K (S). Since
in this case the stratification of S consists of the singleton set {∗}, each [[(W,M)]] =

|W |× [[M]]∼= |W |, which allows to simplify the notation |=w1,∗ to |=w1
.
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The K (S) Satisfaction Condition. In order to complete the argument that K (S) is a
stratified institution we still have to establish its Satisfaction Condition.

Theorem 12.10. For any signature morphism ϕ : Σ→ Σ′, any K (S) Kripke Σ′-model
(W,M′), any w1 ∈ |W |, any w0 ∈ [[M′w

1
]]S

Σ′ , and any K (S) Σ-sentence ρ,

(ModK (S)
ϕ)(W,M′) |=w1,w0

ρ if and only if (W,M′) |=w1,w0
(SenK (S)

ϕ) ρ.

Proof. We follow the same routine of induction on the structure of ρ like in most proofs
of Satisfaction Conditions, such as that for FOL in Sec. 3.1. The base step relies on the
Satisfaction Condition of the base institution S , while the induction steps corresponding
to the Boolean connectives and to the modalities are trivial. Like in the proof of the
FOL Satisfaction Condition, the only interesting step corresponds to the quantifiers. This
follows the same general ideas like in the FOL proof. In particular, the amalgamation
axiom (CAMG) plays a crucial role, and in fact this is the sole reason of this axiom. □

Corollary 12.11. K (S) is a stratified institution that has semantic conjunctions, nega-
tions, implications, disjunctions, equivalence, possibility and necessity (under the Kripke
frame extraction Fr(W,M) =W), and universal and existential D-quantifications.

Extensions of the modalisation procedure

The modalisation procedure on institutions can extended easily to more sophisticated
features from the realm of modal logics. We hint very briefly to how this can be done in a
couple of cases, the full details being left to the reader.

Polyadic modalities. This consists of the generalisation that allows modalities to have
any arities instead of just being unary connectives like the standard modalities 2 and 3.
At the level of syntax this means that we fix a family Λ = (Λn)1≤n of modalities, and for
each λ∈Λn we have two (n−1)-ary connectives: λ-possibility denoted ⟨λ⟩(ρ1, . . . ,ρn−1),
and λ-necessity denoted [λ](ρ1, . . . ,ρn−1). At the level of the Kripke models (W,M) we
upgrade the Kripke frames W to FOL models in ModREL1

Λ, meaning that each λ ∈
Λn gets an interpretation as an n-ary relation Wλ ⊆ |W |n. These upgrades reflect in the
definition of the K (S) satisfaction relation as follows:

• (W,M) |=w,v [λ](ρ1, . . . ,ρn−1) =
∧

(w,w1,...,wn−1)∈Wλ

∨
1≤k≤n−1((W,M) |=wk,v ρk); and

• (W,M) |=w,v ⟨λ⟩(ρ1, . . . ,ρn−1) =
∨

(w,w1,...,wn−1)∈Wλ

∧
1≤k≤n−1((W,M) |=wk,v ρk).

One may go even further by allowing Λ to vary across signatures. This means that
K (S) signatures now ought to be pairs (Λ,Σ), where Σ is an S (base institution) signature.
There are several technical consequences to this. An important one is that by resorting to
the usual institution theoretic approach to quantifiers through signature extensions and
model reducts, this generalisation allows for quantifications over modalities. Moreover,
this upgrade of K (S) has general frame extractions and semantic polyadic modalities.
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Hybridisations. We may add features of hybrid logics to our modalisation procedure
such that HFOL and HPL arise as instances of K (S). At the level of syntax we upgrade
signatures to pairs (Nom,Σ) where Nom is a set of nominal constants and Σ is a signature
in the base institution S . Then in the building process of the K (S) sentences we add for
each i ∈ Nom, i itself as an atomic sentence, @i as an unary connective, and quantifica-
tions by nominals (∃i)ρ. The concept of Kripke model (W,M) is upgraded accordingly,
by letting the frame W be a FOL model in ModRELC 1

(Nom,λ : 2), meaning that W in-
terprets λ as a binary relation Wλ ⊆ |W |× |W | as in the standard case but also interprets
each nominal i ∈ Nom as a constant Wi ∈ |W |. In the definition of K (S) satisfaction we
add

• ((W,M) |=w,v i) = (w =Wi) for each i ∈ Nom; and

• ((W,M) |=w,v @iρ) = ((W,M) |=Wi,v ρ); and

• (W,M) |=w,v
(Nom,Σ) (∃i)ρ if and only if (W ′,M) |=w,v

(Nom+i,Σ) ρ for some (Nom+i)-expansion
W ′ of W .

Note that any K (S) that includes the hybrid logic features has semantic i-sentences and
satisfaction at i by letting the nominals extraction N and Nm be defined like for HFOL and
HPL . Moreover, by employing the institution theoretic approach to quantifiers through
signature extensions and model reducts, the presence of the nominals as entities of signa-
tures allows for quantifications over nominals.

Decompositions of K (I ) (I ordinary institution)
Let I be an ordinary institution, which we consider as a trivially stratified institution by
[[M]] = {∗} for each model M. For any K (I ) we always have a decomposition

S 0 K (I )
(Φ0,α0,β0)

oo
(Φ,α,β̃)

// ĨC

that generalises corresponding concrete decompositions of discussed in Sec. 12.3. For
instance if K (I ) is a hybridisation of I then

• (Φ0,α0,β0) is like in the decomposition of HPL ,

• Φ(Nom,Σ)=Σ, α(Nom,Σ) is the inclusion SenI
Σ⊆ SenK (I )

Σ, and β(Nom,Σ)((W,M),w)=
Mw.

Exercises
12.11. Prove the model amalgamation condition (∆-AMG) in the context of the presentation of
MFOL models as ∆-rigid models.

12.12. Develop the details of the proof of Thm. 12.10.

12.13. Limits and co-limits of Kripke models
If ModS

Σ has J-(co-)limits and β∆
Σ

lifts J-(co-)limits then the category of the ∆-rigid Kripke Σ-
models has J-(co-)limits.
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12.14. Let us consider a modalised institution K (S) with a ∆-rigid Kripke model functor ModK (S).
Let χ : Σ→ Σ′ be a signature morphism such that (1) χ is quasi-representable in S , (2) Mod∆(Φ∆χ)
is faithful, and (3) the naturality diagram below is a model amalgamation square

Mod∆(Φ∆Σ) ModS
Σ

β∆
Σ

oo

Mod∆(Φ∆Σ′)

Mod∆(Φ∆χ)

OO

ModS
Σ′

β∆

Σ′

oo

ModS (χ)

OO

Then χ is quasi-representable in K (S) too. Consequently, in MFOL any signature extension with a
block of rigid variables is quasi-representable. This gives an important example of quasi-representability
that falls beyond representability.

12.15. Consider MPL in the role of the base institution S . Unfold the details of the modalisation
K (MPL), denoted M 2PL , where the Kripke models are considered unconstrained.

12.16. [97] Develop a modalisation of the institution PA of partial algebra that has ∆-rigid Kripke
models in which the partial algebras share the interpretations of rigid sorts, rigid total functions,
and of the domains of rigid partial functions.

12.17. Extend the definition of semantic possibility / necessity of Sec. 12.2 to the case of polyadic
modalities.

12.18. Extend the single sorted variant OFOL1 of OFOL with modalities as follows:

• for any relation symbol π ∈ Pn+1 of arity n+1, if ρ1, . . . ,ρn are sentences then ⟨π⟩(ρ1, . . . ,ρn)
is a sentence too; and

• M |=w ⟨π⟩(ρ1, . . . ,ρn) =
∨
(w,w1,...,wn)∈(MX )π

∧
1≤i≤n(M |=wi ρi).

(Here MX denotes the X-power of M in the category of FOL (F,P)-models.)

Let us denote this extension by MOFOL . Show that MOFOL can be presented as a modalised
institution K (S) where ModK (S) is a constrained Kripke model functor which however cannot be
presented as a ∆-rigid one.

12.19. Extend the construction of Ex. 12.15 to hybrid features by letting the base institution S be
HPL and K (HPL) be its hybridisation where the Kripke models (W,M) are constrained by the
requirement that the Mws share the same interpretation of the (base) nominals. Let us denote this
stratified institution by H 2PL .

12.5 Ultraproducts in stratified institutions
In Chap. 6 we developed the method of ultraproducts in an institution-independent setting.
In this section we extend this to stratified institutions. While some of the developments in
this section can be reduced to the ultraproducts in S ♯, some of them cannot and have to
be done directly in the stratified context.

1. First, we discuss how filtered products of models can be obtained in concrete stratified
institutions. There are several ways to do this, depending on the actual context. More-
over, we will see how filtered products in S give corresponding filtered products in S ♯.



12.5. Ultraproducts in stratified institutions 383

This is useful for understanding the method of ultraproducts in stratified institutions
in relation to the method of ultraproducts in ordinary institutions.

2. Then we extend the concepts of preservation by filtered products / factors from or-
dinary to stratified institutions. This allows for a formulation of Łoś ultraproducts
theorem in abstract stratified institutions.

3. Concrete versions of Łoś theorem can be obtained by applying iteratively preserva-
tion results corresponding to particular connectives, just as we did in Chap. 6 for
ordinary institutions. We develop such preservation results for Boolean connectives,
quantifications, modalities, and hybrid features, by following their stratified institu-
tion semantics of Sec. 12.2.

4. The ‘induction’ base for obtaining Łoś theorems in concrete stratified institutions
cannot be considered in terms of basic sentences like we did for ordinary institution (in
Chap. 6). The reason is that the atomic sentences in the common concrete stratified
institutions do not enjoy the injectivity property that underlies the concept of basic
sentence. Therefore, here we address this problem differently by transferring from
bases of stratified institutions.

Filtered products of models in stratified institutions

In principle, filtered products of models in stratified institutions are no different from
those of ordinary institutions as they are just categorical filtered products. However, in
concrete situations, models of stratified institutions are often significantly more complex
structures than those of common ordinary institutions. For example an important class
of stratified institution have various kinds of Kripke structures as their models. For such
situations it is helpful to have some general support. This may come from two directions:

1. From the decomposition technique. We establish filtered products at the level of the
components of a decomposition of a stratified institution S and then aggregate them as
filtered products in S . For the aggregation part we can have a general result. Although
this method applies well to Kripke semantics-based concrete stratified institutions,
its applicability goes beyond that as it does not commit to any specific form of a
decomposition.

2. From the K (S) construction. This applies strictly to Kripke semantics based stratified
institutions, and it may work in situations when the decomposition technique cannot
be applied. The two methods overlap when K (S) is based on an ordinary institution S
rather than a properly stratified institution, since in the latter case finding a decompo-
sition for K (S) is problematic. In the K (S) framework we can have a general but yet
quite explicit construction of filtered products in ModK (S)

Σ when we assume sharing
constraints through the concept of ∆-rigidity.

Exercises 12.22 and 12.24 are about general results supporting the applicability of these
two methods in concrete stratified institutions.
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Transfering filtered products from a stratified institution S to its local institution S ♯.
In general the existence of filtered products in stratified institutions S transfer to its local
institution S ♯, which allows for a reuse of parts of the method of ultraproducts of Chap. 6
to the stratified institution context.

Given a class F of filters, a stratified institution has (concrete) F -products when
for each signature Σ, ModΣ has F -products (and [[ ]]Σ : ModΣ→ Set preserves them). In
particular situations it is common for the F -products to be concrete.

The following result gives a representation of filtered products in the local institution
S ♯ from the filtered products in the stratified institution S .

Proposition 12.12. Let F be a filter. If a stratified institution S has concrete F-products,
then S ♯ has F-products, which for any family of S ♯ Σ-models {(Mi,wi) |Mi ∈ |ModΣ|,wi ∈
[[Mi]]Σ, i ∈ I} may be defined by

{(µJ ,wJ) : (MJ ,wJ)→ (MF , [[µI ]]wI) | J ∈ F}, (12.9)

where {µJ : MJ→MF | J ∈ F} is an F-product in ModΣ and wJ is the unique element of
[[MJ ]] such that for each i ∈ J, [[pJ,i]]wJ = wi.

Proof. Let (Mi)i∈I be a family in |ModΣ| and F be a filter over I. We first show that for
each J ∈ F ,

{(pJ,i,wJ) : (MJ ,wJ)→ (Mi,wi) | i ∈ J} (12.10)

is a direct product in Mod♯
Σ. By the definition of wJ , each (pJ,i,wJ) is well defined, i.e.

[[pJ,i]]wJ = wi.
For any family of S ♯ Σ-models {( fi,v) : (N,v)→ (Mi,wi) | i ∈ J}, by the universal

property of the direct products in Mod(Σ) there exists an unique f : N → MJ such that
for each i ∈ J, f ; pJ,i = fi.

(MJ ,wJ)

(pJ,i,wJ)

��

(N,v)
( f ,v)
oo

( fi,v)xx

(Mi,wi)

Hence, for each i ∈ J, [[pJ,i]]([[ f ]]v) = [[ fi]]v = wi. Since [[pJ,i]] are product projections, it
follows that [[ f ]]v = wJ . This completes the proof of the universal property of the direct
product (12.10).

It follows immediately that for each J′ ⊂ J ∈ F , (pJ⊇J′ ,wJ) : (MJ ,wJ)→ (MJ′ ,wJ′)
is a corresponding canonical projection in Mod♯

Σ. Let us show that (12.9) is a co-limit in
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Mod♯
Σ.

(MJ ,wJ)
(pJ⊇J′ ,wJ)

vv

(µJ ,wJ)

��

(νJ ,wJ)

��

(MJ′ ,wJ′)
(µJ′ ,wJ′ )

//

(νJ′ ,wJ′ )
11

(MF , [[µI ]]wI)

( f ,[[µI ]]wI) ''

(N,v)

First, note that each (µJ ,wJ) is well defined, i.e. that [[µJ ]]wJ = [[µI ]]wI , which is given by
the following calculation:

[[µI ]]wI = [[pI⊃J ;µJ ]]wI = [[µJ ]]([[pI⊃J ]]wI) = [[µJ ]]wJ .

For establishing the universal property of the co-cone (µJ ,wJ)J∈F let us consider another
co-cone (νJ ,wJ)J∈F over (pJ⊃J′ ,wJ)J⊃J′∈F . Let (N,v) denote it vertex. By the universal
property of (µJ)J∈F in ModΣ there exists an unique f : MF →N such that for each J ∈ F ,
µJ ; f = νJ . The argument is completed if we showed that [[ f ]]([[µI ]]wI) = v. This holds by
the following calculation:

[[ f ]]([[µI ]]wI) = [[µI ; f ]]wI = [[νI ]]wI = v.

□

Łoś theorem for stratified institutions
Sentences preserved by F -products / factors. We want to extend preservation con-
cepts of Chap. 6, that constitute the core concept of the method of ultraproducts, to the
more general setup of stratified institutions. Let Σ be a signature of a stratified institution
S , F be a filter over a set I and {µJ : MJ →MF | J ∈ F} be an F-product of a family of
(M j) j∈I of Σ-models. For any Σ sentence ρ we introduce the following notation:

Aµρ =
⋃
J∈F

[[µJ ]]
⋂
j∈J

[[pJ, j]]
−1[[M j,ρ]].

Let F be a class of filters and let ρ be a Σ-sentence. Then ρ

• is preserved by F -products when Aµρ⊆ [[MF ,ρ]], and

• is preserved by F -factors when [[MF ,ρ]]⊆ Aµρ,

for each filter F ∈ F over a set I and for each F-product {µJ : MJ →MF | J ∈ F} of a
family (M j) j∈I of Σ-models.

The preservation by F -products / factors in ordinary institutions as defined in Chap. 6
is an instance of the above definition when S is trivially stratified (i.e. each [[M]] is a
singleton set {∗}). The other way around, the following result shows that under some
conditions, stratified preservations by F -products / factors can be explained as ordinary
preservations.
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Proposition 12.13. For any stratified institution S with concrete F -products the follow-
ing are equivalent for any Σ-sentence ρ:

1. ρ is preserved by F -products / factors in S ; and

2. ρ is preserved by F -products / factors in S ♯.

Proof. In this proof we use the notations of Prop. 12.12. First note that since S has F -
products, by Prop. 12.12 S ♯ has F -products too. Moreover, by the assumption of preser-
vation of satisfaction by model isomorphisms, without any loss of generality, we may
consider only the F-products given by (12.9) of Prop. 12.12.

When the filtered products are concrete then ([[MF ]],Aµρ) represents an F-product
of ([[Mi]], [[Mi,ρ]])i∈I) in the category of the FOL Σ-models where Σ is a signature with
one sort and one unary relation symbol. This means that for each (wi ∈ [[Mi]])i∈I

[[µI ]]wI ∈ Aµρ if and only if there exists J ∈ F such that for each j ∈ J, w j ∈ [[M j,ρ]].

It follows that ρ is preserved by F-products / factors in S ♯ means Aµρ ⊆ [[MF ,ρ]] /
[[MF ,ρ]]⊆ Aµρ. □

The conceptual equivalence between stratified preservation in S and ordinary preser-
vation in S ♯ is explained by the fact that the flattening to S ♯ is structurally faithful to S .
This is not the case when considering the institution S∗ of the global satisfaction. Con-
sequently, we have a much weaker relationship between preservations in S and in S∗.
Nevertheless, this is still useful for establishing the compactness of S∗.

Proposition 12.14. In any stratified institution S with concrete F-products, if a sentence
ρ is preserved by F-products in S then it is preserved by F-products in S∗ too.

Proof. For {µJ : MJ→MF | J ∈ F} an F-product of a family (M j) j∈I of Σ-models let us
assume that J′ = { j ∈ I | [[M j,ρ]] = [[M j]]} ∈ F . It follows that

[[µJ′ ]]
⋂
j∈J′

[[pJ, j]]
−1[[M j,ρ]] = [[µJ′ ]]

⋂
j∈J′

[[pJ, j]]
−1[[M j]] = [[µJ′ ]][[MJ′ ]] = [[MF ]].

The latter two equalities hold because of the surjectivity of each [[pJ, j]] and of [[µJ′ ]] which
are both consequences of the concreteness hypothesis. It follows that Aµρ = [[MF ]]. Hence
[[MF ,ρ]] = [[MF ]] because the preservation hypothesis means Aµρ⊆ [[MF ,ρ]]. □

Compactness consequences. Arguably, compactness is the most important application
of Łoś theorem. In the case of the stratified institutions there is an obvious obstacle to
formulate compactness directly, which has to do with the stratified satisfaction relation
being ternary. The solution is to go to S ♯ and S∗. From these two, the compactness of S
can be appropriately defined as the compactness of S ♯. Nevertheless, the compactness of
the global institution S∗ is still interesting.

According to Cor. 6.21, any institution in which all its sentences are preserved by ul-
traproducts is m-compact. Hence from Propositions 12.14 and 12.13 we get the following
consequence.
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Corollary 12.15 (Compactness of stratified institutions). Let S be a stratified institution
with concrete ultraproducts such that each of its sentences are preserved by ultraproducts.
Then both S ♯ and S∗ are m-compact.

Preservation for Boolean connectives. Now we start to build a replica of the Łoś-style
Thm. 6.6 in stratified institutions. Besides preservation results for Boolean connectives
and quantifiers (like in Thm. 6.6), we will study also preservations of modalities and nom-
inal related sentences. Unlike the former connectives, the latter two require a conceptual
infrastructure that is possible only in stratified institutions.

The preservation results corresponding to Boolean connectives can be transfered
directly from ordinary institutions (the corresponding parts of Thm. 6.6) to stratified in-
stitutions as a consequence of the transfer of preservation properties given by Prop. 12.13.

Corollary 12.16. In any stratified institution S with concrete F -products

1. both the sentences preserved by F -products and those preserved by F -factors are
closed under conjunctions;

2. if ρ is preserved by F -products then any semantic negation ¬ρ of ρ is preserved by
F -factors; and

3. if ρ is preserved by F -factors and F contains only ultrafilters then ¬ρ is preserved
by F -products.

Proof. By Fact 12.6, the conjunction and negation coincide in S and S ♯. By Prop. 12.13,
preservation by F -products / factors also coincides in S and S ♯. The conclusions for 1.,
2., 3. follow because, by Thm. 6.6, the considered preservation properties hold in general
in any ordinary institution and in particular in S ♯. □

Some of the conclusions of Cor. 12.16 may be obtained under the slightly milder
condition that does not require the F -products to be concrete. However this generality is
largely meaningless in the applications because the F -products are commonly concrete.

Preservation for quantifiers. The invariance under quantifications of the preservation
by F-products / factors parallels the corresponding parts of Thm. 6.6 but is more intricate
that in the case of the Boolean connectives. Preservation by F-products requires some
technical conditions that follows from the concreteness assumption. In this situation the
best solution is to follow the route of Cor. 12.16, which in this case requires a transfer
result about model reducts (Cor. 12.17 below). The case of preservation by F-factors is
different as it is not related to the concreteness assumption, which means that a presump-
tive invention of F-products result of the kind of Cor. 12.17 is not needed.

Corollary 12.17. For any signature morphism χ in any stratified institution S with con-
crete F-products, if Modχ preserves F-products in S then Mod♯

χ preserves F-products
in S ♯.
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Proof. In this proof we will skip some of the details as these are rather straightforward.
Indeed, we will focus on the important ideas. Let χ : Σ→ Σ′ be signature morphism such
that Modχ preserves F-products and let

{(µ′J ,wJ) : (M′J ,wJ)→ (M′F , [[µ
′
I ]]wI) | J ∈ F}

be an F-product in Mod♯
Σ′ like in Prop. 12.12. We denote (Modχ)M′i = Mi, (Modχ)M′J =

MJ , (Modχ)M′F = MF , and (Modχ)µ′J = µJ . We have to show that

{(µJ , [[M′J ]]χwJ) : (MJ , [[M′J ]]χwJ)→ (MF , [[M′F ]]χ([[µ
′
I ]]wI)) | J ∈ F} (12.11)

is an F-product in Mod♯(Σ).

• First we establish that for each J ∈ F

{((Modχ)pJ,i, [[M′J ]]χwJ) : (MJ , [[M′J ]]χwJ)→ (Mi, [[M′i ]]χwi) | i ∈ J} (12.12)

is a direct product. This follows by checking directly the universal property of the
direct product by using the fact that ((Modχ)pJ,i)i∈J is direct product plus calculations
on the internal states also using that (Modχ) and [[ ]]Σ preserves direct products.

• Then it follows immediately that {((Modχ)pJ⊇J′ , [[M′J ]]χwJ) | J′ ⊆ J ∈ F} is a diagram
of projections.

• Finally, we establish that (12.11) is a co-limit from the co-limit property of µ in a
similar way to how we established that (12.12) is a direct product.

□

Proposition 12.18. If F is closed under reductions, Modχ preserves F -products, and ρ

is preserved by F -products, then any semantic existential χ-quantification (∃χ)ρ of ρ is
preserved by F -products.

Proof. • By Prop. 12.13 ρ is preserved by F -products in S ♯.

• By Cor. 12.17 it follows that Mod♯
χ preserves F -products.

• From Thm. 6.6 we know that in general, in any (ordinary) institution, from such con-
ditions it follows that (∃χ)ρ is preserved by F -products. We apply this conclusion
within S ♯.

• By Fact 12.6 (existential quantification coincide in S and in S ♯) and by Prop. 12.13 it
now follows that (∃χ)ρ is preserved by F -products in S .

□

Proposition 12.19. In any stratified institution S with F -products, if F is closed under
reductions, Modχ invents F -products, and ρ′ is preserved by F -factors then any semantic
existential χ-quantification (∃χ)ρ′ is preserved by F -factors.
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Proof. Let χ : Σ→ Σ′ be signature morphism, let F ∈F , and let {µJ : MJ→MF | J ∈F}
be an F-product of a family (Mi)i∈I of Σ-models. The invention of F -products hypothesis
gives for each χ-expansion M′ of MF a J ∈ F , and an F |J-product {µ′J′ : M′J′ → M′ |
J′ ∈ F |J} of a family (M′j) j∈J of χ-expansions of (M j) j∈J such that (Modχ)p′ = p and
(Modχ)µ′ = µ. Under these notations we have that

1 [[M′J′ ]]χ[[p
′
J′, j]]

−1[[M′j,ρ
′]]⊆ [[pJ′, j]]

−1[[M′j]]χ[[M
′
j,ρ
′]] [[ ]]χ natural

2 [[M′J′ ]]χ
⋂

j∈J′ [[p
′
J′, j]]

−1[[M′j,ρ
′]]⊆

⋂
j∈J′ [[M

′
j]]χ[[p

′
J′, j]]

−1[[M′j,ρ
′]] f ∩i Xi ⊆ ∩i f Xi

3 [[M j,(∃χ)ρ′]] =
⋃

N′↾χ=M j
[[N′]]χ[[N′,ρ′]] definition of semantic existential quantification

4 [[M′j]]χ[[M
′
j,ρ
′]]⊆ [[M j,(∃χ)ρ′]] 3

5 [[M′]]χ ◦ [[µ′J′ ]] = [[µJ′ ]]◦ [[M′J′ ]]χ [[ ]]χ natural

6 [[M′]]χAµ′(ρ
′)⊆ Aµ((∃χ)ρ′) 5, 2, 1, 4

7 [[M′,ρ′]]⊆ Aµ′ρ
′

ρ′ preserved by F-factors

8 [[MF ,(∃χ)ρ′]] =
⋃

M′↾χ=MF
[[M′]]χ[[M′,ρ′]] definition of semantic existential quantification

9 [[MF ,(∃χ)ρ′]]⊆ Aµ((∃χ)ρ′) 8, 7, 6.

□

Preservation for modalities. The following result about preservation of semantic pos-
sibility is formulated for binary possibility. The sole reason for that is simplicity of pre-
sentation, as it holds in the more general form for polyadic possibility, the proof in the
general case being essentially the same as for the binary case.

Proposition 12.20. Let S be a stratified institution endowed with a binary frame extrac-
tion (L, /0,Fr) : ModS ⇒ ModREL1

. Assume that S has F-products for a filter F over a
set I. Let ρ be a Σ-sentence and 3ρ a semantic possibility of ρ.

1. If FrΣ preserves direct products and ρ is preserved by F-products then 3ρ is also
preserved by F-products.

2. If FrΣ preserves F-products and ρ is preserved by F-factors then 3ρ is also preserved
by F-factors.

Proof. We consider an F-product {µJ : MJ → MF | J ∈ F} for a family (Mi)i∈I of Σ-
models.

1.

1 Aµρ⊆ [[MF ,ρ]] ρ preserved by F-products

2 [[µJ ]]
⋂

j∈J [[pJ, j]]
−1[[M j,ρ]]⊆ [[MF ,ρ]] 1

3
⋂

j∈J [[pJ, j]]
−1(FrΣM j)

−1
λ

B j = (FrΣMJ)
−1
λ

⋂
j∈J [[pJ, j]]

−1B j FrΣ preserves direct products

4 [[µJ ]](FrΣMJ)
−1
λ

B⊆ (FrΣMF)
−1
λ
[[µJ ]]B [[µJ ]] : (FrΣMJ)λ→ (FrΣMF )λ homomorphism
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5 [[M j,3ρ]] = (FrΣM j)
−1
λ
[[M j,ρ]] definition of semantic possibility

6 [[MF ,3ρ]] = (FrΣMF)
−1
λ
[[MF ,ρ]] definition of semantic possibility

7 Aµ(3ρ)⊆ [[MF ,3ρ]] 5, 3, 4, 2, 6.

2. Let (BJ ⊆ [[MJ ]])J∈F be a family of sets such that for all J ⊇ J′ ∈ F we have that
[[pJ⊇J′ ]]BJ ⊆ BJ′ . Then

8 (FrΣMF)
−1
λ

⋃
J∈F [[µJ ]]BJ ⊆

⋃
J∈F [[µJ ]](FrΣMJ)

−1
λ

BJ FrΣ preserves F-products

9 (FrΣMF)
−1
λ
(Aµρ)⊆ Aµ(3ρ) 5, 3, 8 for BJ =

⋂
j∈J [[pJ, j]]

−1[[M j,ρ]]

10 [[MF ,ρ]]⊆ Aµρ ρ preserved by F-factors

11 [[MF ,3ρ]]⊆ Aµ(3ρ) 6, 10, 9.

□

Preservation for hybrid features.

Proposition 12.21. Let S be a stratified institution endowed with a nominals extraction
N,Nm. Assume that S has F-products for a filter F over a set I. For i ∈ NΣ we let ι be a
semantic i-sentence and @iρ a semantic satisfaction of a sentence ρ at i.

1. If NmΣ preserves direct products then ι is preserved by F-products.

2. ι is preserved by F-factors.

3. If ρ is preserved by F-products then @iρ is preserved by F-products too.

4. If NmΣ preserves F-products and ρ is preserved by F-factors then @iρ is preserved
by F-factors too.

Proof. We consider {µJ : MJ →MF | J ∈ F} an F-product a family (M j) j∈I in ModΣ.

1. 1
⋂

j∈J [[pJ, j]]
−1(NmΣM j)i = (NmΣMJ)i NmΣ preserves direct products

2 [[µJ ]](NmΣMJ)i = (NmΣMF)i [[µJ ]] : NmΣM j → NmΣMF homomorphism

3 [[µJ ]]
⋂

j∈J [[pJ, j]]
−1(NmΣM j)i = (NmΣMF)i 1, 2

4 [[M j, ι]] = {(NmΣM j)i} definition of semantic nominals

5 [[MF , ι]] = {(NmΣMF)i} definition of semantic nominals

6 Aµι = [[MF , ι]] 3, 4, 5.

2. 7 (NmΣMI)i ∈
⋂

j∈I [[pI, j]]
−1(NmΣM j)i [[pI, j]] : NmΣMI → NmΣM j homomorphism

8 [[MF , ι]]⊆ Aµι 7, 2, 4, 5.

3. We may assume that (NmΣMF)i ̸∈ [[MF ,ρ]] as the other case is trivial. Then

1 Aµρ⊆ [[MF ,ρ]] ρ preserved by F-factors
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2 (NmΣMF)i ̸∈ Aµρ 1, (NmΣMF )i ̸∈ [[MF ,ρ]]

3 (NmΣMF)i ̸∈ [[µJ ]]
⋂

j∈J [[pJ, j]]
−1[[M j,ρ]] 2

4 [[µJ ]](NmΣMJ)i = (NmΣMF)i [[µJ ]] : NmΣMJ → NmΣMF homomorphism

5 (NmΣMJ)i ̸∈
⋂

j∈J [[pJ, j]]
−1[[M j,ρ]] 2, 4

6 ∃ j ∈ J (NmΣM j)i = [[pJ, j]](NmΣM j)i ̸∈ [[M j,ρ]] 5

7 ∃ j ∈ J [[M j,@iρ]] = /0 6, definition of [[M j,@iρ]]

8 [[µJ ]]
⋂

j∈J [[pJ, j]]
−1[[M j,@iρ]] = /0 7

9 Aµ(@iρ) = /0 8

10 Aµ(@iρ)⊆ [[MF ,@iρ]] 9.

4. We have to prove that [[MF ,@iρ]]⊆ Aµ(@iρ). We may assume (NmΣMF)i ∈ [[MF ,ρ]]
since the other case leads to a trivial situation. It follows that:

1 [[MF ,@iρ]] = [[MF ]] definition and assumption

2 [[MF ,ρ]]⊆ Aµρ ρ preserved by F-products

3 (NmΣMF)i ∈ Aµρ 1, 2

4 ∃J1 ∈ F (NmΣMF)i ∈ [[µJ1 ]]
⋂

j∈J1
[[pJ1, j]]

−1[[M j,ρ]] 3

5 ∃J2 (NmΣMF)i ∈ [[µJ2 ]](NmΣMJ2)i NmΣ preserves F-product µ

6 ∃J′ ⊆ J1∩ J2 (NmΣMJ′)i ∈
⋂

j∈J′ [[pJ′, j]]
−1[[M j,ρ]] 4, 5, [[µJ ]] : NmΣM j → NmΣMF

directed co-limit
7 ∀ j ∈ J′ (NmΣM j)i ∈ [[M j,ρ]] 6, [[pJ′, j]](NmΣMJ′ )i = (NmΣMF )i

8 ∀ j ∈ J′ [[M j@iρ]] = [[M j]] 7, definition of [[M j@iρ]]

9
⋂

j∈J′ [[pJ′, j]]
−1[[M j,@iρ]] = [[MJ′ ]] 8

10 [[µJ′ ]]
⋂

j∈J′ [[pJ′, j]]
−1[[M j,@iρ]] = [[MJ′ ]] 9, [[µJ′ ]] surjective

11 [[MF @iρ]] = Aµ(@iρ) 1, 10.

□

The base case. The preservation results of Cor. 12.16 and of Prop.s 12.19–12.21 may be
applied for lifting preservation properties from simpler to more complex sentences. They
can be used at the induction step when establishing preservation properties by induction
on the structure of the sentences. In the concrete situations the base case of such inductive
processes may correspond to atomic (in the sense of uncompounded) sentences, that in
the case of ordinary institutions are covered by the abstract concept of basic sentences
(see Thm. 6.6). Unfortunately this does not apply in the case of stratified institutions, as
in most concrete situations the models of stratified institutions (such as various kinds of
Kripke models) do not support properly the concept of basic sentence. Moreover, in the
modalised institutions K (S) the ‘atomic’ sentences are uncompounded sentences only
from the perspective of K (S), as in S they may be compounded. A general solution to
this problem is to borrow the corresponding preservation property from institutions where
it can be established by other general means such Thm. 6.6.
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Lemma 12.22. Let (Φ,α,β) : B ′→B be an institution morphism such that each βΣ pre-
serves F-products. Then for any ΦΣ-sentence ρ that is preserved by F-products / factors,
the Σ-sentence αΣρ is preserved by F-products / factors too.

Proof. Let us assume an F-product {µ′J : M′J → M′F | J ∈ F} of a family (M′i)i∈I of Σ-
models for a B ′-signature Σ. Then

1 {βΣµ′J | J ∈ F} is F-product βΣ preserves F-products

2 for J ∈ F : ∀i ∈ J (M′i |=Σ αΣρ) = (βΣM′i |=ΦΣ ρ) Satisfaction Condition of (Φ,α,β)

3 (M′F |=Σ αΣρ) = (βΣM′F |=ΦΣ ρ) Satisfaction Condition of (Φ,α,β)

If ρ is preserved by F-products then

4 (∃J ∈ F ∀i ∈ J βΣM′i |=ΦΣ ρ) implies βΣM′F |=ΦΣ ρ 1

5 (∃J ∈ F ∀i ∈ J M′i |=Σ αΣρ) implies M′F |=Σ ρ 4, 2, 3.

Hence αΣρ is preserved by F-products. If ρ is preserved by F-factors then

6 βΣM′F |=ΦΣ ρ implies (∃J ∈ F ∀i ∈ J M′i |=ΦΣ ρ) 1

7 M′F |= αΣρ implies (∃J ∈ F ∀i ∈ J M′i |=Σ αΣρ) 6, 2, 3.

Hence αΣρ is preserved by F-factors too. □

The way to apply Lemma 12.22 is for a base (Φ,α,β) : S ♯→ B for a stratified in-
stitution S . In the context of a decomposition of S with such a base under mild conditions
we have that each βΣ preserves F-products (see Exercise 12.22). Then by Prop. 12.13 we
can further transfer the respective preservation properties to S itself.

On concrete applications. The collected conditions underlying the preservation results
of Cor. 12.16 and of Prop.s 12.19–12.21 amount to the following maximal list:

1. S has concrete F -products;

2. Modχ preserves F -products;

3. Modχ invents F -products;

4. FrΣ, NmΣ preserve F -products.

There are three ways to establish them in concrete situations: directly or by using general
results at the level of K (S) or at the level of decomposed stratified institutions. Exercises
12.24, 12.22, 12.28 provide such general results. The direct way is necessary when neither
of the latter two methods are applicable.
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Exercises
12.20. SAUT has all filtered products of models, and they are concrete.

12.21. OFOL has all filtered products of models, and they are concrete.

12.22. Filtered products by decomposition
Consider a decomposition of a stratified institution like in Section 12.3.

1. [85] If ModB
Σ has small products then ModB̃

Σ has small products too.

2. [85] If for each signature Σ, ModB
Σ has small products, ModC(ΦΣ) has small products that are

preserved by the sub-category inclusion ModC(ΦΣ)→ModB̃ (ΦΣ), and [[ ]]Φ0Σ creates small
products, then S has concrete small products of models.

12.23. By the decomposition technique, develop preservation / invention of filtered products by
Modχ.

12.24. Filtered products in K (S)
Consider that ModK (S) ⊆ KModS is the sub-functor of the ∆-rigid models for some ∆. We assume
that for each signature Σ the category Mod∆

Σ has small products and directed co-limits of diagrams
of projections and β∆

Σ
lifts these. Then K (S) has concrete filtered products of models. Moreover, if

a signature morphism χ preserves F-products in S then it preserves them in K (S) too.

12.25. Show that in MFOL we can establish concrete filtered products through either the results
of Exercises 12.22 or 12.24.

12.26. Develop all details of the proof of Cor. 12.17.

12.27. Which of the conclusions of Cor. 12.16 can be obtained without the assumption that the
F -products are concrete?

12.28. Invention of filtered products in K (S)
Consider a sub-functor ModK (S)⊆KModS of ∆-rigid Kripke models. A signature morphism χ : Σ→
Σ′ is ∆-exact when the square of the naturality of β∆ for χ (as shown below) is a pullback.

Σ

χ

��

Mod∆(Φ∆Σ) ModΣ
β∆

Σ
oo

Σ′ Mod∆(Φ∆Σ′)

Mod(Φ∆χ)

OO

ModΣ′
β∆

Σ′

oo

Mod(χ)

OO

Then for any class F of filters closed under reduction, the property that χ invents strongly (and
completely) F -products transfers from S to K (S). Furthermore, note that Prop. 6.11 gives sufficient
quite effective conditions for inventions of F -products applicable at the level of the base institution.

12.29. Preservation in MFOL , HFOL
Show that in MFOL each atomic sentence is preserved by F-products and by F-factors. Establish
that in MFOL each sentence is preserved by ultraproducts. Extend this to HFOL . Consequently,
MFOL and HFOL are m-compact and compact.

12.30. Develop a direct proof of Prop. 12.18 with minimal technical assumptions replacing the
concreteness assumption.
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Notes. The theory of stratified institutions started as an axiomatic institution-theoretic study of
modal logics and Kripke semantics. Stratified institutions have been introduced in [99, 5] and their
definition slightly upgraded in [82]. The basic modal logic examples together with a form of OFOL
and with the abstract connectives example have been discussed in [5], while in [82] more sophis-
ticated modal logic examples have been introduced. The internal logic of stratified institutions, in-
cluding institution-independent semantics of modalities and of hybrid features has been developed
in [82]. The decomposition technique was introduced in [88] where it had been used for developing
results on model amalgamation and on existence of diagrams in stratified institutions and in [85] for
developing a study of quasi-varieties in stratified institutions. The method to ‘modalise’ ordinary
institutions had been introduced in [100] and has been later on refined in [170, 81, 97] etc. In this
chapter the ‘modalisation’ has been extended to stratified bases. The extension of the method of
ultraproducts to stratified institutions was developed in [82], being essentially based on the earlier
development of ultraproducts in modalised institutions from [100].

In [5] a stratified institution-theoretic approach to Tarski’s Elementary Chain theorem had
been developed for abstract connectives (CON ). Other model theory works with stratified institu-
tions include [4, 138].

In [97] the authors had extended van Bentham’s translation of modal logic into FOL [238] in
its hybrid variant of [30] to a general encoding of ‘hybridised institutions’ in FOL . This was later
on taken as foundations for the institution-independent specification and verification language H
[83].

In [86] the 3/2-institutions of [84] are represented as stratified institutions. The theory of
3/2-institutions is an extension of ordinary institution theory that supports implicit partiality of the
signature morphisms and which has been originally motivated by the institution theoretic modelling
of the conceptual blending from the works of Fauconnier and Turner [106] on the one hand, and
of Goguen [121, 131] on the other hand. This general representation provides a class of examples
of non-strict stratification and consequently of proper stratified model amalgamation. In general, it
would be interesting to apply the general stratified institution developments to types of examples
that have not been explored yet in an general axiomatic manner.



Chapter 13

Many-valued Truth Institutions

So far, the satisfaction relation between models and sentences has been considered to be
binary, M |= ρ either holds true or it doesn’t. In this chapter we explore a generalisation of
ordinary institution theory where M |= ρ is not necessarily binary. We will see how such a
generalisation can be achieved and that basic concepts such as semantic consequence, the
Galois connection between syntax and semantics, internal logic, but also more advanced
concepts such as filtered products, preservation, interpolation, definability, logic transla-
tion, etc. do “survive” it but in a subtler form. From a pure theoretical standpoint (there are
also more practical motivations that we skip here) this generalisation brings further clar-
ifications to the complex network of causal relationships underlying model theory. This
has to do with binary truth being a collapsed form of truth where many things happen
somehow “by accident”. Much institution-independent model theory may be developed
in the many-valued truth fashion, but in this chapter we will only give the reader a taste
of what this means. The interested reader may embark himself in the endeavour of further
reshaping institution-independent model theory along the lines suggested in this chapter.
Now we do the following things.

1. We introduce the many-valued truth generalisation of the concept of institution. Be-
sides the definition, which is quite obvious, and a list of examples, we also study the
concept of ‘graded semantic consequence’ which is the many-valued concept of se-
mantic consequence. Arguably, this is the core concept of the chapter, in the same way
semantic consequence is the core concept of binary model theory.

2. Next, we see what many-valued theories mean, which we call by the name of ‘fuzzy
theories’. A good understanding of this involves the study of closure of fuzzy theories
and of concepts of consistency and compactness that are associated to fuzzy theories.
Already at the level of the closure operators we have a diversity that is missing in bi-
nary truth institutions where the closure determined by the Galois connection between
the syntax and the semantics is singular. This diversity justifies the abstract / axiomatic
approach to theory closures in many-valued truth institutions.

3. The important issue of the semantics of the Boolean and the quantification connec-
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tives is studied both from the consequence and the model theoretic perspectives. We
establish conditions on the space of the truth values such that the model-theoretic con-
nectives correspond to the consequence-theoretic ones for the graded semantic conse-
quence. Besides connectives we will also see how the concept of basic sets of sentences
gets a proper many-valued truth version.

4. A section is dedicated to the many-valued truth method of ultraproducts. Because of
the non-collapsed nature of many-valued truth, the development of results of Łoś the-
orem kind in this context is more difficult than in the binary case. The scope of the
results is also narrower. However, they are still powerful enough for supporting com-
pactness properties.

5. Interpolation is the next and the last topic of mainstream institution-independent model
theory that we study in the many-valued truth context. Here we do only definitions, ex-
amples, and establish its expected general connections to Beth definability and Robin-
son consistency, that we are already familiar with from Chapters 9 and 10. Of course,
this is much less than the developments in the respective chapters. The main reason
for this is that the theory of interpolation for the graded semantic consequence is in its
infancy at the moment of writing this second edition of the book. Already the many-
valued concept of interpolation is much more subtle than its binary instance, and the
same is true for definability and Robinson consistency. Consequently, basic general
causality relationships between these properties, in the many-valued context involve
a much higher mathematical sophistication than in the binary case. But the develop-
ments in this section constitute a solid basis for a more comprehensive general theory
of interpolation for the graded semantic consequence.

6. The final section of this chapter is dedicated to translation structures. Like in the binary
case, we consider these at two different levels:

• The ‘internal’ translations, where we define and study general categories of mor-
phisms of fuzzy theories, together with compositionality properties of the kind we
studied in Sections 4.2 and 4.3. These are motivated by computing science appli-
cations, especially in the area of the aggregation of programming / specification
modules.

• The ‘external’ translations, where we extend the concept of comorphism as the
fundamental mathematical structure for doing logic-by-translation, from the binary
to many-valued truth institutions. Many-valued truth comorphisms include also the
capability to translate between institutions that are based on different spaces of truth
values.

Sections 13.1, 13.2, 13.3 and 13.6 require only knowledge of some material from the first
part of the book (until Chap. 5 included). Sec. 13.4 is related to Chap. 6 while Sec. 13.5
to Chap. 9, although both sections are relatively self-contained.
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13.1 L-institutions
We begin this section with the introduction of order-theoretic structures necessary to
structure the spaces of truth values. Then we come up with the definition of L-institutions,
which are the many-valued generalisation of the ordinary concept of institution, discuss
concrete examples, and introduce the concept of graded semantic consequence. Finally,
we prove its fundamental consequence-theoretic properties that parallel those of ordinary
/ binary semantic consequence.

Order-theoretic structures for many-valued truth
The extension of the concept of institution from binary to many-valued truth is only about
truth values. There are several structural levels for the space of truth values. The most
primitive level is to consider a plain set of truth values, either in general or in some
particular form. At higher levels we may consider various order-theoretic structures. Tra-
ditionally, the binary situation is treated as a Boolean algebra in order to support in a
classical way the semantics of the common logical connectives such as ∧,∨,¬, etc. The
many-valued approach treats the structure of truth values rather axiomatically, so we can
consider order-theoretic structures of various degrees of complexity. At the end, the most
constrained such structure is the binary Boolean algebra.

Lattices. Lattices in various forms play an important role for structuring truth values.
Recall that a completely distributive lattice is a complete lattice in which arbitrary joins
distribute over arbitrary meets. Residuated lattices have already been discussed to a lim-
ited extent in Sec. 3.2 in the context of the MVL♯ example. Here, let us recall it once
again. A residuated lattice L = (L,≤,∗,⇒) is a bounded lattice (with ≤ denoting the
underlying partial order that has infimum (meets) ∧, supremum (joins) ∨, greatest 1 and
lowest 0 elements) and which comes equipped with an additional commutative and asso-
ciative binary operation ∗ which has 1 as identity and such that for all elements x, y and
z

– (x∗ y)≤ (x∗ z) if y≤ z, and

– there exists an element x⇒ z such that y≤ (x⇒ z) if and only if y∗ x≤ z.

The operation ∗ is called the residual conjunction while⇒ is called residual implication.
The following relations are known to hold in any residuated lattice:

(x⇒ x) = 1 (13.1)

x′ ≤ x implies (x⇒ y)≤ (x′⇒ y). (13.2)∧
i xi ≤

∧
i yi when xi ≤ yi for each i ∈ I. (13.3)∧

i(x⇒ yi) = (x⇒
∧

i yi) (13.4)

(x⇒ y)∗ (y⇒ z) ≤ (x⇒ z). (13.5)
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(
∨

i xi)⇒ y =
∧

i(xi⇒ y). (13.6)

(0⇒ x) = 1. (13.7)

(1⇒ x) = x. (13.8)

In addition, the following relations hold in any Heyting algebra (which is a residuated
lattice with ∗ being ∧):(

(x∧ y)⇒ z
)
=

(
x⇒ (y⇒ z)

)
. (13.9)

x∧ (x⇒ 0) = 0. (13.10)

Furthermore, the following relation holds in any Boolean algebra:

x⇒ (y∨ z) = (x⇒ y)∨ (x⇒ z). (13.11)

Examples of residuated lattices. There are some examples of residuated lattices that
are really famous in the literature. They are famous because they are invoked and used a
lot.

1. One of them is the class of Łukasiewicz lattices. We already presented them in Sec. 3.2
(for the MVL♯ example).

2. Another example is the Goguen / product residuated lattice on the interval [0,1]. The
residual conjunction x ∗ y is defined as the numerical product x · y. Then (x⇒ y) = 1
when x≤ y and (x⇒ y) = y/x otherwise.

3. The Gödel residuated lattice on [0,1] is a Heyting algebra, where (x⇒ y) = 1 when
x≤ y and (x⇒ y) = y otherwise.

Homomorphisms of residuated lattices. Sometimes we may change or translate the
space of the truth values. This is achieved through adequate concepts of homomorphisms
between the respective structures of truth values. As residuated lattices are the most
prominent such structures, we discuss homomorphisms of residuated lattices. The best
way to define it is to rely on residuated lattices being varieties of one-sorted (univer-
sal) algebras. Indeed, we can express the axioms of residuated lattices as equations (do
Ex. 13.2). Then a homomorphism of residuated lattices h : L → L ′ is just a function
h : L→ L′ that preserves the interpretations of 0,1,∧,∨,∗,⇒.

Finiteness and compactness. In a partially ordered set (L,≤) an element x is called
finite if for every directed subset D of L, if D has a (join) supremum

∨
D and x ≤

∨
D

then x ≤ d for some d ∈ D. If the lattice (L,≤) is complete, then x is compact when
x ≤

∨
j∈J x j implies that x ≤ x j1 ∨ . . .∨ x jk for some finite subset {x1, . . . ,xk} ⊆ J; when

always k = 1, x is called completely join-prime. (L,≤) is compact when all its elements
are compact. Any finite partially ordered set is trivially compact. The totally ordered set
{0}∪{ 1

n | n ∈ ω} is an example of an infinite compact partial order; it is also a complete
Heyting algebra.
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Continuity. In any complete lattice L a function f : L→ L is meet-continuous when
for any non-empty family (xi)i∈I , f (

∧
i xi) =

∧
i f xi, it is join-continuous when f

∨
i xi =∨

i f xi, and it is continuous when it is both meet- and join-continuous. Note that any meet-
or join-continuous function f is increasing monotonic, i.e. x≤ y implies f x≤ f y.

L-institutions: definition and examples

Like stratified institutions, L-institutions also represent a ‘non-classical’ extension of the
ordinary concept of institution. But unlike stratified institutions, L-institutions represent
a truly straightforward extension.

The definition. Given a set L, called the space of the truth values, an L-institution

I =
(
SigI ,SenI ,ModI , |=I )

consists of

• a category SigI whose objects are called signatures and whose arrows are called sig-
nature morphisms,

• a functor SenI : SigI → Set giving for each signature a set whose elements are called
sentences over that signature,

• a functor ModI : (SigI )op→ Cat, giving for each signature Σ a category whose ob-
jects are called Σ-models, and whose arrows are called Σ-(model) homomorphisms,
and

• a family |=I of L-valued relations, indexed by the class of the signatures, i.e. |=I
Σ

: |ModI
Σ|×SenI

Σ→ L for each Σ ∈ |SigI |, called the satisfaction relation,

such that for each morphism (ϕ : Σ→ Σ′) ∈ SigI , the Satisfaction Condition

M′ |=I
Σ′ (SenI

ϕ)ρ = (ModI
ϕ)M′ |=I

Σ ρ (13.12)

holds for each M′ ∈ |ModI
Σ′| and ρ ∈ SenI

Σ.

That was the most general definition of L-institutions, when L is just a bare set L.
The theory of L-institutions require more structure on L , such as being a partial order,
i.e., L = (L,≤), or more than that, being a more structured partial order such as a lattice or
a residuated lattice. In such situations, an L-institution means just an L-institution. With
respect to abbreviations of notations, for L-institutions we apply the same conventions as
for ordinary institutions.

The Satisfaction Condition says that the truth degree is an invariant with respect
to change of notation. Note that when presenting the satisfaction relation |= as a natu-
ral transformation Sen⇒ [|Mod(−)| → L], where [|ModΣ| → L] denotes the set of the
functions from |ModΣ| to L (which can also be denoted L|ModΣ|) and for any signature
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morphism ϕ : Σ→ Σ′, [|Modϕ| → L] f = f ◦ |Modϕ|, the Satisfaction Condition (13.12)
arises just as the naturality property of |=:

Σ

ϕ

��

SenΣ
|=Σ
//

Senϕ

��

[|ModΣ| → L]

[|Modϕ|→L]
��

Σ′ SenΣ′
|=

Σ′
// [|ModΣ′| → L]

Evidently, the ordinary institutions are just L-institutions for which L is the binary Boolean
algebra. For this reason, in the context of the theory of L-institutions, ordinary institution
can be referred to as binary institutions.

Like in the case of the binary institutions, the following property, although highly
expected both from the general and the concrete applications perspectives, does not follow
from the axioms of L-institutions. So, it has to be assumed.

Assumption: The satisfaction is preserved by model isomorphisms, i.e. for each Σ-
model isomorphism h : M→ N and each Σ-sentence ρ,

(M |=Σ ρ) = (N |=Σ ρ).

Semantically equivalent sentences. This concept extends the related concept from bi-
nary institution theory as follows. We say that two Σ-sentences ρ and ρ′ are semantically
equivalent, which we also denote as ρ |=| ρ′, when for each Σ-model M we have that
(M |= ρ) = (M |= ρ′).

The concept of L-institution may accomodate situations in which the significance
of many-valued truth is rather diverse. While some examples may arise as natural many-
valued truth generalisations of established binary institutions, in other situations many-
valued truth is motivated directly by applications without a previous binary version. The
next examples illustrate this situation.

Many-valued first order logic (MVL). We have introduced it as a binary institution in
Sec. 3.2 (MVL♯), now we re-introduce it as an L-institution. MVL shares with MVL♯

the signatures category and the model functor, while the MVL sentences are precisely
the MVL♯ pre-sentences. The many-valued satisfaction relation |=Σ is the function |=Σ

: |ModΣ|×SenΣ→ L defined within the MVL♯ example.

Fuzzy equational logic (FEL). This is a ‘fuzzyfication’ of EQL , the result being a
logic of similarity. Its main idea is to replace the ordinary crips equality = with a fuzzy
equality denoted ≈. FEL and EQL share their syntax, the same signatures and virtually
the same sentences (with = replaced by ≈ in the case of FEL). The real difference be-
tween them occurs at the level of the semantics. Assuming that L is a complete residuated
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lattice, a fuzzy (S,F)-algebra is just an (S,F)-algebra A endowed with a designated fuzzy
equality relation (≈A)s : As×As → L, for each s ∈ S, such that the following axioms
hold:

x≈A x = 1 fuzzy reflexivity

x≈A y ≤ y≈A x fuzzy symmetry

x≈A y ∗ y≈A z ≤ x≈A z fuzzy transitivity

x≈A y = 1 implies x = y reverse of fuzzy reflexivity.

Moreover the interpretation of the operation symbols preserve the fuzzy equality as fol-
lows:

(a1(≈A)s1b1)∗ . . .∗ (an(≈A)snbn) ≤ Aσ(a1, . . . ,an)(≈A)sAσ(b1, . . . ,bn)

for each σ ∈ Fs1...sn→s. Then A |= t ≈ t ′ = At ≈A At ′ for atomic fuzzy equations and
this extends to universally quantified sentences by A |= (∀X)t = t ′ =

∧
A′↾χ=A A′t ≈A A′t ′ ,

where χ is the signature extension (S,F)⊆ (S,F +X).

Temporal logic (TL). We introduce this L-institution in a propositional form, which
can be upgraded easily to a first-order version. We fix a complete total order L = (L,≤),
that models the ‘time’.

• Like in PL , the signatures of this L-institution are the sets.

• For any set P, the P-sentences are formed by the grammar

S ::= P | S∧S | ¬S | SU S.

• A P-model M consists of an interpretation Mπ ⊆ L for each π ∈ P. For any function
ϕ : P→ P′, the ϕ-reduct M′↾ϕ of a P′-model M′ is defined by (M′↾ϕ)π = M′

ϕ(π).

• For each P-model M, each w∈ L, and each P-sentences ρ we define (M |=w ρ)∈ {0,1}
by induction on the structure of ρ as follows:

– for each π ∈ P, (M |=w π) = 1 if and only if w ∈Mπ;

– (M |=w ρ1∧ρ2) = 1 if and only if (M |=w ρ1) = 1 and (M |=w ρ2) = 1;

– (M |=w ¬ρ) = 1− (M |=w ρ);

– (M |=w ρ1U ρ2) = 1 if and only if there exists w2 ≥ w such that (M |=w2) = 1 and
for each w1 ∈ [w,w2), (M |=w1 ρ1) = 1.

• For any P-model M and any P-sentence ρ we then define

(M |=P ρ) =
∨
{w ∈ L | ∀w′ ≤ w, M |=w′

ρ}.

The Satisfaction Condition (13.12) follows swiftly from the relation

M′ |=w
ϕρ = M′↾ϕ |=w

ρ,

which gets a straightforward proof by induction on the structure of ρ.
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• Another way to define (M |=P ρ), that fits the way satisfaction is commonly considered
in linear temporal logic, is given by the formula

(M |=P ρ) =
∧
{w ∈ L |M |=w

ρ}.

This represents a kind of inverse degree of satisfaction, that gives the first ‘moment’
when ρ holds.

Fuzzy multi-algebras (FMA). We fix a residuated lattice L .

• The signatures are triples (S,F,C) where

– S is a set (of sort symbols),

– F is an indexed family {Fw→s | w ∈ S∗,s ∈ S} of sets (of operation symbols), and

– C is an indexed family {Cs | s ∈ S} (of deterministic constants).

• Signature morphisms map the three components in a compatible way like in FOL or
MVL . An (S,F,C)-model M consists of

– for each sort s ∈ S, a set Ms,

– for each operation symbol σ ∈ Fw→s, a function Mσ : Mw×Ms→ L, and

– for each deterministic constant c ∈Cs, an element Mc ∈Ms.

• The (S,F,C)-sentences are formed from atoms t ≺ t ′ (with t and t ′ being (S,F +C)-
terms of the same sort) by iterative applications of connectives (∧,∨,⇒,∗) and quan-
tifications with blocks of first order variables considered as (new) deterministic con-
stants.1

• For defining the satisfaction between models and sentences we first define for each
(S,F,C)-model M a term evaluation function M[ , ] : T(S,F+C)×M → L by the fol-
lowing recursive formula:

M[σ(t1, . . . , tn),a] =
1, σ ∈Cs,Mσ = a,
0, σ ∈Cs,Mσ ̸= a,∨
{Mσ(b1, . . . ,bn,a)∧

∧
1≤i≤n

M[ti,bi] | (b1, . . . ,bn) ∈Mw}, σ ∈ Fw→s.

Then M |= ρ is defined by induction on the structure of ρ as follows:

– (M |= t ≺ t ′) =
∧
{M[t,a]⇒M[t ′,a] | a ∈M},

– (M |= ρ1⊗ρ2) = (M |= ρ1)⊗ (M |= ρ2) for ⊗ ∈ {∧,∨,∗,⇒},
– (M |= (∀X)ρ) =

∧
{M′ |= ρ |M′↾(S,F,C) = M}, and

– (M |= (∃X)ρ) =
∨
{M′ |= ρ |M′↾(S,F,C) = M}.

1Works such as [159] employ also the deterministic equality t .
= t ′ as atomic sentence, however we omit

this here since it may be derived from the current syntax.
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Flattening L-institutions to binary institutions. In Chap. 12 we introduced two re-
ductions of stratified institutions to ordinary institutions, with the general aim to import
as much as possible from ordinary institution theory to stratified institutions. This saved
us a significant amount of development effort, reducing it to the aspects that are truly
characteristic to stratified institutions. Now we do the same with L-institutions by the
general reduction of many-valued truth to binary truth which is advocated by the skeptics
of many-valued truth. It works as follows. Given any L-institution I = (Sig,Sen,Mod, |=)
we define the binary institution I ♯ = (Sig♯,Sen♯,Mod♯, |=♯):

• Sig♯ = Sig, Mod♯ = Mod;

• Sen♯Σ = SenΣ×L;

• M |=♯
Σ
(ρ,κ) if and only if (M |=Σ ρ)≥ κ.

We have already met with an instance of this flattening in Sec. 3.2 when we introduced
many-valued first order logic as the binary institution. MVL♯ is obtained precisely by the
general flattening construction on L-institutions applied to MVL . The notation ( )♯ used
in Sec. 3.2 anticipated the general construction above.

While the flattening of L-institutions to binary institutions has the advantage of
reducing things to a well studied and matured framework and functions well in some
aspects, it falls short in several areas that involve some fine grained aspects of multiple
truth values. One example of this situation is the concept of graded semantic consequence
that we discuss immediately below.

Graded semantic consequence
Given an L-institution there are two ways to extend the satisfaction relation to a seman-
tic consequence relation between sets of sentences and single sentences, both of them
generalising the semantic consequence relation of binary institution theory.

1. The crisp semantic consequence, defined by E |= e if and only if for each model M,
(M |= E) = 1 implies (M |= e) = 1.

2. Given an L institution such that L is a complete meet-semilattice, for each Σ-model
M and each set E of Σ-sentences we define

(M |=Σ E) =
∧
{M |=Σ ρ | ρ ∈ E}. (13.13)

Then we define the graded semantic consequence, by

(E |=Σ e) =
∧
{(M |=Σ E)⇒ (M |=Σ e) |M ∈ |ModΣ|}.

The graded semantic consequence is more subtle and more in the spirit of many-valued
truth than the crisp one, though the definition of the latter requires more infrastructure on
the space of the truth values, namely that L is a complete residuated lattice. This differ-
ence in subtlety may be traced to the fact that while the crisp semantic consequence can
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be derived from the semantic consequence of the binary flattening I ♯ of the L-institution
I (that E |= e holds in I means {(ρ,1) | ρ ∈ E} |= (e,1) in I ♯), the graded semantic
consequence is a concept beyond I ♯.

One of the important properties of the semantic consequence in binary institution
theory is that it satisfies the axioms of entailment systems. The graded semantic conse-
quence enjoys the same properties but in a many-valued form, which is called ‘graded
entailment’.

Graded entailment. Let L = (L,≤,∗) such that (L,≤) is a complete meet-semilattice
(with 1 denoting its upper bound) and ∗ is a binary operation on L. By being more abstract,
this framework for truth values covers the complete residuated lattices. An L-entailment
system (Sig,Sen,⊢) consists of

• a functor Sen : Sig→ Set, and

• a family ⊢ = (⊢Σ : P SenΣ×SenΣ→ L)Σ∈|Sig| such that the following axioms hold:

{γ} ⊢Σ γ = 1 reflexivity

(E ⊢Σ γ) ≤ (E ′ ⊢Σ γ) when E ⊆ E ′ monotonicity

(E ⊢Σ Γ)∗ (Γ ⊢Σ ρ) ≤ (E ⊢Σ ρ) (where (E ⊢ Γ) =
∧

γ∈Γ(E ⊢ γ).) transitivity

(E ⊢Σ γ) ≤ (ϕE ⊢Σ′ ϕγ) for any signature morphism ϕ : Σ→ Σ′ translation.

Graded entailments may be intuitively interpreted in various ways, as provability degree,
as degree of confidence in proofs, or even as a(n inverse) measure for the complexity of
a proof. The more complex a proof, the lower its truth value in the lattice L . In other
words, the degree of confidence in a proof is decreasing monotonic with respect to the
complexity of the respective proof. Other interesting interpretations of graded entailment
are possible either from a proof-theoretic or a semantic perspective.

An important technical argument supporting the use of ∗ rather than ∧ in transitivity
comes from the semantics; in Thm. 13.1 below we will see that in general the many-
valued semantic consequence satisfies transitivity when formulated using ∗. A version of
transitivity with ∧ instead of ∗ may be too strong to hold in general. With ∗, it does hold
because of the adjunction between ∗ and⇒, while⇒ plays the core role in the definition
of the graded semantic consequence.

When we instantiate this definition of graded entailment to binary, we obtain a
slightly diferent concept of entailment system than that from Chap. 11 as emerged from
the more general concept of proof system. On the one hand, the fuzzy relations ⊢Σ are
defined as relations between sets of sentences and single sentences, while in Chap. 11
they were relations between sets of sentences. This suggests that the binary concept is
stronger than the graded / many-valued one. One the other hand, the abbreviation E ⊢ Γ

introduced in the axiom transitivity allows infinite Γs which not only extends ⊢ to fuzzy
relations between sets of sentences, but when considered in the binary case allows for
infinite unions.
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The graded semantic entailment system. Thm. 13.1 below represents the counterpart
of the properties stated in Prop. 3.7. But while that result was so straightforward that we
did not even bother to include an explicit proof, the proof of Thm. 13.1 has much more
substance.

Theorem 13.1 (Semantic entailment). Let L be a complete residuated lattice. The se-
mantic consequence of an L-institution is an L-entailment system, called the semantic
entailment system of I .

Proof. We check one by one the axioms of L-entailment systems for |=. Let ϕ : Σ→ Σ′

denote a morphism of signatures and M and M′ denote variable models in ModΣ and
ModΣ′, respectively.
– reflexivity – For each model M by (13.1) we have that (M |= γ)⇒ (M |= γ) = 1. Hence
({γ} |= γ) = 1.
– monotonicity – Let E ⊆ E ′ ⊆ SenΣ. For each Σ-model M, because E ⊆ E ′ from (13.13)
it follows that

M |= E ′ ≤ M |= E. (13.14)

From (13.14) and (13.2) it follows that

(M |= E ′)⇒ (M |= γ) ≤ (M |= E)⇒ (M |= γ)

hence by (13.3) it follows that E ′ |= γ ≤ E |= γ.
– transitivity – Let E,Γ⊆ SenΣ and ρ ∈ SenΣ. We have that:

1 (E |= Γ) =
∧

γ∈Γ(E |= γ) definition of E |= Γ

2 (E |= γ) =
∧

M
(
(M |= E)⇒ (M |= γ)

)
definition of graded semantic consequence

3
∧

γ∈Γ

(
(M |= E)⇒ (M |= γ)

)
=

(
(M |= E)⇒

∧
γ∈Γ(M |= γ)

)
(13.4)

4 (E |= Γ) =
∧

M
(
(M |= E)⇒ (M |= Γ)

)
1, 2, 3, (13.13)

Then we have that
(E |= Γ)∗ (Γ |= ρ) =

5 =
∧

M
(
(M |= E)⇒ (M |= Γ)

)
∗
∧

M
(
(M |= Γ)⇒ (M |= ρ)

)
4

6 ≤
∧

M
(
((M |= E)⇒ (M |= Γ))∗ ((M |= Γ)⇒ (M |= ρ))

)
5, ∗ monotone

7 ≤
∧

M
(
(M |= E)⇒ (M |= ρ)

)
7, (13.5)

8 = (E |= ρ) 7, definition of graded semantic consequence.

– translation – Let E ⊆ SenΣ, γ ∈ SenΣ.

1 (E |=Σ γ) =
∧

M
(
(M |=Σ E)⇒ (M |=Σ γ)

)
definition of graded semantic consequence

2 (ϕE |=Σ′ ϕγ) =
∧

M′
(
(M′ |=Σ′ ϕE)⇒ (M′ |=Σ′ ϕγ)

)
def. of graded semantic consequence

3 (M′ |=Σ′ ϕρ) = (M′↾ϕ |=Σ ρ) Satisfaction Condition

4 (M′ |=Σ′ ϕE) =
∧

e∈E(M
′ |=Σ′ ϕe) (13.13) (definition of M′ |=Σ′ ϕE)

5 (M′↾ϕ |=Σ E) =
∧

e∈E(M
′↾ϕ |=Σ e) (13.13) (definition of M′↾ϕ |=Σ E)
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6 (M′ |=Σ′ ϕE) = (M′↾ϕ |=Σ E) 3, 4, 5

7 (E |=Σ γ) ≤ (ϕE |=Σ′ ϕγ) 1, 2, 3, 6, (Modϕ) ModΣ′ ⊆ModΣ.

□

Then, how about the fact that the proof of transitivity relies on the adjunction prop-
erty between ∗ and ⇒ in residuated lattices? This is not apparent from the proof of
Thm. 13.1. The explanation is that this is hidden in (the proof of) (13.5).

Exercises
13.1. Prove the relations (13.1) – (13.11).

13.2. Provide an equational axiomatisation for the class of residuated lattices.

13.3. Show that the following mappings are homomorphisms of residuated lattices.

1. {0, 1
2 ,1} ⊆ {0,

1
4 ,

2
4 ,

3
4 ,1} is a homomorphism of Łukasiewicz residuated lattices. Provide a

generalisation.

2. h : [0,1]→ {0,1} where h0 = 0, hx = 1 for each x ∈ [0,1] is a homomorphism between the
Goguen’s residuated lattice and the binary residuated lattice.

3. h : [0,1]→{0, 1
2 ,1} defined by h0 = 0, h1 = 1, hx = 1

2 for each x ∈ (0,1) is a homomorphism
between Goguen’s residuated lattice and the Heyting algebra on {0, 1

2 ,1}.

13.4. Can TL be presented as a stratified institution?

13.5. Let L be a residuated lattice. Prove that in any L-entailment system, for any set E of Σ-
sentences and any Σ-sentences ρ1,ρ2, we have

E ∪{ρ1} ⊢Σ ρ2 ≤ (E ⊢Σ ρ1)⇒ (E ⊢Σ ρ2).

13.6. [79] L-institutions determined by L-entailments.
Let L be a complete residuated lattice. For any L-entailment system (Sig,Sen,⊢) there exists an
L-institution such that its semantic entailment system coincides with (Sig,Sen,⊢).

13.2 Fuzzy theories
In this section we address only three aspects of theories: the Galois connection between
syntax and semantics, closure of theories, and consistency together with compactness.
We will generalise these concepts from binary to many-valued. In the last section of this
chapter we will address compositionality properties of theories.

The Galois connection between syntax and semantics
In binary institution theory, a Σ-theory is a set of Σ-sentences. Thus, any theory may be
represented by its characteristic function SenΣ→ 2, which for each sentence gives a truth
value for its membership to the respective theory. This new perspective on theories is the
basis for the generalisation of the concept of theory to many-valued truth.
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Fuzzy theories. For any fixed set L and for any functor Sen : Sig→ Set, a fuzzy Σ-
theory is just a function X : SenΣ→ L. When L is a complete lattice, for any Σ-theory
X : Sen(Σ)→ L and for any E ⊆ Sen(Σ) we denote

X(E) =
∧
{Xe | e ∈ E}. (13.15)

Note that a fuzzy theory in an L-institution I corresponds exactly to an ordinary theory
in its binary flattening I ♯ by representing any function X : SenΣ→ L as the set {(ρ,Xρ) |
ρ ∈ SenΣ, Xρ ̸= 0}.

The Galois connection. The concept of Galois connection between syntax and seman-
tics introduced in Sec. 4.1 for binary institutions admits the following natural extension
to many-valued truth. Let L be a complete lattice. In any L-institution:

• For any Σ-model M we let the fuzzy theory M∗ such that M∗ρ = M |= ρ. For any
class of models M ⊆ |ModΣ| we let M ∗ =

∧
M∈M M∗.

• For any fuzzy Σ-theory X we let X∗ = {M ∈ |ModΣ| | X ≤M∗}. The elements of X∗

are called the models of X , or alternatively (Σ,X)-models.

Fact 13.2. For each signature Σ, the mappings ( )∗ defined above represent a Galois
connection between (P |ModΣ|,⊇) and (LSenΣ,≤).

Closure systems
In Sec. 4.1, for binary institutions we have considered theories that are closed under se-
mantic consequence. Concepts of closures of theories can be regarded as axiomatic treat-
ments of consequence relations. Here we study them in the many-valued truth context.

L-closure systems. Given a partial order L = (L,≤), an L-closure system is a tuple
(Sig,Sen,C ) where

– Sen : Sig→ Set is a functor, and

– C is a Sig-indexed family of functions CΣ : LSenΣ → LSenΣ satisfying the following
axioms (for ϕ : Σ→ Σ′ any signature morphism):

X ≤ CΣX for each X C-reflexivity

CΣX ≤ CΣY when X ≤ Y C-monotonicity

CΣ(CΣX) = CΣX C-transitivity

CΣ(Senϕ ; X ′) ≤ Senϕ ; CΣ′(X ′) C-translation.

In the binary framework there is a straightforward equivalence between the concepts
of entailment system and that of closure system:

E ⊢Σ e if and only if e ∈ CΣE.
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One consequence of this is that to any given entailment system (such as the semantic en-
tailment system) it corresponds only one closure system. But in the many-valued frame-
work, the relationship between the two concepts is much more interesting. Below we will
see that fuzzy theories, unlike in the binary case, may admit several different meaningful
closures associated to the same graded entailment system. Different closure systems rep-
resent different perspectives on the concept of consequence, a multiplicity that, due to its
collapsed nature, is missing in the binary truth context.

Goguen closure. Provided some conditions on L are fulfilled this closure applies to any
graded entailment system. Let L = (L,≤,∗) be a complete lattice with a binary operation
∗ and let (Sig,Sen⊢) be an L-entailment system. A fuzzy theory X : SenΣ→ L is Goguen
closed with respect to the entailment system when for each entailment E ⊢Σ ρ,

X(E)∗ (E ⊢ ρ)≤ Xρ.

With the following result we establish a sufficient condition on L such that the Goguen
closure is an L-closure operator. We assume a fixed L-entailment system.

Proposition 13.3. If ∗ is increasing monotone then the Goguen closed theories are closed
under arbitrary meets.

Proof. Let (Xi)i∈I be any family of Σ-theories. We check the closure condition for
∧

i Xi:

(
∧

i Xi)E ∗ (E ⊢ ρ) =
(∧

i Xi(E)
)
∗ (E ⊢ ρ) (13.15)

≤
∧

i
(
Xi(E)∗ (E ⊢ ρ)

)
monotone

≤
∧

i Xiρ Xi weakly closed

= (
∧

i Xi)ρ.

□

Prop. 13.3 allows the following definition: for any fuzzy theory X let X◦, called the
Goguen closure of X , denote the least Goguen closed fuzzy theory greater than X .

Proposition 13.4. For any signature morphism ϕ : Σ→ Σ′, if X ′ is a Goguen closed fuzzy
Σ′-theory then (Senϕ);X ′ is a Goguen closed fuzzy Σ-theory.

Proof. We check the closure condition for (Senϕ);X ′.

((Senϕ);X ′)E ∗ (E ⊢Σ ρ) = X ′(ϕE)∗ (E ⊢Σ ρ)

≤ X ′(ϕE)∗ (ϕE ⊢Σ′ ϕρ) translation, ∗ monotone

≤ X ′(ϕρ) X ′ is Goguen closed.

□

Corollary 13.5. The Goguen closure ( )◦ defines an L-closure system.

Proof. The first three axioms of L-closure systems follow immediately from the defini-
tion of X◦. C-translation follows from Prop. 13.4 by noting that (Senϕ);X ′ ≤ (Senϕ);X ′◦.

□
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Galois connection closure. As expected, the Galois connection between the syntax and
the semantics in L-institutions define an L-closure system on fuzzy theories. However,
because it has a semantic nature, the basic framework is now stronger than in the case of
the previous closure system.

Proposition 13.6. In any L-institution, the Galois connection between (P |Mod(Σ)|,⊇)
and (LSenΣ,≤) determines an L-closure system (Sig,Sen,( )∗∗).

Proof. The first three properties of closure systems follow from the general properties
of a Galois connection. Let us now prove C-translation. Let ϕ : Σ→ Σ′ be a signature
morphism and X ′ be any fuzzy Σ′-theory.

((Senϕ);X ′)∗∗ ≤ ((Senϕ);(X ′∗∗))∗∗ C-reflexivity

= ((Modϕ)(X ′∗))∗∗∗ Satisfaction Condition

= ((Modϕ)(X ′∗))∗ general Galois connection properties

= (Senϕ);(X ′∗∗) Satisfaction Condition.

□

In any L-institution, for any fuzzy Σ-theory X , X∗∗ is called the Galois closure of X .

Proposition 13.7. Let L be a complete residuated lattice. Consider any L-institution and
any fuzzy Σ-theory X. Then X◦ ≤ X∗∗.

Proof. Since X ≤ X∗∗, the conclusion followed if we proved that X∗∗ is also Goguen
closed. This goes as follows:

1 (E |= ρ) =
∧

M
(
(M |= E)⇒ (M |= ρ)

)
definition of graded semantic consequence

2
∧

M
(
(M |= E)⇒ (M |= ρ)

)
≤

∧
X≤M∗

(
(M |= E)⇒ (M |= ρ)

)
3 X∗∗E =

∧
X≤M∗(M |= E) definition of X∗∗

4 (M |= E)∗ ((M |= E)⇒ (M |= ρ)) ≤ (M |= ρ) adjointness of ∗

5 X∗∗E ∗ (E |= ρ) ≤
∧

X≤M∗M |= ρ 1, 2, 3, 4, ∗ monotone

6 X∗∗ρ =
∧

X≤M∗(M |= ρ) definition of X∗∗

7 X∗∗E ∗ (E |= ρ) ≤ X∗∗ρ 5, 6.

□

Thus we have presented two meaningful general examples of L-closure systems.
Other examples are the subjects of Exercises 13.10 and 13.12. Others are possible both in
general and particular situations.

Consistency and Compactness
We have seen previously in the book that model-theoretic consistency is one of the most
important property that we consider for theories, and that model-theoretic compactness
is about how / when consistency can be extended from finite to infinite. The concepts of
consistency and compactness can be generalised from binary truth to many-valued truth
in natural ways. And this can also be done in multiple ways.
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Consistency. The following is a straightforward generalisation of the concept of consis-
tent theory from binary institution theory to L-institutions. In any L-institution, a fuzzy
Σ-theory T is consistent when there exists a Σ-model M such that T ≤M∗.

Now, we introduce a related concept of consistency that is relative to a fixed truth
value. First we prepare some notations.

• For any truth value κ ∈ L, let Tκ denote the constant theory defined by Tκρ = κ for
each sentence ρ.

• For any Σ-theory T and Γ⊆ SenΣ the theory T |Γ is defined for each ρ ∈ SenΣ by

(T |Γ)ρ =

{
T ρ, ρ ∈ Γ

0, otherwise.

In any L-institution, for any truth value κ, a set E of Σ-sentences is κ-consistent when
Tκ|E is consistent. E is consistent when there exists κ > 0 such that E is κ-consistent, oth-
erwise it is inconsistent. Note that κ-consistency can be explained as binary consistency
as follows.

Fact 13.8. In any L-institution I , E is κ-consistent if and only if (E,κ) = {(e,κ) | e ∈ E}
is consistent in I ♯, the binary flattening of I .

Note also that in the binary case both concepts of consistency discussed above col-
lapse to a single concept.

Compactness, model theoretically. An L-institution I is m-compact when its binary
flattening I ♯ is m-compact. This means that for each fuzzy Σ-theory T if T |Γ is consistent
for each finite Γ ⊆ SenΣ then T is consistent too. This concept of compactness involves
potentially all truth values. The following concept of compactness refers to an arbitrarily
fixed truth value.

Let κ∈ L be any truth value. Then I is κ-m-compact when each set E of Σ-sentences
is κ-consistent if E0 is κ-consistent for each finite E0 ⊆ E.

Whilst in the binary case the two concepts of compactness defined above collapse
to the same concept, this is not the case in a proper many-valued context. However we
can establish that the former is stronger than the latter.

Proposition 13.9 (κ-m-compactness by m-compactness). Any m-compact L-institution
is κ-m-compact for each truth value κ.

Proof. Let Γ⊆ SenΣ be finite. We have that

(Tκ|E)|Γ = Tκ|(E ∩Γ). (13.16)

Since Γ is finite it follows that E ∩Γ is finite too. Hence, by the hypothesis of the κ-m-
compactness implication, Tκ|(E ∩Γ) is consistent. By (13.16) it follows that (Tκ|E)|Γ is
consistent. By the m-compactness assumption it follows that Tκ|E is consistent. □
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Compactness, consequence theoretically. We can approach compactness at an even
more general level. An L-entailment system (Sig,Sen,⊢) is compact when for any entail-
ment E ⊢Σ γ we have

E ⊢ γ =
∨
{E0 ⊢ γ | E0 finite⊆ E}

When instantiated to the binary case, this concept of compactness yields the binary consequence-
theoretic compactness because the join / supremum of a set is 1 only when the set contains
at least one value 1. This argument is almost trivial. The following result is based on a
many-valued replica of this argument, and this is more refined then its binary instance.

Let us say that an L-entailment system (Sig,Sen,⊢) is κ-compact, for κ ∈ L, when
for each entailment E ⊢ γ, if E ⊢ γ≥ κ then there exists E0 ⊆ E finite such that E0 ⊢ γ≥ κ.

Proposition 13.10. Any compact L-entailment system (Sig,Sen,⊢) such that the meet
operation ∧ is join-continuous is κ-compact for any finite κ ∈ L.

Proof. Let κ ∈ L be a finite element and E ⊢ γ. We thus have the following:

κ = κ∧ (E ⊢ γ)

= κ∧
∨
{E0 ⊢ γ | E0 ⊆ E finite} compactness hypothesis

=
∨
{κ∧ (E0 ⊢ γ) | E0 ⊆ E finite} continuity of ∧.

The set {κ∧ (E0 ⊢ γ) | E0 ⊆ E finite} is directed since for any finite E0,E ′0 ⊆ E by mono-
tonicity we have that (E0 ⊢ γ),(E ′0 ⊢ γ)≤ (E0∪E ′0 ⊢ γ). Hence by the finiteness of κ there
exists finite E0 ⊆ E such that κ = κ∧ (E0 ⊢ γ), which means κ≤ (E0 ⊢ γ). □

Exercises
13.7. Can the canonical representation of fuzzy theories as theories in the binary flattening of the
respective L-institution be presented as an adjoint functor?

13.8. The following shows that the Goguen closures subsume the classical binary closure in entail-
ment systems. If L is the binary Boolean algebra and ∗ is the Boolean conjunction, then a theory
X : SenΣ→ 2 is Goguen closed if and only if ρ ∈ X−11 whenever X−11 ⊢ ρ.

13.9. Which of the results of Section 4.1, including also the exercises, is a binary instance of
Prop. 13.4?

13.10. Let L be any complete residuated lattice. Show that for any signature of an L-institution the

following mappings define a Galois connection (L|ModΣ|,≥)
+
// (LSenΣ,≤) :

+
oo

• for any fuzzy class of models M : |ModΣ| → L, any ρ ∈ SenΣ,
M+ =

∧
M∈|ModΣ|(M(M)⇒ M |= ρ),

• for any fuzzy Σ-theory T and any Σ-model M, T+M =
∧

ρ∈SenΣ(T ρ⇒ M |= ρ).

Is the closure system ( )++ lower or higher than the Galois closure system ( )∗∗?

13.11. [79] A representation of Goguen closures.
If L be a completely distributive lattice and ∗ is associative and continuous then for each fuzzy
theory X , X◦ρ =

∨
E(X(E)∗ (E ⊢ ρ)).
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13.12. [79] Strong closures of L-entailment systems.
Let L be a complete residuated lattice and let (Sig,Sen,⊢) be an L-entailment system. Then

1. Show that the following defines an L-closure system:

X•ρ =
∧
{E ′ ⊢ ψρ | ψ : Σ→ Σ

′, E ′ ⊆ SenΣ
′, Xγ≤ E ′ ⊢ ψγ for each γ ∈ SenΣ

′}.

2. If L is the binary Boolean algebra, the entailment system has infinite unions, X is any Σ-theory
and ρ is any Σ-sentence, then ρ ∈ X• if and only if X ⊢ ρ.

3. In any L-entailment system, for any fuzzy Σ-theory X we have that X◦ ≤ X•.

4. In the case of the graded semantic entailment system of an L-institution, which one of ( )• (as
defined in this exercise) or the Galois closure ( )∗∗ is higher?

13.13. [79] The compact entailment sub-system
Let (Sig,Sen,⊢) be a L-entailment system such that L is a complete lattice with a join-continuous
binary operation ∗ and such that the meet operation ∧ is join-continuous too. Then

E ⊢ω
γ =

∨
{E0 ⊢ γ | E0 finite⊆ E}

defines an L-entailment system over the same sentence functor Sen.

13.14. Explore the relationship between m-compactness and entailment-theoretic compactness.

13.3 Internal logic
In this section we study the meaning of common logical connectives, first for L-entailment
systems, and then for L-institutions. Then we will explore when the semantic connectives
are expressible as entailment-theoretic connectives. The full development of L-institution
theoretic semantics of many-valued logical systems requires also a generalisation of the
concept of basic sentence from binary to L-institution theory; we will do this in the final
part of this section.

Connectives
Entailment theoretic connectives. In an L-entailment system, a Σ-sentence ρ

• is a conjunction of sentences ρ1 and ρ2 when for any set of sentences E,

E ⊢ ρ = (E ⊢ ρ1)∧ (E ⊢ ρ2);

• is a residual conjunction of sentences ρ1 and ρ2 when for any set of sentences E,

E ⊢ ρ = (E ⊢ ρ1)∗ (E ⊢ ρ2);

• is an implication of sentences ρ1 and ρ2 when for any set of sentences E,

E ⊢ ρ = E ∪{ρ1} ⊢ ρ2;

• is a disjunction of sentences ρ1 and ρ2 when L has joins and for any set of sentences
E,

E ⊢ ρ = (E ⊢ ρ1)∨ (E ⊢ ρ2);
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• is a negation of the sentence ρ′ when for any sentence e,

{ρ,ρ′} ⊢ e = 1;

• is a universal χ-quantification of a Σ′-sentence ρ′ for χ : Σ→ Σ′ signature morphism
when for any set of Σ-sentences E

E ⊢Σ ρ = χE ⊢Σ′ ρ
′;

• is an existential χ-quantification of a Σ′-sentence ρ′ for χ : Σ→ Σ′ signature mor-
phism when for any Σ-sentence e

ρ ⊢Σ e = ρ
′ ⊢Σ′ χe.

These definitions can be extended at the level of the whole L-entailment system. For
instance we say that the L-entailment system has conjunctions when any two Σ-sentences
have a conjunction. And similarly for the other connectives.

If we read the connectives defined for proof systems (in Sec. 11.4) in the simplified
context of (binary) entailment systems then those definitions look identical to the cor-
responding ones from Sec. 11.4. The difference resides only in the interpretations of the
respective entailments, as a binary or as a proper many-valued relation. In binary logic the
inequalities that are implicit in the equation defining the entailment theoretic implication
are known as Modus Ponens (≤) and the Deduction Theorem (≥). We may extend this
terminology to graded entailments.

Like in the binary situation, we can consider the least entailment system that con-
tains a given entailment system and that has some of the connectives defined above. This
is supported by the following fact.

Fact 13.11. Any intersection of entailment systems (that share the same sentence functor)
is an entailment system. Moreover, the property of having a certain connective is invariant
with respect with such intersections.

Model-theoretic connectives. The many-valued semantic connectives mimic those de-
fined for binary institutions in Sec. 5.1 and 5.2, but now their interpretation is in a many-
valued truth context. A Σ-sentence ρ is an L-institution

• is a conjunction of sentences ρ1 and ρ2 when L has meets and for each Σ-model M,

(M |= ρ) = (M |= ρ1)∧ (M |= ρ2);

• is a residual conjunction of sentences ρ1 and ρ2 when L is a residuated lattice and for
each Σ-model M,

(M |= ρ) = (M |= ρ1)∗ (M |= ρ2);

• is an implication of sentences ρ1 and ρ2 when L is a residuated lattice and for each
Σ-model M,

(M |= ρ) = (M |= ρ1)⇒ (M |= ρ2);
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• is a disjunction of sentences ρ1 and ρ2 when L has joins and for each Σ-model M,

(M |= ρ) = (M |= ρ1)∨ (M |= ρ2);

• is a negation of a sentence ρ′ when L is a residuated lattice for each Σ-model M,

(M |= ρ
′) = (M |= ρ)⇒ 0;

• is a universal χ-quantification of a Σ′-sentence ρ′ for χ : Σ→ Σ′ signature morphism
when L is a complete lattice and for each Σ-model M

(M |=Σ ρ) =
∧
{M′ |=Σ′ ρ

′ | (Modχ)M′ = M};

• is an existential χ-quantification of a Σ′-sentence ρ′ for χ : Σ→ Σ′ signature mor-
phism when L is a complete lattice and for each Σ-model M

(M |=Σ ρ) =
∨
{M′ |=Σ′ ρ

′ | (Modχ)M′ = M}.

These definitions can be extended at the level of the whole L-institution. For instance we
say that the L-institution has conjunctions when any two Σ-sentences have a conjunction,
etc.

Model-theoretic versus entailment-theoretic connectives. Given an L-institution I ,
when L is a complete residuated lattice we thus have two different definitions for each
connective, one in terms of satisfaction by models and another one in terms of the seman-
tic L-entailment system of I . It is important to establish the relationship between these
two in order to be able to have an entailment-based calculus for the semantic consequence.

Proposition 13.12. Consider the semantic L-entailment system of an L-institution such
that L is a complete residuated lattice. Let ρ be a Σ-sentence and ϕ : Σ→ Σ′ be a signa-
ture morphism. Then

1. ρ is the entailment-theoretic conjunction of ρ1 and ρ2 if it is the model-theoretic con-
junction of ρ1 and ρ2.

2. ρ is the entailment-theoretic universal / existential χ-quantification of ρ′ if it is its
model-theoretic universal / existential χ-quantification.

Let us further assume that L is a Heyting algebra. Then

3. ρ is the entailment-theoretic implication of ρ1 and ρ2 if it is the model-theoretic im-
plication of ρ1 and ρ2.

4. ρ is the entailment-theoretic negation of ρ′ if it is its model-theoretic negation.

Let us further assume that L is a completely distributive Boolean algebra. Then

5. ρ is the entailment-theoretic disjunction of ρ1 and ρ2 if it is the model-theoretic dis-
junction of ρ1 and ρ2.
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Proof. 1. We calculate as follows:

E |= ρ =
∧

M
(
(M |= E)⇒ (M |= ρ)

)
definition

=
∧

M
(
(M |= E)⇒ (M |= ρ1)∧ (M |= ρ2)

)
hypothesis

=
∧

M
(
((M |= E)⇒ (M |= ρ1))∧ ((M |= E)⇒ (M |= ρ2))

)
13.4

=
∧

M
(
((M |= E)⇒ (M |= ρ1))

)
∧
∧

M
(
((M |= E)⇒ (M |= ρ2))

)
= (E |= ρ1)∧ (E |= ρ2) definition.

2. – universal quantification – On the one hand we have

1 E |=Σ ρ =
∧

M(M |= E⇒M |= ρ) definition

2 =
∧

M(M |= E⇒
∧

Mod(χ)N′=M(N′ |= ρ′)) 1, definition

3 =
∧

M
∧

Mod(χ)N′=M(M |= E⇒ N′ |= ρ′) 2, (13.4).

On the other hand we have

4 χE |=Σ′ ρ′ =
∧

M′(M
′ |= χE ⇒ M′ |= ρ′) definition

5 =
∧

M′((Modχ)M′ |= E ⇒ M′ |= ρ′) 4, Satisfaction Condition.

It follows that

E |=Σ ρ ≤ χE |=Σ′ ρ′ 3, 5, consider M = (Modχ)M′

χE |=Σ′ ρ′ ≤ E |=Σ ρ 3, 5, consider M′ = N′.

– existential quantification – On the one hand we have

1 ρ |=Σ e =
∧

M(M |= ρ ⇒ M |= e) definition

2 =
∧

M(
∨

(Modχ)N′=M(N′ |= ρ′) ⇒ M |= e) 1, definition

3 =
∧

M
∧

(Modχ)N′=M(N′ |= ρ′ ⇒ M |= e) 2, (13.6).

On the other hand we have

4 ρ′ |=Σ′ χe =
∧

M′(M
′ |= ρ′ ⇒ M′ |= χe) definition

5 =
∧

M′(M
′ |= ρ′ ⇒ (Modχ)M′ |= e) 4, Satisfaction Condition.

Then from 3 and 5, by considering M′ = N′, we obtain

ρ |=Σ e = ρ
′ |=Σ′ χe.

3. For any set E of sentences:
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E |= ρ′ =
∧

M
(
(M |= E) ⇒ (M |= ρ′)

)
definition

=
∧

M
(
(M |= E) ⇒ ((M |= ρ1) ⇒ (M |= ρ2))

)
hypothesis

=
∧

M
(
((M |= E)∧ (M |= ρ1)) ⇒ (M |= ρ2)

)
(13.9)

=
∧

M
(
(M |= E ∪{ρ1}) ⇒ (M |= ρ2)

)
(13.13)

= E ∪{ρ1} |= ρ2 definition.

4. For any sentence e:

{ρ,ρ′} |= e =
∧

M
(
M |= {ρ,ρ′} ⇒ M |= e

)
definition

=
∧

M
(
((M |= ρ)∧ (M |= ρ′)) ⇒ M |= e

)
(13.13)

=
∧

M
(
((M |= ρ)∧ ((M |= ρ) ⇒ 0)) ⇒ M |= e

)
hypothesis

=
∧

M
(
0 ⇒ M |= e

)
(13.10)

= 1 (13.7).

5. For any set of sentences E:

E |= ρ′ =
∧

M
(
(M |= E)⇒ (M |= ρ′)

)
definition

=
∧

M
(
(M |= E)⇒ ((M |= ρ1)∨ (M |= ρ2))

)
hypothesis

=
∧

M
(
(M |= E⇒M |= ρ1)∨ (M |= E⇒M |= ρ2)

)
(13.11)

=
∧

M
(
M |= E⇒M |= ρ1

)
∨
∧

M
(
M |= E⇒M |= ρ2

)
distributivity

= (E |= ρ1)∨ (E |= ρ2) definition.

□

The model-theoretic connectives represent yet another situation when the binary
flattening diverges from the respective L-institution. In general it is not possible to es-
tablish a general causality relationship between the model-theoretic connectives in the
L-institution and in its binary flattening.

Basic sentences
The extension of the concept of basic sentence of Sec. 5.5 to L-institutions constitutes
the last bit in the definition of internal logic for many-valued truth institutions. Let κ ∈ L.
A set E of Σ-sentences is κ-basic if and only if there exists a Σ-model ME,κ such that for
each Σ-model M

(M |= E)≥ κ if and only if there exists a homomorphism h : ME,κ→M.

Let F be a family of filters. When ME,κ is (F -)finitely presented in the category of the
Σ-models then we say that E is (F -)finitary κ-basic. Moreover, E is ((F -)finitary) basic
when it is ((F -)finitary) κ-basic for each κ ∈ L. When E = {e} is a singleton set, we say
that e is a ((F -)finitary) κ-basic sentence.
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Fact 13.13. Let I be an L-institution. Then a set E of Σ-sentences is κ-basic if and only
if the set (E,κ) = {(e,κ) | e ∈ E} is basic in I ♯.

But the following concept is genuinely a many-valued theoretic one as it cannot
be reduced to a concept from binary institution theory. A sentence is (F -)finitary basic
when it is (F -)finitary κ-basic for each truth value κ. Like with basic sentences in binary
institution theory, in concrete L-institutions sets of atoms tend to be basic. These L-
institutions include MVL , TL but not FMA .

Beyond atoms. Like in the case of binary institutions, in concrete L-institutions the
concept of basic sentence can be significantly wider than just sets of atoms. In general,
we can extend Fact 5.22 to L-institution as follows.

Proposition 13.14. In an L-institution let κ ∈ L be a completely join-prime truth value,
let χ : Σ→ Σ′ be a signature morphism, let ρ be a Σ-sentence and ρ′ be a Σ′ sentence.
If χ is (finitary) quasi-representable, ρ′ is a (finitary) κ-basic, and ρ is an existential
χ-quantification of ρ′, then ρ′ is (finitary) κ-basic.

Exercises
13.15. In any L-institution with negations and conjunctions, for any finite set E of Σ-sentences by
E we denote ¬

∧
e∈E e. Then for any finite sets E and Γ of Σ-sentences we have that

E |= Γ = Γ |= E.

13.16. [79] The compact entailment sub-system of Exercise 13.13 inherits whatever connectives
the original entailment system has.

13.17. [79] Let (Sig,Sen,⊢) be a compact entailment system. For any connectives we let (Sig,Sen,⊢′
) be the entailment system which has the respective connectives and is generated by (Sig,Sen,⊢).
Then (Sig,Sen,⊢′) is compact too.

13.18. Let I be an L-institution. If I has universal χ-quantifications then I ♯ has them too. However,
by means of counterexamples show that in general this type of causality does not hold for any other
model theoretic connectives discussed in this section.

13.19. [90] Basic sentences in MVL
In MVL and set E of atomic sentences is basic. Moreover if E and κ are finite then E is finitary
κ-basic.

13.20. [90] Basic sentences in TL
In TL , for any finite κ ∈ L , each set E of atoms for a signature P is finitary κ-basic.

13.21. Basic sentences in FEL
In FEL , are the sets of atoms t ≈ t ′ (κ-) basic?

13.22. Show that in FMA the atomic sentences t ≺ t ′ are not necessarily basic.

13.23. [90] Unions of sets of basic sentences
If the L-institution has coproducts of models then the set of the (κ-)basic sets of sentences is closed
under unions. Moreover, when κ is finite, this property extends to finitary κ-basic sets of sentences.
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13.24. [90] Coproducts of MVL-models
Show that MVL has coproducts of models.

13.25. [89] Inter-compactness
In any L-institution I , for any κ ∈ L, two sets of Σ-sentences Γ1,Γ2 are κ-inter-consistent when
(M |=Γ1)∗(M |=Γ2)≥ κ for some Σ-model M. They are just inter-consistent when they are κ-inter-
consistent for some κ > 0, otherwise they are inter-inconsistent. I is inter-compact when for any
two inter-inconsistent sets E1,E2 of Σ-sentences there are finite subsets Γi⊆Ei, i= 1,2, such that Γ1
and Γ2 are inter-inconsistent. Show that on the one hand, if I is inter-compact then it is “compact”,
in the sense that any inconsistent set of sentences admits a finite subset that is inconsistent too, and
on the other hand the reverse is also true in any of the following two situations:

1. L is a Heyting algebra, or

2. L is a finite total order and I has semantic residual conjunctions.

13.4 Filtered products

In Chap. 6 we developed the method of ultraproducts in binary institutions. Then in
Sec. 12.5 we extended that to stratified institutions. In this section we re-develop the
method of ultraproducts for L-institutions, by following the same methodology that we
used in Chap. 6 and Sec. 12.5 and which is implicit in the standard proofs of the classical
Łoś theorem (in first-order model theory).

Here, the structure of this section follows this methodology. We do the following:

1. We discuss filtered products in L-institutions.

2. We define the concept of preservation of sentences by F -products / factors for L-
institutions and develop invariance results for preservation under Boolean and quan-
tification connectives. A big difference with respect to the corresponding invariance
results developed in binary ordinary or in stratified institutions, is the absence of re-
sults about negation. The reason for this is that, unless L is a Boolean algebra, nega-
tion is technically problematic for ultraproducts. And many-valued model theory is
interesting when L is less constrained than Boolean algebras. The consequence of
this gap is that the general method of ultraproducts in L-institutions is weaker in the
applications. For instance, in general it cannot be applied to MVL , but it can be ap-
plied to various interesting negation-free sub-institutions of MVL .

3. Finally, we derive model-theoretic compactness consequences in L-institutions in the
standard way.

With respect to L , we tacitly assume for each concept of result the minimal structure on L
which supports the formulation of the respective concept of result. For instance, a result
about implication requires a residuated lattice structure on L . The “common denomina-
tor” for the developments in this section is L being a complete residuated lattice.
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Filtered products in L-institutions
At the abstract level, filtered products of models in L-institutions are no different from
those in binary institutions because of their mere categorical nature. Otherwise said, fil-
tered products as colimits of diagrams of projections is a concept that also works in L-
institutions. The same holds for the preservation, lifting and invention of filtered products
by model reducts. However, in concrete L-institutions the existence of filtered products
has to be established. We do this for MVL , and it is useful to compare the construction
of the filtered products to that in FOL from Sec. 6.1 in order to understand the impact of
many-valued truth on the existence and the form of filtered products of models.

Filtered products of MVL models. The construction of filtered products of MVL
models follows the same general steps like for FOL models in Sec. 6.1. However in
MVL this depends on some conditions on the truth values that in the collapsed binary
context hold trivially.

Proposition 13.15 (F-products in MVL). If L has all meets and directed joins then MVL
has F-products of models for each filter F.

Proof. Let (Mi)i∈I be a family of MVL models for a fixed signature and let (pi : MI →
Mi)i∈I be a direct product. This always exists and may be obtained as follows:

• For each sort s, ((MI)s
(pi)s−→ (Mi)s)i∈I is the cartesian product of sets.

• For each symbol of constant σ, (MI)σ = ((Mi)σ)i∈I .

• For each relation symbol π, (MI)π(m1, . . . ,mn) =
∧

i∈I(Mi)σ(m1
i , . . . ,m

n
i ), where for

each i ∈ I, mi is a short notation for pim.

By defining the following equivalence on each (MI)s:

m∼F m′ if and only if {i | mi = m′i} ∈ F.

we then construct the F-product MF of (Mi)i∈I by

• For each sort s, (MF)s = (MI)s/∼F .

• For each symbol of constants σ, (MF)σ = (MI)σ/∼F .

• Let π be any relation symbol. As a matter of notation, for any m in MI and any J ∈
F by mJ we abbreviate pI⊇Jm, where pI⊇J : MI → MJ is the canonical projection.
Moreover we extend this notation from elements to strings of elements.

– Let m be an argument for (MI)π. We define
(MF)π(m/∼F ) =

∨
Dm (13.17)

where Dm = {(MJ)πmJ | J ∈ F}. Note that here we use the assumption on the ex-
istence of directed joins as Dm is directed. Indeed, for any J1,J2 ∈ F , (MJk)πmJk ≤
(MJ1∩J2)πmJ1∩J2 since mJ1∩J2 = pJk⊇J1∩J2mJk and pJk⊇J1∩J2mJk is a model homo-
morphism.
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– The correctness of definition (13.17) follows from the fact that m ∼F m′ implies∨
Dm =

∨
Dm′ . In order to establish this, by symmetry it is enough to prove that∨

Dm ≤
∨

Dm′ . Let J ∈ F . We prove that (MJ)πmJ ≤
∨

Dm′ . Let
J′ = {i | mi = m′i} ∈ F and J′′ = J∩ J′ ∈ F.

By the homomorphism property of pJ⊇J′′ it follows that
(MJ)πmJ ≤ (MJ′′)π(pJ⊇J′′mJ) = (MJ′′)πmJ′′ = (MJ′′)πm′J′′ ∈ Dm′ .

• Now it follows that the co-cone (µJ : MJ → MF)J∈F defined by µJmJ = m/∼F is a
co-limit in the respective category of models; we skip the straightforward proof of
this.

□

When L is the binary Boolean algebra, that version of MVL is just FOL and then
the construction of filtered products in Prop. 13.15 coincides with the construction of
FOL filtered products in Sec. 6.1.

Preservation by filtered products / factors in general

The development of a modular body of results on preservation by filtered products for L-
institutions follow the general schema of Thm. 6.6. But in the many-valued truth context
of L-institutions some of the pieces of the puzzle of Thm. 6.6 become problematic, or at
least more difficult to prove. Although the preservation concepts in an L-institution I can
be reduced to corresponding preservation concepts in its binary flattening I ♯, this does
not help with transferring most of the preservation results of Thm. 6.6 because there is
almost no technical relationship between the model-theoretic connectives in I and in I ♯.

Definition of preservation. The following definition extends the corresponding con-
cept of preservation from binary institution theory (in Sec. 6.2) to L-institutions. In any
L-institution, let Σ be any signature and e be any Σ-sentence. Also let F be any class of
filters and κ be any value in L . Then

• e is κ-preserved by F -products when for each F ∈F and each F-product (µJ : MJ→
MF)J∈F (where F is a filter over I)

{i ∈ I |Mi |= e ≥ κ} ∈ F implies MF |= e ≥ κ (13.18)

• e is κ-preserved by F -factors when for each F-product as above we have the reverse
of (13.18).

As a matter of terminology, when F is the class of all ultrafilters we rather say directly “κ-
preserved by ultraproducts / ultrafactors”. When F is the class of all singleton filters we
rather say “κ-preserved by direct products / factors”. Also, when do not specify the truth
value κ and we just say “preserved by F -products / factors”, we mean that the sentence
is κ-preserved for all truth values κ.
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Note that whilst κ-preservation represents just a rephrasing of the preservation con-
cepts from binary institution theory because “ρ is κ-preserved by ...” is technically the
same with “(ρ,κ) is preserved by ...” in the binary flattening, this is not the case for
preservation for all truth values. In other words “ρ is preserved by ...” in an L-institution
cannot be reduced to preservation in its binary flattening of a single sentence.

The following technical lemma, which will be used in some invariance-of-preservation
proofs below, gives a succint characterisation of the ‘global’ preservation by filtered fac-
tors.

Lemma 13.16 (Preservation by F-factors). For any filter F and any Σ-sentence ρ the
following are equivalent:

1. ρ is preserved by F-factors.

2. For each F-product (µJ : MJ →MF)J∈F : {i |MF |= ρ ≤ Mi |= ρ} ∈ F.

Proof. (1) ⇒ (2): We take κ = (MF |= ρ) and apply the κ-preservation by F-factors
property.
(2)⇒ (1): Let us consider any truth value κ and assume that κ≤ (MF |= ρ). Then

{i | k ≤ Mi |= ρ} ⊇ {i |MF |= ρ ≤ Mi |= ρ}.

Since F is filter it follows that {i | k ≤ Mi |= ρ} ∈ F. □

Preservation of basic sentences. By reducing κ-basic sentences to ordinary basic sen-
tences in binary institution theory (Fact 13.13), from Thm. 6.6 we obtain immediately the
preservation of basic sentences in L-institutions.

Corollary 13.17 (Preservation of basic sentences by filtered products / factors). In any
L-institution, for any κ ∈ L,

1. Each κ-basic sentence is κ-preserved by all filtered products.

2. Each F-finitary κ-basic sentence is κ-preserved by F-factors.

Consequently

3. Each basic sentence is preserved by all filtered products.

4. Each F-finitary basic sentence is preserved by F-factors.

Invariance of preservation under propositional connectives. In what follows we will
use explicit notations for the model-theoretic connectives. For instance ρ1 ∧ ρ2 denotes
a sentence which is the model-theoretic conjunction of sentences ρ1 and ρ2. Of course
there may be several of those, so ρ1 ∧ρ2 represents any of them. Likewise for the other
connectives ∨, ∗,⇒, or quantifications.

Conjunction is the only many-valued model-theoretic connective, from all Boolean /
propositional and quantification connectives, that determine an invariance of preservation
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that can be reduced to the corresponding property from binary institution theory. This is
because for any sentences ρ1 and ρ2, in the binary flattening we always have that

M |= (ρ1∧ρ2,κ) if and only if M |= (ρ1,κ) and M |= (ρ2,κ).

So, from Thm. 6.6 we have:

Corollary 13.18 (Invariance of preservation under conjunction). The set of the sentences
that are κ-preserved by F-products / F-factors is closed under conjunctions.

For basic sentences and conjunctions we have invariance of preservation by both
filtered products and filtered factors. This fortunate situation is not enjoyed by any of the
other connectives, propositional or quantification.

Proposition 13.19 (Invariance of preservation by factors under other propositional con-
nectives). The set of the sentences that are preserved by F-factors are closed under
∧ , ∨ , ∗ .

Proof. Let ρ, ρ′ be sentences preserved by F-factors and⊗ being one of ∧ , ∨ , ∗ . Then
for any F-product (µJ : MJ →MF)J∈F we have that:

1 J = {i |MF |= ρ ≤ Mi |= ρ} ∈ F Lemma 13.16

2 J′ = {i |MF |= ρ′ ≤ Mi |= ρ′)} ∈ F Lemma 13.16

3 ∀i ∈ J∩ J′ MF |= ρ⊗ρ′ ≤ Mi |= ρ⊗ρ′ 1, 2, ⊗ monotone, model-theoretic
propositional connectives

4 {i |MF |= ρ⊗ρ′ ≤ Mi |= ρ⊗ρ′} ∈ F 1, 2, 3, F filter.

From 4 by Prop. 13.16 it follows that ρ⊗ρ′ is preserved by F-factors. □

Proposition 13.20 (Invariance of preservation under implication). If ρ is preserved by
F-factors and ρ′ is preserved by F-products then ρ⇒ ρ′ is preserved by F-products.

Proof. Let (µJ : MJ →MF)J∈F be any F-product of models. Let us assume

1 J = {i | κ≤ Mi |= ρ⇒ ρ′} ∈ F.

Then

2 J = {i | κ≤ Mi |= ρ⇒ Mi |= ρ′} ∈ F 1, model-theoretic implication

3 J = {i | κ ∗ Mi |= ρ ≤ Mi |= ρ′} ∈ F 2, adjunction property of ∗

4 J′ = {i |MF |= ρ ≤ Mi |= ρ} ∈ F Lemma 13.16

5 J′ ⊆ J′′ = {i | κ ∗ MF |= ρ ≤ κ ∗ Mi |= ρ} ∈ F 4, monotonicity of ∗ , F filter

6 J∩ J′′ ⊆ {i | κ ∗ MF |= ρ ≤ Mi |= ρ′} ∈ F 3, 5, F filter

7 κ ∗ MF |= ρ ≤ MF |= ρ′ 6, ρ′ preserved by F-products

8 κ≤ MF |= ρ⇒ MF |= ρ′ 7, adjunction property of ∗

9 κ≤ MF |= ρ⇒ ρ′ 8, model-theoretic implication.

□
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Invariance of preservations under quantification connectives. The results on preser-
vation by quantifications rely primarily on various conditions on the model reduct functor
involved, such as preservation, lifting, invention, of filtered products. In Sec. 6.2 we have
developed general results supporting these properties in concrete situations. All of them
are also valid for the many-valued context as this does not bring anything really new
with respect to these properties. In general the representability property of the signature
morphism is sufficient, and, as we know very well, in concrete situations this covers the
first-order quantifications.

Proposition 13.21 (Invariance of preservation under quantifications (I)). Let F be a class
of filters that is closed under reductions and let χ : Σ→ Σ′ be a signature morphism that
invents F -products. Let ρ be a Σ′-sentence.

1. If ρ that is κ-preserved by F -products then (∀χ)ρ is κ-preserved by F -products too.

2. If ρ is κ-preserved by F -factors and κ is completely prime-join then (∃χ)ρ is κ-
preserved by F -factors too.

Proof. Consider F ∈ F and an F-product (µJ : MJ → MF)J∈F of a family (Mi)i∈I of
models.

1. Let us assume that

1 J′′ = {i |Mi |= (∀χ)ρ ≥ κ} ∈ F.

Let M′ be any χ-expansion of MF . We prove that M′ |= ρ ≥ κ. We have that:

2 ∃J ∈ F ∀i ∈ J ∃M′i χ-expansion of Mi
∃F |J-product (µ′J′ : M′J′ →M′)J′∈F |J such that (Modχ)µ′J′ = µJ′

χ invents F -products

3 ∀i ∈ J∩ J′′ M′i |= ρ ≥ κ 1

4 J∩ J′′ ⊆ {i |M′i |= ρ ≥ κ} 3, F filter

5 {i ∈ J |M′i |= ρ ≥ κ} ∈ F |J 4

6 M′ |= ρ ≥ κ 5, F |J ∈ F , ρ is κ-preserved by F -products.

2. Let us assume that

1 MF |= (∃χ)ρ ≥ κ.

We have that:

2 MF |=
∨

(Modχ)M′=MF

M′ |= ρ ≥ κ 1, model-theoretic existential quantification

3 ∃M′ (Modχ)M′ = MF , M′ |= ρ ≥ κ 2, κ completely join-prime

4 ∃J ∈ F ∀i ∈ J ∃M′i χ-expansion of Mi
∃F |J-product (µ′J′ : M′J′ →M′)J′∈F |J such that (Modχ)µ′J′ = µJ′

3, χ invents F -products
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5 {i |M′i |= ρ ≥ κ} ∈ F |J 4, F |J ∈ F , ρ κ-preserved by F -factors

6 {i |M′i |= ρ ≥ κ} ⊆ {i | (Mi |= (∃χ)ρ ≥ κ} 4, model-theoretic existential quantification

7 F |J ⊆ F F filter

8 {i |Mi |= (∃χ)ρ ≥ κ} ∈ F 5, 6, 7.

□

Proposition 13.22 (Invariance of preservation under quantifications (II)). Let F be a fam-
ily of filters that is closed under reductions and let χ : Σ→ Σ′ be a signature morphism
that preserves F -products. Let ρ be any Σ′-sentence. If ρ is κ-preserved by F -products
and κ is completely join-prime then (∃χ)ρ is κ-preserved by F -products too.

Proof. We consider F ∈ F and an F-product (µJ : MJ →MF)J∈F and we assume

J′′ = {i |Mi |= (∃χ)ρ ≥ κ} ∈ F.

Hence

J′′ = {i |
∨

(Modχ)M′i=Mi

M′i |= ρ ≥ κ} ∈ F.

Since κ is completely join-prime we have that

J′′ = {i | ∃M′i (Modχ)M′i = Mi, M′i |= ρ ≥ κ} ∈ F.

Let (µ′J : M′J → M′F |J′′ )J∈F |J′′ be an F |J′′ -product of (M′i)i∈J′′ . Because Modχ preserves
F-products

((Modχ)µJ : (Modχ)M′J → (Modχ)M′F |J′′ )J∈F |J′′

is an F |J′′ -product of (Mi)i∈J′′ . Since F |J′′ is a final sub-poset of F it follows that

(Modχ)M′F |J′′ is isomorphic to MF . (13.19)

Since for each i ∈ J′′, M′i |= ρ ≥ κ and since ρ is κ-preserved by F -products it follows
that M′F |J′′ |= ρ ≥ κ. This implies (Modχ)M′F |J′′ |= (∃χ)ρ ≥ κ and by (13.19) and by the
fundamental assumption that model isomorphisms preserve satisfaction we finally obtain
that MF |= (∃χ)ρ ≥ κ. □

We still miss an invariance under universal quantification of preservation by F -
factors. This requires an additional condition as follows.

Proposition 13.23. Let F be a filter over a set I such that F is closed under arbitrary
intersections. Let χ : Σ→ Σ′ be a signature morphism that lifts F-products and let ρ be
any Σ′-sentence. If ρ is κ-preserved by F-factors then (∀χ)ρ is κ-preserved by F-factors
too.

Proof. We consider an F-product (µJ : MJ → MF)J∈F of a family (Mi)i∈F of models
such that
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1 MF |= (∀χ)ρ ≥ κ.

This means:

2 ∀M′ such that (Modχ)M′ = MF , M′ |= ρ ≥ κ model-theoretic existential quantification.

For each i ∈ I, let M′i be any χ-expansion of Mi. We have that:

3 ∃ F-product (µ′J : M′J →M′F)J∈F such that (Modχ)M′F = MF lifting assumption

4 M′F |= ρ ≥ κ 3, 2

5 {i |M′i |= ρ ≥ κ} ∈ F 3, 4, ρ is κ-preserved by F-factors

Let J =
⋂
{{i |M′i |= ρ ≥ κ} | ∀i,(Modχ)M′i = Mi}. Then:

6 J ∈ F 5, F closed under arbitrary intersections

7 J ⊆ {i |Mi |= (∀χ)ρ ≥ κ} definition of J, model-theoretic existential quantification

8 {i |Mi |= (∀χ)ρ ≥ κ} ∈ F 6, 7.

□

The condition that F is closed under arbitrary intersections is rather restrictive be-
cause if we consider X =

⋂
J∈F

J then F = {J ⊆ I | X ⊆ J}. Then the F-product is a direct

product indexed by X . However this still includes the important case of the singleton
filters, which leads to the following important consequence:

Corollary 13.24. Let χ be a signature morphism that lifts direct products and let ρ be
a Σ′-sentence. If ρ is κ-preserved by direct factors then (∀χ)ρ is κ-preserved by direct
factors too.

A sample application. We cannot obtain a preservation-by-ultraproducts result for MVL
by applying the invariance-of-preservation results developed above. The reason is the ab-
sence of such results for negation. However, we can obtain preservation-by-ultraproducts
for some interesting classes of sentences. The following is such an example. In MVL , let
us say that (∀X)(H⇒ e) is an extended Horn sentence when

• H is formed from existentially quantified atoms (including trivial quantifications) by
iterations of ∧,∨,∗.

• e is an existentially quantified atoms.

Proposition 13.25. Under appropriate conditions for L and κ ∈ L, any extended Horn
sentence is preserved by ultraproducts.

Proof. Consider (∀X)(H⇒ e) an extended Horn sentence.

• By Prop. 13.14, the existentially quantified atoms are finitary basic, hence by Cor. 13.17
they are κ-preserved by ultrafactors and ultraproducts.

• Hence H is preserved by ultrafactors (cf. Prop. 13.19).
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• Then, by Prop. 13.20, H⇒ e is preserved by ultraproducts.

• Finally, by Prop. 13.21, (∀X)H⇒ e is preserved by ultraproducts.

□

We formulated Prop. 13.25 above for ultraproducts, but the result holds more gen-
erally for any class F of filtered products that is closed under reductions.

Semantic compactness consequences

In Sec. 6.4 we saw how in binary institution theoretic setting model-theoretic compact-
ness follows by preservation-by-ultraproducts. In Sec. 12.5 this was extended to stratified
institutions. Manifold concrete compactness properties follow from such general com-
pactness results. In the many-valued context this works like for binary institutions.

Corollary 13.26 (m-compactness by ultraproducts). Any L-institution with ultraproducts
of models such that each sentence is preserved by ultraproducts is m-compact.

Proof. Let I be the L-institution. Each sentence is preserved by ultraproducts in I implies
that each sentence of I ♯ is preserved by ultraproducts too. By Cor. 6.21 I ♯ is m-compact,
which means that I is m-compact too. □

From Cor. 13.26 and Prop. 13.9 we obtain immediately a κ-m-compactness conse-
quence of preservation by ultraproducts. However we may strengthen that by weakening
the preservation hypothesis to κ-preservation-by-ultraproducts.

Corollary 13.27 (κ-m-compactness by ultraproducts). In any L-institution, if each sen-
tence is κ-preserved by ultraproducts then the L-institution is κ-m-compact.

Proof. Let E be a set of sentences such that for each E0 ⊆ E finite E0 is κ-consistent,
which means that (E0,κ) is consistent in the binary flattening. Then (E,κ) is consistent
too by applying Cor. 6.21 only to the sentences of the form (ρ,κ), which we know that are
preserved by ultraproducts from the κ-preservation condition in the L-institution. Hence
E is κ-consistent. □

Compared to Cor. 13.26, Cor. 13.27 assumes less and achieves less. However in
the applications we guess it is rather difficult to meet with meaningful situations when
κ-preservation by ultraproducts holds only for certain κs but not for all (excluding the
trivial case κ = 0).

Exercises
13.26. Filtered products in concrete L-institutions
Establish the existence of filtered products in categories of models in FEL , TL , and FMA . (Hint:
Can you find a canonical isomorphism between categories of FMA models and categories of MVL
models?)
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13.27. [90] Preservation in FMA
In FMA let us assume that each truth value is completely prime-join. Then each atomic sentence
t ≺ t ′ is preserved by filtered products. (Hint: Consider “phantom” sentences t ∼ c, where t is a
term and c is a constant, with satisfaction defined by (M |= t ∼ c) = M[t,Mc]. By induction on the
structure of t prove that t ∼ c are preserved by filtered products and factors. Then use that t ≺ t ′ is
semantically equivalent to (∀x)(t ∼ x)⇒ (t ′ ∼ x).)

13.28. In MVL , can you find a set of extended Horn sentences that is inconsistent?

13.29. [90] Compactness in FMA
In FMA let us assume that each truth value is completely prime-join. Let us consider the sub-
institution FMA ′ of FMA obtained by restricting the sentences to those formed from the atoms
t ≺ t ′ by iterations of conjunctions and universal and existential quantifications with deterministic
variables. Then FMA ′ is m-compact.

13.5 Graded interpolation and definability
In Chapters 9 and 10 we have studied interpolation and definability, respectively, in the
context of binary institutions. There both interpolation and definability were considered as
properties of the semantic consequence relation. But in Sec. 11.4 (at the exercises) we saw
how both interpolation and definability can be defined more abstractly in proof or in en-
tailment systems. Some interesting results could and can be obtained at the consequence-
theoretic level, although most of the important results require the model-theoretic con-
ceptual infrastructure.

In this section we extend both concepts to graded consequences in general (in L-
entailment systems) and in particular to semantic graded consequences in L-institutions.
The material of this section consists only of basic concepts and properties, both topics
deserving a much more extensive development. The structure of this section is as follows:

1. We define ‘graded interpolation’ as an interpolation property specific to graded en-
tailment, in particular to graded semantic consequence. We discuss an example that
illustrates how much more refined gets interpolation when we go from binary to the
many-valued context. What can be an interpolation non-problem in the former context
may be an interesting problem in the latter.

2. Then we define ‘graded definability’ which is the many-valued generalisation of the
institution-independent binary truth concept of definability of Chap. 10. On the one
hand, for the implicit definability we have a consequence-theoretic and a semantic
concept, and an expected relationship between them. On the other hand, explicit de-
finability can also be defined at both levels, but the relationship between the two defi-
nitions is trivial.

3. We establish the ‘graded definability property’, which is the equivalence between
implicit and explicit graded definability at the consequence-theoretic level. Like in
binary institutions, that implicit implies explicit definability gets caused by Craig-
Robinson interpolation in its graded form.



428 Chapter 13. Many-valued Truth Institutions

4. The general relationship between Craig-Robinson and Craig interpolation, and be-
tween interpolation and Robinson consistency, do survive the many-valued context,
but in a more sophisticated mathematical form. We address all these in the exercises
part of the section, through a stepwise approach.

The definition of graded interpolation
In the definition of Craig-Robinson interpolation (CRi, from Sec. ??) we can get more
abstract by replacing the semantic consequence relation |= by any entailment system.
Thus, given a binary entailment system (Sig,Sen,⊢), a commutative square of signature
morphisms

Σ
ϕ1
//

ϕ2

��

Σ1

θ1
��

Σ2
θ2

// Σ′

is a CRi square when for each E1 ⊆ SenΣ1, E2,Γ2 ⊆ SenΣ2, if θ1E1∪θ2Γ2 ⊢Σ′ θ2E2 then
there exists E ⊆ SenΣ such that

E1 ⊢Σ1 ϕ1E and Γ2∪ϕ2E ⊢Σ2 E2.

Now let us write E ⊢ Γ as E ⊢ Γ = 1 and E ̸⊢ Γ as E ⊢ Γ = 0. Then the CRi implication
above can be written as an inequality in the binary Boolean algebra:

θ1E1∪θ2Γ2 ⊢ θ2E2 ≤ (E1 ⊢ ϕ1E)∧ (ϕ2E ∪Γ2 ⊢ E2). (13.20)

But from the axioms of entailment systems we can easily get the reverse inequality, so we
can rephrase the above inequality by strengthening it to an equality:

θ1E1∪θ2Γ2 ⊢ θ2E2 = (E1 ⊢ ϕ1E)∧ (ϕ2E ∪Γ2 ⊢ E2). (13.21)

Then the idea of the concept of graded interpolation is to interpret (13.21) in a many-
valued truth context. But at the general level this should be done with the residual con-
junction ∗ instead of the ordinary lattice theoretic conjunction ∧ in order to achieve co-
herence with the transitivity axiom. Of course, in some concrete situations – the binary
context included –, the operation ∗ is the meet ∧. The many-valued generalisation of the
reverse of (13.20) holds under a minimal requirement on ∗, without any other conditions,
as shown by the following result.

Proposition 13.28. Consider an L-entailment system such that the binary operation ∗ is
monotone and consider any commutative square of signature morphisms

Σ
ϕ1
//

ϕ2

��

Σ1

θ1
��

Σ2
θ2

// Σ′
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Then for any E ⊆ SenΣ, E1 ⊆ SenΣ1 and E2,Γ2 ⊆ SenΣ2

(E1 ⊢ ϕ1E)∗ (ϕ2E ∪Γ2 ⊢ E2) ≤ θ1E1∪θ2Γ2 ⊢ θ2E2. (13.22)

Proof. We have that:

1 θ1E1 ⊢ θ1(ϕ1E) ≤ θ1E1∪θ2Γ2 ⊢ θ1(ϕ1E) monotonicity

2 θ1E1∪θ2Γ2 ⊢ θ2Γ2 reflexivity, monotonicity

3 θ1E1∪θ2Γ2 ⊢ θ1(ϕ1E)∪θ2Γ2 =
(θ1E1∪θ2Γ2 ⊢ θ1(ϕ1E))∧ (θ1E1∪θ2Γ2 ⊢ θ2Γ2))

definition

4 θ1E1∪θ1(ϕ1E) ≤ θ1E1∪θ2Γ2 ⊢ θ1(ϕ1E)∪θ2Γ2 1, 2, 3.

Then (13.22) is obtained by the following calculations:

(E1 ⊢ ϕ1E)∗ (ϕ2E ∪Γ2 ⊢ E2)≤

≤ (θ1E1 ⊢ θ1(ϕ1E))∗ (θ2(ϕ2E)∪θ2Γ2 ⊢ θ2E2) translation, ∗ monotone

≤ (θ1E1∪θ2Γ2 ⊢ θ1(ϕ1E)∪θ2Γ2)∗(θ2(ϕ2E)∪θ2Γ2 ⊢ θ2E2) 4, ∗ monotone

= (θ1E1∪θ2Γ2 ⊢ θ2(ϕ2E)∪θ2Γ2)∗(θ2(ϕ2E)∪θ2Γ2 ⊢ θ2E2) ϕ1;θ1 = ϕ2;θ2

≤ θ1E1∪θ2Γ2 ⊢ θ2E2 transitivity.

□

Like in the binary case, in the light of Prop. 13.28 the interpolation property is
represented by the reverse of (13.22). In any L-entailment system, given a commutative
square of signature morphisms

Σ
ϕ1
//

ϕ2

��

Σ1

θ1
��

Σ2
θ2

// Σ′

and E1⊆ SenΣ1 and E2,Γ2⊆ SenΣ2 we say that E ⊆ SenΣ is a Craig-Robinson interpolant
of E1, E2 and Γ2 when

θ1E1∪θ2Γ2 ⊢ θ2E2 ≤ (E1 ⊢ ϕ1E)∗ (ϕ2E ∪Γ2 ⊢ E2). (13.23)

Of course, under the monotonicity hypothesis of Prop. 13.28 we can replace the inequality
13.23 with the equality

θ1E1∪θ2Γ2 ⊢ θ2E2 = (E1 ⊢ ϕ1E)∗ (ϕ2E ∪Γ2 ⊢ E2).

When Γ2 is empty then E is called a Craig interpolant (of E1 and E2). When interpolants
exist for all E1, E2 (and eventually Γ2) the respective commutative square of signature
morphisms is called a Craig(-Robinson) interpolation square (abbr. C(R)i square). When
L is a residuated lattice, the concepts introduced in this definition extend also to L-
institutions by considering the semantic L-entailment system given by Prop. 13.1.
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An L-entailment system (or L-institution) has ⟨L,R⟩-CRi / Ci for L,R ⊆ Sig
classes of signature morphisms, when each pushout square of signature morphisms

Σ
ϕ1
//

ϕ2

��

Σ1

θ1
��

Σ2
θ2

// Σ′

with ϕ1 ∈ L and ϕ2 ∈R is a CRi / Ci square.

An example
We can illustrate an important feature of graded interpolation that distinguishes it sharply
from binary / crisp interpolation. With crisp interpolation, when the premise of interpo-
lation is false then the presumptive interpolation problem is dead. However if we replace
‘false’ by ‘not true’ and then through a many-valued strike replace ‘not true’ by ‘not en-
tirely true’, we may get graded interpolation problems that would not occur in the binary
truth context.

Let us consider L to be the residuated lattice determined by the Goguen / prod-
uct. We consider the following commutative square of inclusions of propositional logic
signatures:

p
⊆
//

⊆
��

p,q1

⊆
��

p,q2 ⊆
// p,q1,q2

We also consider two MVL models, M and N, for p,q1,q2 as defined by the following
truth table:

p q1 q2
M 1/2 1/2 1/2
N 1/2 1 1/4

We let the L-institution be the fragment of MVL determined only by this data. In this
L-institution we have that

p∗q1 |= {p,q2} = 1/4; p∗q1 |= p = 1; p |= {p,q2} = 1/4.

It follows that p is a graded Craig interpolant for p∗q1 and {p,q2}.
Now let us have another look at this case. p∗q1 |= p = 1 holds in general because in

any residuated lattice x∗y≤ x. In binary propositional logic p |= {p,q2} is false unless we
constrain the models only to those in which q2 is true, which would make q2 redundant.
Similar considerations apply to the premise p ∗ q1 |= {p,q2}, a situation that makes this
a non-problem in classical propositional logic. However, in the many-valued version of
this example we get a good graded interpolation problem that has a solution.
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Other versions of graded interpolation
The following definition strengthen the concept of graded interpolation introduced previ-
ously. We formulate it only for the Craig interpolation case, the respective Craig-Robinson
extension being straightforward. In any L-entailment system, for any κ,κ1,κ2 ∈ L \ {0}
such that κ≤ κ1 ∗κ2, a commutative square of signature morphisms

Σ
ϕ1
//

ϕ2

��

Σ1

θ1
��

Σ2
θ2

// Σ′

is a (κ,κ1,κ2)-Ci square when for any E1 ⊆ SenΣ1 and E2 ⊆ SenΣ2 such that

θ1E1 ⊢ θ2E2 ≥ κ

there exists E ⊆ SenΣ, called the (κ,κ1,κ2)-interpolant of E1, E2, such that

E1 ⊢ ϕ1E ≥ κ1 and ϕ2E ∪Γ2 ⊢ E2 ≥ κ2.

The graded interpolation concept just defined is stronger than the graded interpolation
previously introduced in the sense given by the following fact.

Fact 13.29. A commutative square of signature morphisms which has the property that
for each κ ̸= 0 there exists κ1,κ2 such that it is a (κ,κ1,κ2)-Ci square, is a Ci square in
the sense of the former definition of graded interpolation too.

On the other hand, a weaker version of interpolation may be obtained by requiring
that the values of the entailments involved in the interpolation relation are non-zero. In
this way an inequality relation need not be considered anymore.

Graded definability
In what follows we refine to many-valued truth the concepts of implicit and of explicit de-
finability of Chap. 10. We do this both at the semantic and at the more abstract consequence-
theoretic level. Then, in this context, by assuming graded interpolation, we prove the ‘de-
finability property’, that implicit implies explicit definability. Here we do not consider
fully its reverse implication which in classical first-order model theory is considered not
interesting. However, this can still be developed in the many-valued context of this section
along corresponding ideas from Sec. 10.2.

Semantic implicit graded definability. In any L-institution, for any κ ∈ L, a signature
morphism ϕ : Σ→ Σ′ is defined κ-implicitly by E ′ ⊆ SenΣ′ when for any Σ′-models M′1
and M′2 if

• M′1 |= E ′ ∧ M′2 |= E ′ ≥ κ and

• (Modϕ)M′1 = (Modϕ)M′2
then M′1 = M′2.
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Consequence-theoretic implicit graded definability. In any L-entailment system, for
any κ ∈ L, a signature morphism ϕ : Σ→ Σ′ is defined κ-implicitly by E ′ ⊆ SenΣ′ when
for any diagram of pushout squares like below

Σ′
θ′
// Σ′1

u

��

Σ
θ
//

ϕ
��

ϕ

@@

Σ1
ϕ1

��

ϕ1

??

Σ′′

Σ′
θ′
// Σ′1

v

??

(13.24)

and for any Σ′1-sentence ρ we have that

u(θ′E ′)∪ v(θ′E ′)∪uρ ⊢ vρ≥ κ.

In the many-valued context semantic implicit definability can be abstracted to consequence-
theoretic implicit definability as shown by Prop. 13.30 below. But this abstraction is more
subtle than in the binary truth case because the two implicit definability properties in-
volved are relative to different truth values. These are related by the following order-
theoretic concept. Let L be a partially ordered set with bottom (0) and top (1) elements
and with a binary commutative monotone operation ∗ which admits 1 as identity. For
any κ, ℓ ∈ L we say that ℓ is a lower-companion to κ when {x | x ∗κ ̸= 0} ⊆ {x | ℓ ≤ x}.
Note that when L is the binary Boolean algebra, 1 is a lower-companion to itself, which
explains why the following result can be interpreted properly in the binary case.

Proposition 13.30. In any semi-exact L-institution let κ, ℓ ∈ L such that ℓ is a lower-
companion to κ. Then a signature morphism ϕ : Σ→ Σ′ is defined κ-implicitly by E ′ ⊆
SenΣ′ in the consequence-theoretic sense if it is defined ℓ-implicitly by E ′ in the semantic
sense.

Proof. We have to prove that u(θ′E ′)∪v(θ′E ′)∪uρ |= vρ ≥ κ. which means that for any
Σ′′-model M′′ we have to prove that

1 (M′′ |= u(θ′E ′) ∧ M′′ |= v(θ′E ′) ∧ M′′ |= uρ)⇒M′′ |= vρ ≥ κ.

We distinguish two cases:

1. When M′′↾u↾θ′ |= E ′ ∧ M′′↾v↾θ′ |= E ′ ̸≥ ℓ. It follows that

2 M′′ |= u(θ′E ′) ∧ M′′ |= v(θ′E ′) ∧ M′′ |= uρ ̸≥ ℓ Sat. Condition, Reductio ad Absurdum

3 κ∗ (M′′ |= u(θ′E ′) ∧ M′′ |= v(θ′E ′) ∧ M′′ |= uρ) = 0 2, ℓ lower-companion to κ,
Reductio ad Absurdum

4 κ∗ (M′′ |= u(θ′E ′) ∧ M′′ |= v(θ′E ′) ∧ M′′ |= uρ) ≤ M′′ |= vρ 3.

By the residual adjunction property, from 4 we obtain 1.

2. When M′′↾u↾θ′ |= E ′ ∧ M′′↾v↾θ′ |= E ′ ≥ ℓ. Then:
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5 M′′↾u↾θ′↾ϕ = M′′↾v↾θ′↾ϕ diagram (13.24) commutes, Mod functor

6 M′′↾u↾θ′ = M′′↾v↾θ′ 5, ℓ-implicit definability by E ′

7 M′′↾u↾ϕ1 = M′′↾v↾ϕ1 ϕ1;u = ϕ1;v, Mod functor

8 M′′↾u = M′′↾v 6, 7, uniqueness property of model amalgamation in the square (θ,ϕ,ϕ1,θ
′)

9 M′′ |= uρ = M′′ |= vρ 8, Satisfaction Condition

10 M′′ |= u(θ′E ′) ∧ M′′ |= v(θ′E ′) ∧ M′′ |= uρ ≤M′′ |= vρ 9

11 (M′′ |= u(θ′E ′) ∧ M′′ |= v(θ′E ′) ∧ M′′ |= uρ)⇒M′′ |= vρ = 1≥ κ 10,
residual adjunction property.

□

Explicit graded definability We may recall from Chap. 10 that, in binary institutions, a
signature morphism ϕ : Σ→Σ′ is explicitly defined by E ′⊆ SenΣ′, when for each pushout
square of signature morphisms

Σ
ϕ
//

θ

��

Σ′

θ′

��

Σ1 ϕ1
// Σ′1

(13.25)

and each ρ ∈ SenΣ′1 there exists Eρ ∈ SenΣ1 such that

θ
′E ′∪ρ |= ϕ1Eρ and θ

′E ′∪ϕ1Eρ |= ρ. (13.26)

This can be refined to the many-valued context just by fixing a truth value κ ∈ L and then
turning (13.26) to

(θ′E ′∪ρ |= ϕ1Eρ)∗ (θ′E ′∪ϕ1Eρ |= ρ) ≥ κ.

Unlike semantic implicit definability, this relation can be expressed directly within the
more abstract context on any L-entailment system:

(θ′E ′∪ρ ⊢ ϕ1Eρ)∗ (θ′E ′∪ϕ1Eρ ⊢ ρ) ≥ κ.

The definability property by interpolation in the graded context. The following re-
sult shows that at the general many-valued consequence-theoretic level, explicit definabil-
ity implies implicit definability. Note the rather lax conditions of the result: no pushout
property required, and any set Γ of sentences instead of Eρ. This situation is consonant
to the rather trivial nature of this part of the definability property; in the classical studies
of definability this is often skipped. We do this property here only for the consequence-
theoretic level; in order to have this at the proper semantic level we need also a kind of
reversal of Prop. 13.30, which should involve concepts and ideas from Sec. 10.2. We will
not do this here.
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Proposition 13.31. In any L-entailment system with ∗ monotone, for any signature mor-
phism ϕ : Σ→ Σ′ and any E ′ ⊆ Sen(Σ′), for any commuting diagram of signature mor-
phisms like (13.24) and for all Γ⊆ SenΣ1, ρ ∈ SenΣ′1 we have that

(θ′E ′∪ρ ⊢ ϕ1Γ)∗ (θ′E ′∪ϕ1Γ ⊢ ρ) ≤ (θ′;u)E ′∪ (θ′;v)E ′∪uρ ⊢ vρ.

Proof. This is an immediate consequence of Prop. 13.28 by setting ϕ1 and ϕ2 to ϕ1, θ1
to u, θ2 to v, E to Γ, E1 to θ′E ′∪ρ, E2 to ρ and Γ2 to θ′E ′. □

The following couple of results represent many-valued replicas of the definability-
by-interpolation result of Thm. 10.5. Thm. 13.32 below happens at the more abstract level
of L-entailment systems.

Theorem 13.32. In any L-entailment system that has ⟨L,R⟩-CRi for classes L,R of
signature morphisms that are stable under pushouts, for any signature morphism ϕ : Σ→
Σ′ ∈ L∩R and any E ′ ⊆ SenΣ′, for any diagram of pushout squares:

Σ′
θ′
// Σ′1

u

��

Σ
θ
//

ϕ
��

ϕ

@@

Σ1
ϕ1

��

ϕ1

??

Σ′′

Σ′
θ′
// Σ′1

v

??

(13.27)

for any ρ ∈ SenΣ′1 there exists Eρ ⊆ SenΣ1 such that

(θ′E ′∪ρ ⊢ ϕ1Eρ)∗ (θ′E ′∪ϕ1Eρ ⊢ ρ) ≥ (θ′;u)E ′∪ (θ′;v)E ′∪uρ ⊢ vρ.

Proof. • By the stability under pushouts we get that ϕ1 ∈ L∩R.

• By the CRi property of the L-entailment system we have that the right hand side
pushout square of diagram (13.27) is a CRi square.

• Then Eρ is obtained as the interpolant for the interpolation problem corresponding to
setting ϕ1 and ϕ2 to ϕ1, θ1 to u, θ2 to v, E1 to θ′E ′∪ρ, E2 to ρ and Γ2 to θ′E ′.

□

By putting together the results of Prop. 13.30 and of Thm. 13.32 we obtain the
semantic graded definability property:

Corollary 13.33 (Semantic graded definability by interpolation). In any semi-exact L-
institution with ⟨L,R⟩-CRi we let κ, ℓ ∈ L such that ℓ is a lower-companion to κ. Then a
signature morphism in L∩R is defined κ-explicitly when it is defined ℓ-implicitly.
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Exercises
13.30. [89] Interpolation in localized L-institutions
Let L be the closed interval [0,1] or a set {0, 1

n ,
2
n , . . . ,

n−1
n ,1} endowed with the structure of resid-

uated lattice given by the Łukasiewicz arithmetic conjunction, and consider an L-institution I that
has designated model-theoretic disjunctions (denoted by ∨). Let M′ be any Σ′-model. The construc-
tion of Exercise 3.10 can be applied directly without any changes to I . Any commutative square of
signature morphisms in I like the following one

Σ
ϕ1
//

ϕ2

��

χ

  

Σ1

θ1

��

Σ2
θ2

// Σ′

gets interpreted in the obvious manner as a commutative square of signature morphisms in I/M′. As
a matter of notations let I/M′ = (Sig′,Sen′,Mod′, |=). Let ρ ∈ SenΣ = Sen′χ, ρ1 ∈ SenΣ1 = Sen′θ1
and ρ2 ∈ SenΣ2 = Sen′θ2. Show that ρ is a Craig interpolant for ϕ1ρ∨ρ1 and {ϕ2ρ,ρ2} in I/M′.

13.31. [89] Compositionality of graded interpolation
Consider an L-entailment system such that ∗ is associative and monotone. If both the left-hand side
and the right-hand side squares below are CRi squares then the outer square is a CRi square too.

Σ
ϕ1
//

ϕ2

��

Σ1
ζ1
//

θ1

��

Ω1

ω

��

Σ2
θ2

// Σ′
ζ′
// Ω′

This was a “horizontal” compositionality property. What about a “vertical” one? (Hint: It can be
done even with slightly weaker hypotheses.)

13.32. [89] Craig-Robinson interpolation via Craig interpolation
Let L be a Heyting algebra. In any L-institution I with model-theoretic implications any Ci square
is a CRi square. (Hint: Draw inspiration from the proof of Prop. 9.24.)

13.33. [89] Robinson consistency by interpolation
In any L-institution such that L is a residuated lattice, for each signature morphism ϕ : Σ→ Σ′ and
each set E ′ of Σ′-sentences and each κ ∈ L, we let [ϕ−1E ′]κ = {ρ ∈ SenΣ | E ′ |= ϕρ ≥ κ}. For any
ℓ,κ1,κ2 ∈ L\{0}, a commutative square of signature morphisms

Σ
ϕ1
//

ϕ2

��

Σ1

θ1

��

Σ2
θ2

// Σ′

is a (ℓ,κ1,κ2)-Rc square when for any finite sets Ei of Σi-sentences, i = 1,2, if [ϕ−1
1 E1]κ1 and

[ϕ−1
2 E2]κ2 are inter-consistent (in the sense introduced in Ex. 13.25) then θ1E1 and θ2E2 are ℓ-

inter-consistent. Prove that in any L-institution with conjunctions and negations, if ℓ is a lower-
companion to κ then any (κ,κ1,κ2)-Ci square is a (ℓ,κ1,κ2)-Rc square.
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13.34. [89] Interpolation by Robinson consistency
For any κ, ℓ ∈ L, ℓ is an upper-companion to κ if and only if ℓ ∗ κ ̸= 0. In any inter-compact L-
institution (in the sense introduced in Ex. 13.25) with conjunctions and negations, if ℓ is an upper-
companion to κ then any (ℓ,κ1,κ2)-Rc square is a (κ,κ1,κ2)-Ci square.

13.35. How do the results of Exercises 13.33 and 13.34 relate to the result of Thm. 9.15?

13.36. Formulate and prove a reversal of Prop. 13.30, when consequence-theoretic graded implicit
definability determines semantic graded implicit definability. (Hint: Look at Prop. 10.4.)

13.6 Translation structures
In this section we extend the binary institution theory infrastructure of translations to
L-institutions. We do this on the expected two levels:

1. We introduce morphisms of fuzzy theories and study their co-limits and model
amalgamation properties by generalising results of Sections 4.2 and 4.3 that allow
for the lifting of these two properties from categories of signatures to categories of
theories. The motivation for these developments is similar to that from binary insti-
tution theory, namely a modular approach to the existence of fuzzy theory co-limits
and to model amalgamation that reduces both problems in a general manner to the
level of the underlying categories of signatures. These results do extend their binary
truth version to many-valued truth. We also extend to many-valued truth the concept
of ‘institution of theories’, and exploit it here in a similar way we did in binary truth
institution theory, such as for supporting the encodings between many-valued truth
institutions.

2. We develop a concept of comorphism for many-valued truth institutions that gen-
eralises the binary concept of comorphism with the aim to provide a mathematical
device for translating and encoding between many-valued truth institutions. We do
this in such a way that allows for the lattice of truth values to vary between the
source and the target of the comorphisms. This flexibility increases the applicability
potential of this concept.

Categories of fuzzy theories
The generalisation of the concept of theory morphism introduced in Sec. 4.1 to fuzzy the-
ories in L-institutions faces the following specific hurdle: unlike in binary institutions, in
L-institutions there can be more than one concept of theory closure (as we have seen in
Sec. 13.2). Here the solution is to go a bit more general and parameterise the concept of
fuzzy theory morphism by a respective concept of L-closure system. Thus consider an L-
institution equipped with an L-closure system denoted by ( )•. A morphism of fuzzy theo-
ries ϕ : (Σ,T )→ (Σ′,T ′) is a signature morphism ϕ : Σ→ Σ′ such that T ≤ (Senϕ);T ′•.

It is interesting to note that this is yet another situation that illustrates the view of
category theorists that a category is in fact defined by its arrows rather than by its objects
as there can be several categories sharing the same class fuzzy theories.
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Proposition 13.34. For any choice of a closure system ( )•, the respective fuzzy theory
morphisms form a category under the composition inherited from the category of the
signatures.

Proof. We essentially have to show the composition of theory morphisms is still a theory
morphism. Let ϕ : (Σ,T )→ (Σ′,T ′) and ϕ′ : (Σ′,T ′)→ (Σ′′,T ′′) be theory morphisms.
We prove that ϕ;ϕ′ : (Σ,T )→ (Σ′′,T ′′) is a theory morphism too. We have that

1 T ≤ (Senϕ);T ′• ϕ theory morphism

2 T ′ ≤ (Senϕ′);T ′′• ϕ′ theory morphism

3 T ′• ≤ ((Senϕ′);T ′′•)• 2, C-monotonicity

4 ((Senϕ′);T ′′•)• ≤ (Senϕ′);T ′′•• C-translation

5 T ′′•• = T ′′• C-transitivity

6 T ≤ (Senϕ);(Senϕ′);T ′′• 1, 3, 4, 5

7 (Senϕ);(Senϕ′) = Sen(ϕ;ϕ′) functoriality of Sen

8 T ≤ Sen(ϕ;ϕ′);T ′′• 6, 7.

□

Fuzzy theory morphisms as binary theory morphisms. Concerning the concept of
theory morphisms, the following question arises: to what extent is it possible to express
fuzzy theory morphisms as binary institution-theoretic morphisms of theories in the bi-
nary flattening? In what follows we explore this issue by clarifying the relationship be-
tween the respective categories of theory morphisms.

For any L-institution I we let Th• denote the category of theory morphisms with
respect to a closure operator ( )• and Th♯ denote the category of theory morphisms in I ♯.

Proposition 13.35. If ( )• is a closure system that is lower than the Galois connection
closure system ( )∗∗ then there exists an embedding (i.e. injective on objects and faithful)
functor Φ• : Th•→ Th♯ defined for each fuzzy theory (Σ,T ) by

Φ
•(Σ,T ) = (Σ,T ♯) where T ♯ = {(ρ,T ρ) | ρ ∈ SenΣ,T ρ ̸= 0}.

Proof. Note that given an theory morphism ϕ : (Σ,T )→ (Σ′,T ′), in the realm of sig-
nature morphisms, Φ•ϕ = ϕ. All we have to do is to prove that this is a binary theory
morphism (Σ,T ♯)→ (Σ′,T ′♯), that is T ′♯ |=♯ ϕT ♯. We consider any Σ′-model M′ such that
M′ |=♯ T ′♯. Then:

1 M′∗ ≥ T ′ M′ |=♯ T ′♯, definition of T ′♯

2 M′∗ = M′∗∗∗ ≥ T ′∗∗ 1, general properties of Galois connections

3 (Senϕ);M′∗ ≥ (Senϕ);T ′∗∗ 2

4 (Senϕ);T ′∗∗ ≥ (Senϕ);T ′• ( )• ≤ ( )∗∗

5 (Senϕ);T ′• ≥ T ϕ : (Σ,T )→ (Σ′,T ′) theory morphism

6 (Senϕ);M′∗ ≥ T 3, 4, 5
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7 (Senϕ);M′∗ = ((Modϕ)M′)∗ Satisfaction Condition in I

8 ((Modϕ)M′)∗ ≥ T 6, 7

9 (Modϕ)M′ |=♯ T ′♯ 8

10 M′ |=♯ ϕT ♯ 9, Satisfaction Condition in I ♯.

□

L-institutions of fuzzy theories. Prop. 13.34 generalises the result of Prop. 4.1 that in
Sec. 4.1 was the basis for the definition of the institution I th of the ‘theories of the (binary)
institution I ′. We have seen how the institution I th is useful for importing concepts such
as (co-)limits and model amalgamation from the categories of signatures to the categories
of theories, but, more importantly, for a smooth formulation of institution encodings in
terms of ordinary comorphisms. Similarly to I th, Prop. 13.34 can be used as the basis
for defining L-institutions of fuzzy theories over a fixed L-institution I . Because in the
many-valued situation the concept of morphism of fuzzy theories is parameterised by an
L-closure system of choice, any I may determine several L-institutions of fuzzy theories.
Moreover, this construction requires a condition on the L-closure system involved, which
is necessary to get the mode reducts inherited from the L-institution to the L-institution
of fuzzy theory morphisms.

Proposition 13.36. Let I be an L-institution endowed with a closure system ( )• that is
lower than the Galois connection closure system ( )∗∗. Let ϕ : (Σ,T )→ (Σ′,T ′) be any
fuzzy theory morphism. Then, for any (Σ′,T ′)-model M′, its ϕ-reduct is a (Σ,T )-model.

Proof. We have the following:

1 M′∗ ≥ T ′ M′ model of (Σ′,T ′)

2 M′∗ ≥ T ′ if and only if M′ |=♯ T ′♯ definition of I ♯

3 ϕ : (Σ,T ♯)→ (Σ′,T ′♯) ∈ Th♯ ϕ : (Σ,T )→ (Σ′,T ′) ∈ Th•, Prop. 13.35

4 (Modϕ)M′ |=♯ T ♯ 1, 2, 3

5 ((Modϕ)M′)∗ ≥ T if and only if (Modϕ)M′ |=♯ T ♯ definition of I ♯

6 ((Modϕ)M′)∗ ≥ T 4, 5.

□

Note that both concrete L-closure systems discussed in Sec. 13.2 fullfil the condi-
tions of Prop. 13.36.

Proposition 13.37 (L-institutions of fuzzy theories). Let I be an L-institution endowed
with a closure system ( )• that is lower than the Galois connection closure system ( )∗∗.
Then

I • = (Th•,Sen•,Mod•, |=•)

is an L-institution, called the L-institution of fuzzy theories with respect to ( )•, where
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– Sen• = Π•;Sen where Π• : Th•→ Sig is the forgetful functor,

– Mod•(Σ,T ) is the full subcategory of Mod(Σ) determined by the (Σ,T )-models (i.e.,
the Σ-models M such that T ≤M∗), and

– for each (Σ,T )-model M and each ρ ∈ Sen•(Σ,T ) = SenΣ,

M |=•(Σ,T ) ρ = M |=Σ ρ.

Proof. • That Th• is a category is given by Prop. 13.34.

• That Mod• is a functor (Th•)op → Cat is given by the fact that Mod is a functor in
conjunction with Prop. 13.36.

• Sen• is a functor as composition of two functors.

• The Satisfaction Condition in I • follows immediately from the Satisfaction Condition
in I because the sentence translations and the model reducts of I • are inherited from
I .

□

Colimits of fuzzy theories and model amalgamation
Prop. 4.2 showed us how in binary institutions limit / colimits of theories exist in depen-
dence of limits / colimits of signatures. Below we extend this to fuzzy theories. Since in
the applications the importance of colimits surpasses that of limits of theories we will
do only the colimits result, the limit result being proposed as an exercise. We fix an L-
institution such that L is a complete lattice and is endowed with a closure system ( )•.
For any signature morphism ϕ : Σ→ Σ′ and any theory (Σ,T ) we let the theory (Σ′,ϕT )
be defined by

(ϕT )ρ′ =
∨

ϕρ=ρ′
T ρ.

Proposition 13.38. The forgetful functor Π• : Th•→ Sig lifts colimits.

Proof. Consider a functor D : J → Th• such that D j = (Σ j,Tj) for each j ∈ |J| and let
µ : D;Π•⇒ Σ be a colimit cocone in Sig. Let

T =
∨
j∈|J|

µ jTj.

We prove that µ : D⇒ (Σ,T ) is a colimit cocone in Th•.

• First we show that for each j ∈ |J|, µ j : (Σ j,Tj)→ (Σ,T ) is a theory morphism.

1 ∀ρ j Tjρ j ≤ (µ jTj)(µ jρ j) definition of µ jTj

2 µ jTj ≤ T definition of T

3 ∀ρ j Tjρ j ≤ T (µ jρ j) 1, 2
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4 T (µ jρ j)≤ T •(µ jρ j) C-reflexivity

5 ∀ρ j Tjρ j ≤ T •(µ jρ j) 3, 4

6 Tj ≤ (Senµ j);T • 5.

By Prop. 13.34 we get that µ : D⇒ (Σ,T ) is a cocone in Th•.

• Now let µ′ : D⇒ (Σ′,T ′) be any cocone in Th•. By the colimit property of µ : D;Π•⇒
Σ there exists a unique ϕ : Σ→ Σ′ such that µ;ϕ = µ′ (in Sig). It remains to prove
that ϕ : (Σ,T )→ (Σ′,T ′) is a theory morphism, ie. that T ≤ (Senϕ);T ′•. Since T =∨

j∈|J| µ jTj it is enough to prove that for each j ∈ |J|, µ jTj ≤ (Senϕ);T ′•. This goes as
follows:

1 ∀ρ (µ jTj)ρ =
∨

µ jρ j=ρ Tjρ j definition of µ jTj

2 ∀ρ j Tjρ j ≤ T ′•(µ′jρ j) µ′j : (Σ j,Tj)→ (Σ′,T ′) fuzzy theory morphism

3 ∀ρ (µ jTj)ρ≤
∨

µ jρ j=ρ T ′•(µ′jρ j) 1, 2

4 ∀ρ j such that µ jρ j = ρ T ′•(µ′jρ j) = T ′•(ϕρ) µ′j = µ j;ϕ

5 ∀ρ (µ jTj)ρ≤ T ′•(ϕρ) 3, 4.

□

Model amalgamation. Now we establish model amalgamation properties for fuzzy the-
ories in dependence of corresponding model amalgamation properties for the underlying
signatures. The concept of model amalgamation in L-institutions is the same as model
amalgamation in binary institutions because the satisfaction relation does not play any
role in this. In spite of the fact that model amalgamation at the level of fuzzy theories
does involve the satisfaction relation, model amalgamation still can be reduced to ordinary
model amalgamation by considering I •. The following result constitutes an extension of
the result of Thm. 4.8 to many-valued truth.

Proposition 13.39. Let I be an L-institution endowed with a closure system ( )• that is
lower than the Galois connection closure system. If I has (unique) J-model amalgamation
then I • has (unique) J-model amalgamation too.

Proof. Let D : J → Th• be a functor. For each j ∈ |J| let D j = (Σ j,Tj). Let µ′ : D⇒
(Σ′,T ′) be a colimit cocone. Let {M j | j ∈ |J|} be a D-model.

• Then {M j | j ∈ |J|} is a D;Π•-model too.

• Let µ : D;Π•⇒ Σ be a colimit cocone. By Prop. 13.38 we lift µ to a colimit cocone
µ : D⇒ (Σ,T ). Let M be the amalgamation in I of {M j | j ∈ |J|} with respect to µ.
Then for each j ∈ |J|

1 ∀ρ j Tjρ j ≤M∗j ρ j M j is (Σ j,Tj)-model

2 M j = (Modµ j)M M is the amalgamation of {M j | j ∈ |J|} with respect to µ
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3 ((Modµ j)M)∗ρ j = M∗(µ jρ j) Satisfaction Condition

4 Tj ≤ (Senµ j);M∗ 1, 2, 3

5 Tj ≤ (Senµ j);(M∗)• 4, C-reflexivity.

• Hence, for each j ∈ |J|, µ j : (Σ j,Tj)→ (Σ,M∗) is a fuzzy theory morphism, thus
µ : D⇒ (Σ,M∗) is a cocone.

• By the colimit property of µ : D⇒ (Σ,T ) it follows that there exists an unique fuzzy
theory morphism θ : (Σ,T )→ (Σ,M∗) such that µ;θ = µ. By the colimit property of µ
in Sig it follows that θ = 1Σ. Hence T ≤ (M∗)•. Since (M∗)• ≤ (M∗)∗∗ = M∗ it follows

T ≤M∗. (13.28)

• Let ϕ : (Σ′,T ′)→ (Σ,T ) be the isomorphism given by the colimit properties of µ : D⇒
(Σ,T ) and of µ′ : D⇒ (Σ′,T ′). Then we consider M′ = (Modϕ)M. We have that

1 T ′ ≤ (Senϕ);T • ϕ : (Σ′,T ′)→ (Σ,T ) fuzzy theory morphism

2 T • ≤ T ∗∗ ( )• ≤ ( )∗∗

3 T ≤M∗ (13.28)

4 T ∗∗ ≤M∗∗∗ = M∗ 3, Galois connection properties of ( )∗

5 T ′ ≤ (Senϕ);M∗ 1, 2, 4

6 (Senϕ);M∗ = M′∗ Satisfaction Condition

7 T ′ ≤M′∗ 5, 6.

• Hence M′ is a (Σ′,T ′)-model and moreover for each j ∈ |J|,

(Modµ′j)M
′ = Mod(µ j;ϕ

−1)M′ = (Modµ j)M = M j.

This shows that M′ is a model amalgamation of {M j | j ∈ |J|}.

• For the unique model amalgamation variant of this result it is enough to note that the
uniqueness of M′ follows from the uniqueness of M which holds by the uniqueness
assumption of the model amalgamation property in L .

□

MV-comorphisms
The extension of the institution-theoretic method of logic-by-translation to many-valued
truth institutions relies on the generalisation of the binary concept of comorphism to L-
institutions. An important aspect of this extension is the possibility to change the set of
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truth values across L-institutions, in other words the source and the target of a comor-
phism may have different Ls. In this respect the following notation will be useful: by
I [L ] we mean that I is an L-institution.

Let L and L ′ be partially ordered sets and let I [L ] = (Sig,Sen,Mod, |=) and I ′[L ′] =
(Sig′,Sen′,Mod′, |=′). Then (Φ,α,β,λ) : I [L ]→ I ′[L ′] is an MV-comorphism when

– Φ : Sig→ Sig′ is functor (called the signature translation functor),

– α : Sen⇒Φ;Sen′ is a natural transformation (called the sentence translation),

– β : Φop;Mod′⇒Mod is a natural transformation (called the model translation), and

– λ : L ′→ L is a monotone function

such that for each I -signature Σ, each Σ-sentence ρ and each ΦΣ-model M′ the following
Satisfaction Condition holds:

βΣM′ |=Σ ρ = λ(M′ |=′ΦΣ αΣρ).

When λ is an identity it may be omitted and then the MV-comorphism may be called an
L-comorphism. At the abstract level, the components Φ, α, β of an MV-comorphism do
not differ from those in the definition of binary institution-theoretic comorphisms because
the many-valued truth aspect does not have a presence at the level of categories of signa-
tures, and of the sentence and model functors. Here it is important to distinguish between
the abstract and the concrete level, because in the latter, of course many-valued truth is
present, usually on the semantics (models) side. However, many-valued truth is present
in the satisfaction relation both in the case of abstract and concrete L-institutions.

The category of MV-comorphisms. The proofs of the following couple of propositions
consist of straightforward calculations very similar to those for the binary comorphisms,
so we omit them here.

Proposition 13.40 (The category of MV-comorphisms). Given MV-comorphisms

(Φ,α,β,λ) : I [L ]→ I ′[L ′] and (Φ′,α′,β′,λ′) : I ′[L ′]→ I ′′[L ′′],

the 4-tuple

(Φ;Φ
′, α;Φα

′, Φβ
′;β, λ◦λ

′)

is an MV-comorphism I [L ]→ I ′′[L ′′] which is called the composition of the two MV-
comorphisms. Moreover, the composition of MV-comorphisms is associative and has
identities.

The following examples emphasise various different aspects of MV-comorphisms.
The first one emphasises the natural possibility to have a proper (non-identity) λ. The sec-
ond example presents a ‘theoroidal’ MV-comorphism, i.e. when signatures get mapped
to fuzzy theories. The third example generalises to many-valued truth the binary co-
morphism that constitutes the foundations for regarding the ordinary logic programming
paradigm as a particular form of equational logic programming (this can be found under
the title ‘Encoding relations as operations in FOL’ in Sec. 3.3).
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Changing truth values. This example has the potential to be replicated successfully to
many concrete L-institutions of interest, such as FEL . Here we develop it for the em-
blematic case of MVL , this being also the simplest non-trivial example where changing
truth values can be illustrated properly. As we are already aware, MVL represents in fact
a class of L-institutions as L is a parameter of MVL . Then each homomorphism of resid-
uated lattices λ : L ′ → L determines a comorphism (Φ,α,β) : MVL [L ]→MVL [L ′]
where

• Φ and α are identities;

• for each (S,C,P)-model M′, β(S,C,P)M′ only re-assigns the truth values in M′ accord-
ing to λ, i.e., for each π in Pw and m ∈M′w, (β(S,C,P)M′)πm = λ(M′πm).

• Then the Satisfaction Condition of this comorphism can be proved by induction on
the structure of the sentences. The base case is given by the mere definition of β, while
the step case relies on the homomorphism properties of λ.

Encoding FEL into many-valued first order logic. Fuzzy equational logic FEL can
be “encoded” into many-valued first-order logic under the following conditions:

• We consider also non-constant operation symbols, so now a signature is just a FOL
signature (S,F,P). The models interpret the operation symbols ina crisp way, like
FOL models do.

• We add crisp equality to MVL . We may denote this extended L-institution by MVL=.

• We assume that L is a residuated lattice such that there exists a natural number n such
that for each x ∈ L\{1}, xn = 0 (where x0 = 1, xn+1 = xn ∗ x).

Both conditions above are required by our encoding of the fuzzy equality. Prominent
examples of L that satisfy the second condition above are the discrete Łukasiewicz resid-
uated lattices. On the other hand, Goguen and Gödel residuated lattices do not satisfy
it.

The encoding under discussion can be presented as an L-comorphism (Φ,α,β) : FEL→
(MVL=

)• where ( )• may be any closure system on MVL= that is lower than the Galois
connection closure system. This goes as follows.

• Let (S,F) be any FEL-signature. Then Φ(S,F) = ((S,F,≈),T (F)) where ≈ = (≈s
)s∈S is a family of relation / predicate symbols such that the arity of≈s is ss, and T (F)
is the MVL= theory defined by

T (F)(∀x)x≈ x = 1.
T (F)(∀x,y)x≈ y ⇒ y≈ x = 1.
T (F)(∀x,y,z)(x≈ y)∗ (y≈ z) ⇒ (x≈ z) = 1.
T (F)(∀x,y)(x≈ y)∗ . . .∗ (x≈ y)︸ ︷︷ ︸

×n

⇒ (x = y) = 1.

T (F)ρ = 0 when ρ is a sentence different from any of the four sentences above.
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The first three axioms above are obvious; they represent the encoding of the fact that
≈ is a fuzzy equivalence. The fourth axiom is an encoding of the reverse of the fuzzy
reflexivity implication, ie., of (x≈ y) = 1 implies x = y. Since this cannot be encoded
as such in MVL=

1 , the fourth axiom represents a pragmatic solution to this because
(x≈ y)∗ . . .∗ (x≈ y)︸ ︷︷ ︸

×n

is 1 if and only if (x≈ y) = 1.

• On the atomic sentences the sentence translations are defined by αF(t ≈ t ′) = (t ≈ t ′).
Note that in this equation the symbol ≈ is overloaded, in its left-hand side it stands for
the meta-symbol of fuzzy equality while in its right-hand side it represents the binary
relation / predicate symbol in the encoded signature. Then α extends in the obvious
way to quantified fuzzy equations.

• For each (S,F,≈)-model M such that M∗ ≥ T (F), its translation β(S,F)M does not
achieve anything different from M. However here it is essential to note that ≈M is a
fuzzy equality indeed as a consequence of M∗ ≥ T (F).

Encoding many-valued Horn clause logic into conditional fuzzy equational logic.
Let HMVL be the Horn clause fragment of MVL and let CFEL be the conditional ex-
tension of FEL . This means that in both HMVL and CFEL the sentences are of the
form (∀X)H ⇒C where C is an atomic sentence and H is a finite conjunction of atomic
sentences. We define an L-comorphism (Φ,α,β) : HMVL → CFEL as follows:

• Each MVL signature (S,C,P) gets mapped to Φ(S,C,P) = (S+ {b},Ω) where Ω =
C+P+ true such that Pw→s = Pw is s = b and Pw→s = /0 otherwise. Thus Φ is just
like in the corresponding example from Sec. 3.3.

• α(S,C,P)(πx) = (πx ≈ true) for each appropriate finite sequence x of constants. Then
α(S,C,P) extends canonically to non-atomic sentences.

• For each Φ(S,C,P)-model M,

– First β(S,C,P)M erases the interpretation of the sort b,

– then sets the underlying set of β(S,C,P)M to Ms,

– for each σ in C, it defines (β(S,C,P)M)σ = Mσ, and

– for each π in P, it defines (β(S,C,P)M)πm = (Mπm≈M Mtrue).

Preservation of graded semantic consequence. In the many-valued case the preser-
vation of semantic consequence means the preservation of the degree of consequence.
Like in the binary case, this is a basic expected property of MV-comorphisms for which
the translation of truth values (λ) preserve the residuated lattice operations on the truth
values. The following result does this, but we leave its proof as an exercise.
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Proposition 13.41 (Preservation of the graded semantic consequence). Let (Φ,α,β,λ) : I [L ]→
I ′[L ′] be an MV-comorphism such that λ is a homomorphism of complete residuated lat-
tices. Then for any I -signature Σ, any Γ⊆ SenΣ,γ ∈ SenΣ

Γ |=Σ γ ≤ λ(αΣΓ |=′ΦΣ αΣγ).

Conservativity. Like with binary comorphisms, in the case of MV-comorphisms, con-
servativity is the property that guarantees that by translating we cannot deduce more.
This is crucial when doing logic-by-translation, once we establish a consequence degree
we can return it to the translated (sets of) sentences. For MV-comorphisms, conservativity
is expressed as an equality of truth degrees. An MV-comorphism (Φ,α,β,λ) : I [L ]→
I ′[L ′] is conservative when L and L ′ are complete residuated lattices and for each Σ ∈
|SigI |, Γ⊆ SenI

Σ, γ ∈ SenI
Σ.

Γ |=Σ γ = λ(αΣΓ |=′ΦΣ αΣγ).

Also, like in the binary situation, the most convenient way to obtain conservativity of
MV-comorphisms is via the model expansion property. Itn is convenient technically at
the general level, but, more importantly, it is also convenient in the sense that it com-
monly holds in the concrete applications. An MV-comorphism (Φ,α,β,λ) has the model
expansion property when for each Σ-model M in I there exists a ΦΣ-model M′ in I ′ such
that βΣM′ = M. The proof of the following result is straightforward and is left as exercise.

Proposition 13.42. An MV-comorphism (Φ,α,β,λ) : I [L ] → I ′[L ′] such that λ is a
homomorphism of complete residuated lattices is conservative when it has the model
expansion property.

All three MV-comorphisms given as examples above can be subjects of Prop. 13.42,
hence they are conservative, with a special mention for the first example where this prop-
erty holds conditionally.

• Within the framework of the first example we note that the comorphism MVL [L ]→
MVL [L ′] has the model expansion property if and only if λ : L′→ L is surjective.

• The MV-comorphism of the second example is conservative since the components of
β are isomorphisms.

• Let (S,C,P) be any MVL-signature and let M be any (S,C,P)-model. We define an
Φ(S,C,P)-model M′ such that M = β(S,C,P)M′ as follows.

– For each s ∈ S, M′s = Ms and M′b = L.

– For each s ∈ S, (≈M′)s is the diagonal of M′s and on M′b, x ≈M′ y is 1 when x = y
and is x∗ y otherwise.

– M′true = 1.

– For each σ in C, M′σ = Mσ.

– For each π in P, M′πm = Mπm.

Then it is straightforward to check that M′ is well defined (for instance that ≈ is a
many-sorted fuzzy equality) and that it serves the purpose.
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Exercises
13.37. [91] Binary theory morphisms as fuzzy theory morphisms
If ( )• is a closure system that is higher than the Galois connection closure system ( )∗∗ then there
exists a functor Φ♯ : Th♯→ Th• such that Φ♯(Σ,E) = (Σ,E), where for each Σ-sentence ρ

Eρ =
∨
{κ | (ρ,κ) ∈ E}.

Moreover, prove that Φ♯ : Th♯→ Th∗∗ is a right-adjoint right-inverse to Φ∗∗ : Th∗∗→ Th♯.

13.38. [91] Limits of fuzzy theories
The forgetful functor Π• : Th•→ Sig lifts limits.

13.39. [91] Conservative fuzzy theory morphisms
In any L-institution a signature morphism ϕ : Σ→ Σ′ is

• is conservative when (Γ |= γ) = (ϕΓ |= ϕγ) for each Γ⊆ SenΣ, γ ∈ SenΣ, and

• has the model expansion property when each Σ-model has a ϕ-expansion.

Show that a fuzzy theory morphism is conservative when ϕ : Σ→ Σ′ has the model expansion
property and T ′• = (ϕT )•.

13.40. [91] Binary flattening of MV-comorphisms
For any MV-comorphism (Φ,α,β,λ) : I [L ]→ I ′[L ′] such that the pair (λ′,λ) is a Galois con-
nection between L and L ′ we have that (Φ,α♯,β) is a (binary) comorphism I ♯→ I ′♯ where α♯ is
defined by α

♯
Σ
(ρ,κ) = (αΣρ,λ′κ).

13.41. [91] Embedding L-institutions into L-institutions of fuzzy theories
Consider a closure system ( )• in an L-institution I such that it is lower than the Galois connection
closure system. Then there exists a canonical L-comorphism (Φ,α,β) : I → I •. (Hint: The functor
Φ : Sig→ Th• maps each signature Σ to the lowest fuzzy theory, i.e., ΦΣ = (Σ,⊥Σ) where⊥Σρ = 0
for each Σ-sentence ρ.)

13.42. Develop the proof of Prop. 13.41.

13.43. Develop the proof of Prop. 13.42.

Notes. The step from binary institutions to many-valued institutions is hardly new; this idea had
appeared already in the early age of institution theory in the form of the so-called ‘galleries’ of
[172]. The recently introduced ‘generalized institutions’ of [105] are very similar to L-institutions,
however they introduce an additional monadic structure on the sentence functor meant to model sub-
stitution systems. A fully abstract treatment of many-valued semantics appears very early in [200],
however it differs form the approach of L-institutions in two quite important aspects. One is its
single-signature feature. The other is the collapse of model theory modulo elementary equivalence,
which makes it unusable for the development of a proper fully abstract many-valued model theory.
In other words, Pavelka’s approach in [200] would correspond to an L-institution that has only one
signature Σ and also such that |ModΣ| ⊆ LSenΣ. The terminology ‘L-institution’ is reminiscent of
the terminology ‘L-sets’ of Goguen in [116]; in fact they have quite similar motivations.

Residuated lattices have been introduced in [243]; a survey on residuated lattices is [111].
Following Goguen’s seminal work [118] they have been widely adopted in many-valued truth logic
as the most prominent abstract algebraic structure for truth values. As the reader has probably
already noticed we have been using ‘fuzzy’ and ‘many-valued’ in an interchangeable manner as we
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consider ‘fuzzy’ in the wide sense like in the pioneering works [118, 116, 200] or in the more recent
works such as [38], etc., where the truth values are considered in a general (residuated) lattice.

It would be possible to make the definition of many-valued truth institution more general
by letting the space L of truth values float by making L a component of the concept of signature
(somehow in the spirit of [172]). However because of reasons of simplicity of presentation we
refrain here from that kind of generalisation, which anyway may be canonically achieved from our
definitions by a Grothendieck flattening in the style of [62]. The single sorted variant of MVL has
been studied in [44]. FMA and TL have been defined in [78] and [79], respectively. FEL is the
topic of the monograph [38].

The main idea of the flattening of L-institutions to binary institutions, which is to consider
the pairs (ρ,κ), has been present in several places in the fuzzy logic literature. In [112] the pairs
(ρ,κ) are called ‘signed formulas’ and given the same interpretation as here.

The entailment systems of [175] or the π-institutions of [108] are L-entailment systems when
L is the binary Boolean algebra. Very related and important early work on abstract entailments is
also due to Dana Scott [222]. The restriction of the concept of L-entailment system to a single sig-
nature (the main implication being the absence of translation) is essentially the same as the ‘graded
consequences’ of Chakraborty [40, 41]. Our L-entailment systems come very close to the so-called
‘generalized entailment systems’ of [105]; however here we do not assume a monad structure at the
level of the abstract syntax. But the major difference with respect to the corresponding concept from
[105] occurs in the rule transitivity which in our definition relies upon an abstract binary operation
∗ (which in the case of a residuated lattice is its residual conjunction) rather than meet operation ∧,
and essential aspect that our definition shares with the graded consequences of [40, 41]. Of course,
this is irrelevant when ∗ and ∧ coincide, such as in the case of Heyting algebras, but it makes an
important difference in the other situations. Our graded concept of semantic consequence, which
subsumes the semantic consequence in binary institutions [124], appears in a disguised form in
[200] within the context of Pavelka’s theory of fuzzy consequence operators and in a form that
is more explicitly similar to ours in [41] within the framework of ‘graded consequence relations’.
However the semantic frameworks of [200] and [41] are very similar but less general than ours, in
both of them models being in fact fuzzy theories. The result of Thm. 13.1 has been proved in [41]
but within a single signature context.

In the fuzzy sets literature terminology Σ-theories are called L-sets, our definition generaliz-
ing concrete concepts of fuzzy theories (e.g. [44]).

The theory of closure or consequence has been introduced by Tarski [233]. In [200] Pavleka
had used Tarski’s closure operators on L-sets in order to provide a suitable concept of consequence
operator for the many-valued framework. L-closure operators extend the concept introduced in
[200] to the multi-signature framework by adding the C-translation axiom. The Galois connection
closures and the Goguen closures have been introduced in [79]. The name of the latter is motivated
by the fact that it owes inspiration to Goguen’s many-valued interpretation of Modus Ponens [118].
For any fuzzy theory X , the Galois connection closure X∗∗ is essentially the same with the semantic
consequence of X in [200]. Concepts of compactness extending those from binary institution theory
to many-valued truth have been introduced in [79].

The graded consequence-theoretic connectives and the model theoretic connectives have been
introduced and studied in [79] and further used in [90]. Basic sentences in L-institutions have
been introduced in [90], where the preservation results by filtered products / factors have also been
developed.

Graded interpolation, graded Robinson consistency, and graded definability have been intro-
duced and studied in [89]. It is there where the causality relations between these as known from the
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binary truth situation have been recovered at the many-valued truth level.
Fuzzy theory morphisms and MV-comorphisms have been introduced and studied in [91].

Colimits of fuzzy theory morphisms and model amalgamation properties are important for the mod-
ularisation systems of fuzzy logic based specification and programming languages. In [78] it was
shown how MVL and FMA can be embedded conservatively in a generic abstract L-institution, in
the terminology of this chapter both embeddings being conservative L-comorphisms.



Part IV

Applications to computing





Chapter 14

Grothendieck Institutions

Suppose we have a network of institutions that are connected through some kind of map-
pings, such as institution comorphisms, for instance. This may represent a heterogeneous
logical environment that is composed from various logical systems, captured as institu-
tions, in which some of them are related via comorphisms. In modern logic-based com-
puting environments this situation is not uncommon because with each ‘local’ logical sys-
tem we target optimally a particular application domain, and, moreover, the translations
involved enable the communication between applications with the possibility to transfer
solutions across the environment. Such heterogeneous environments offer the kind of flex-
ibility required by the current logical distributed complexity of computing applications.
These environments are technically called ‘indexed institutions’.

Often it is important to be able to relate to such heterogeneous environments in a
homogeneous way. For instance, when we have a single computing language that is based
on such as heterogeneous environment, we still need a homogeneous module system that
can aggregate software modules that may be based on different logical components of the
environment. Technically, we need a single institution that can represent the whole logical
environment (indexed institution) without collapsing data, such that the identity of each
component institution is fully maintained within the ‘global’ institution. Furthermore, it
is also important that model-theoretic properties that hold at the ‘local’ level can be lifted
to the ‘global’ level. In this chapter we see how we can do this as follows.

1. The developments in this chapter evolve around one construction, called ‘Grothendieck
institution’, which is an institution-theoretic generalisation of a category-theoretic
concept that comes from algebraic geometry and is called the ‘Grothendieck construc-
tion’. In the first section we introduce the Grothendieck institutions from different
angles. On the one hand, everything depends on what kind of category of institutions
we chose. We discuss two situations, when we work with morphisms of institutions,
or else with comorphisms. On the other hand, the Grothendieck institution construc-
tion is a bottom-up side of a coin, the top-down side of the same coin being the
so-called ‘fibred institutions’. This is perfectly similar to the duality between fibra-
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tions and Grothendieck constructions in category theory. Often, in category theory,
due to technical convenience, the fibration perspective is favoured with respect to the
Grothendieck construction perspective. In institution theory this is reversed because
of the applications.

2. A section is dedicated to the lifting of theory co-limits and of model amalgamation
from the ‘local’ level to the ‘global’ level of the Grothendieck institutions. These two
themes, considered together, are recurrent in this book because of their importance in
computing applications of institution theory.

3. The final section of this chapter is dedicated to the lifting of interpolation properties
from ‘local’ to ‘global’ . Apart of its importance to computing, interpolation has an
intrinsic importance in logic and model theory as such. We present a stunning and un-
likely application of a general Grothendieck institution interpolation result, namely a
Craig-Robinson interpolation result based on Craig interpolation in institutions with-
out implication. We know that the standard and technically most convenient route
to Craig-Robinson interpolation is through Craig interpolation plus implications (see
Sec. 9.5) but this is limiting in the computing applications. For instance, due to an
unique combination of good model-theoretic and computational properties, HCL is
perhaps one of the most important computing logics. It enjoys some helpful Craig
interpolation properties (see Chap. 9) but it does not have semantic implications. On
the other hand, in general, Craig-Robinson interpolation is what is really needed as
logical support for advanced modularisation systems.

It may be difficult to argue better in favour of the concept of institution and its abstract
nature than with Grothendieck institutions. Because, as institutions, through axiomatisa-
tion and abstraction, they internalise a lot of concepts from logic and model theory as
such and therefore we can have all these available and ready-to-use in spite of the deeply
non-logical nature of the Grothendieck institutions. Albeit in the applications being con-
structed on the basis of logical institutions, Grothendieck institutions do not correspond
to logical systems in the common acceptation. Furthermore, we can go in the other direc-
tion and use the model theory of Grothendieck institutions to derive interesting results in
concrete logics, such as the above-mentioned Craig-Robinson interpolation property in
HCL .

The material of this chapter requires some degree of fluency with indexed categories
and with fibrations. A concise introduction to these topics can be found in Sec. 2.5. Per-
haps this is the chapter of this book that engages category theory in the hardest technical
way. Otherwise, Sec. 14.1 requires only familiarity with material of Chap. 3, Sec. 14.2
with material from Sections 4.1, 4.2, 4.3, and Sec. 14.3 with some basic concepts from
Chap. 9.

14.1 Fibred and Grothendieck institutions

This section is dedicated to the construction of the Grothendieck institutions.
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1. First, we introduce the concept of ‘fibred institution’ through the example of many-
sortedness in FOL .

2. Then, we turn around the tables and rather than considering the fibred institutions
just as institutions for which the categories of the signatures come as fibrations, we
construct fibred institutions as ‘Grothendieck institutions’. We show that these are
equivalent concepts, the main difference between them being that of the perspective.

3. Fibred institutions are easier to understand when using institution morphisms. How-
ever, in terms heterogeneous logical environments, the comorphism-based Grothendieck
institutions are a better alternative to the morphism-based ones. We provide the con-
struction of comorphism-based Grothendieck institutions.

4. Finally, we show that both alternative Grothendieck constructions lead to the same
result when the morphisms and the comorphisms involved come in ‘adjoint pairs’
satisfying a natural coherence property.

Fibred institutions
FOL as fibred institution. Fibred institutions arise in a variety of contexts, one of the
most familiar one to us being the many-sorted logical systems. For any set S, let the in-
stitution of S-sorted first-order logic FOLS = (SigS,SenS,ModS, |=) be the sub-institution
of FOL determined by fixing the set of sort symbols to S. Thus the category of signatures
SigS consists of all pairs (F,P) where (S,F,P) is a FOL signature, the morphisms of sig-
natures in SigS being just the morphism of signatures ϕ in FOL which are identities on
the sets S of sort symbols, i.e., ϕst = 1S. Then, in FOLS, the (F,P)-sentences, respectively
models, are the FOL (S,F,P)-sentences, respectively models, in FOL . The satisfaction
relation between models and sentences is of course inherited from FOL .

Fact 14.1. Any function u : S→ S′ determines an institution morphism (Φu,αu,βu) :
FOLS′ → FOLS such that for each FOLS′ signature (F ′,P′)

• Φu(F ′,P′) = (F,P) with Fw→s = F ′u(w)→u(s) and Pw = P′u(w) for each string of sort
symbols w ∈ S∗ and each sort symbol s ∈ S.

• The canonical FOL signature morphism (S,F,P)→ (S′,F ′,P′) thus determined by
Φu is denoted by ϕu

(F ′,P′). Then (ϕu
(F ′,P′))

st = u and its other components consist of
identities.

• αu
(F ′,P′) : SenS(F,P)→ SenS′(F ′,P′) is defined as SenFOL

ϕu
(F ′,P′), informally, it maps

each (F,P)-sentence to itself but regarded as an (F ′,P′)-sentence, and

• βu
(F ′,P′) : ModS′(F ′,P′)→ModS(F,P) is defined as ModFOL

ϕu
(F ′,P′).

The functors Φu have the flavour of ‘reducts’, somehow reminding us of the model
reduct functors. The situation described by Fact 14.1 is common to all ‘many-sorted’
logics formalized as institutions, follows from the fact that SigFOL is fibred over Set by the
projection Π of each signature to its set of sorts (defined by Π(S,F,P) = S on signatures
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and Π(φ) = φst on signature morphisms). At this point, it is important to recall from
Sec. 2.5 concepts from fibred category theory.

Fact 14.2. The fibration Π : SigFOL→ Set is split. Moreover, a FOL signature morphism
φ is cartesian when φop and φrl are bijections, and ϕu

(F ′,P′) is the distinguished cartesian
lifting of u for each function u : S→ S′ and each FOL-signature (S′,F ′,P′).

Fibred institutions in general. By abstracting the forgetful functor Π : SigFOL → Set
above to any fibration, we can formulate the general concept of ‘fibred institution’ as
follows. Given a category I, a fibred institution over the base I is a tuple (Π : Sig→ I,
Mod,Sen, |=) such that

• Π : Sig→ I is a fibred category, and

• (Sig,Mod,Sen, |=) is an institution.

Standard concepts from fibred category theory lift immediately to institutions. The fibred
institution is split when the fibration Π is split. A cartesian institution morphism is an
institution morphism between fibred institutions for which the signature mapping functor
is a cartesian functor between the corresponding fibred categories of signatures.

Given a fibred institution J = (Π : Sig→ I,Mod,Sen, |=), for each object i ∈ |I|,
the fibre of J at i is the institution J i = (Sigi,Modi,Seni, |=i) where

• Sigi is the fibre of Π at i, and

• Modi, Seni, and |=i are the restrictions of Mod, Sen, and respectively |= to Sigi.

By applying this terminology to the FOL case, we can therefore say that FOL is fibred
over Set with its fibre at a set S being the institution FOLS of S-sorted first order logic.
The following generalizes Fact 14.1 to any fibred institution.

Proposition 14.3. Given a fibred institution J = (Π : Sig→ I,Mod,Sen, |=), for each ar-
row u ∈ I(i, j), any inverse image functor Φu : Sig j→ Sigi (with distinguished cartesian
morphisms ϕu

Σ′ : ΦuΣ′ → Σ′, Σ′ ∈ |Sig j|) determines a canonical institution morphism
(Φu,αu,βu) : J j → J i between the fibres of J , where for each signature Σ′ in the fibre
Sig j at j, αu

Σ′ = Senϕu
Σ′ and βu

Σ′ = Modϕu
Σ′ .

Proof. • The naturalities of αu and βu follow directly from the way the family of distin-
guished cartesian morphisms (ϕu

Σ′)Σ′∈|Sig j | determine the functor Φu, and by applying
the sentence functor and the model functor, respectively, to the left-hand side commu-
tative diagram below.
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ΦuΣ′

Φuθ

��

ϕu
Σ′

// Σ′

θ

��

Seni(ΦuΣ′)
αu

Σ′=Senϕu
Σ′
//

Seni(Φuθ)
��

Sen j
Σ′

Sen jθ
��

ΦuΣ′1
ϕu

Σ′1

// Σ′1 Seni(ΦuΣ′1)
αu

Σ′1
=Senϕu

Σ′
// Sen j

Σ′1

Modi(ΦuΣ′) Mod j
Σ′

βu
Σ′=Modϕu

Σ′
oo

Modi(ΦuΣ′1)

Modi(Φuθ)

OO

Mod j
Σ′1

βu
Σ′1

=Modϕu
Σ′1

oo

Mod j
θ

OO

• The Satisfaction Condition for the institution morphism (Φu,αu,βu) follows from the
Satisfaction Condition of the fibred institution J applied for the distinguished cartesian
morphisms. Consider a Σ′-model M′ and a ΦuΣ′-sentence ρ. Then

M′ |= j
Σ′ αu

Σ′ρ = M′ |=Σ′ (Senϕu
Σ′)ρ definition of αu

Σ′

= (Modϕu
Σ′)M

′ |=ΦuΣ′ ρ Satisfaction Condition in J

= βu
Σ′M

′ |=i
ΦuΣ′ ρ definition of βu

Σ′ .

□

The case of the Satisfaction Condition of (Φu,αu,βu) in Prop. 14.3 shows how
fibred institutions tell us that the Satisfaction Condition for institution morphisms arises
as a Satisfaction Condition of an institution. Grothendieck institutions will show us the
reverse relationship between the two kinds of Satisfaction Condition.

Indexed and Grothendieck institutions
‘Indexed institutions’ lift the concept of indexed category to institutions. ‘Grothendieck
institutions’ lift the Grothendieck construction on categories to a construction on institu-
tions. Here, the idea of ‘lifting’ can be taken quite literally as the basis of Grothendieck in-
stitutions is a Grothendieck construction on the respective indexed category of the signa-
tures. Then the equivalence between fibred categories, on the one hand, and Grothendieck
constructions, on the other hand, lifts from categories to institutions.

Indexed institutions. Given a category I of indices, an indexed institution J is a functor
J : Iop → Ins (the category of institution morphisms). For each index i ∈ |I| we denote
the institution J i by (Sigi,Modi,Seni, |=i) and for each index morphism u ∈ I we denote
the institution morphism J u by (Φu,αu,βu). FOL provides an expected example of an
indexed institution (with Set in the role of the category of indices), denoted fol. Hence,
fol : Setop→ Ins, where for each set S, fol(S) = FOLS and for each u : S→ S′ function
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fol(u) = (Φu,αu,βu) as defined by Fact 14.1. Thye ‘reduct’ feeling of (Φu,αu,βu) is
related to the contravariance of fol. A warning about terminology: ‘indexed institution’
may be slightly confusing because indexed institutions are not institutions, but rather
‘diagrams’ of institutions.

Grothendieck institutions. Given an indexed institution J : Iop→ Ins, its Grothendieck
institution J ♯ = (Sig♯,Sen♯,Mod♯, |=♯) is defined as follows:

1. Let Sig : Iop→Cat be the indexed category mapping each index i to Sigi and each in-
dex morphism u to Φu; then the category Sig♯ of the signatures of J ♯ is the Grothendieck
category Sig♯. Thus the signatures of J ♯ consist of pairs ⟨i, Σ⟩with i index and Σ∈ |Sigi|
and the signature morphisms ⟨u, ϕ⟩ : ⟨i, Σ⟩ → ⟨i′, Σ′⟩ consist of index morphisms
u : i→ i′ and signature morphisms ϕ : Σ→ΦuΣ′.

2. The sentence functor Sen♯ : Sig♯→ Set is given by

• Sen♯⟨i, Σ⟩= Seni
Σ for each index i ∈ |I| and signature Σ ∈ |Sigi|, and

• Sen♯⟨u, ϕ⟩= Seni
ϕ ; αu

Σ′ for each ⟨u, ϕ⟩ : ⟨i, Σ⟩ → ⟨i′, Σ′⟩.

3. The model functor Mod♯ : (Sig♯)op→ Cat is given by

• Mod♯⟨i, Σ⟩= Modi
Σ for each index i ∈ |I| and signature Σ ∈ |Sigi|, and

• Mod♯⟨u, ϕ⟩= βu
Σ′ ; Modi

ϕ for each ⟨u, ϕ⟩ : ⟨i, Σ⟩ → ⟨i′, Σ′⟩.

4. The satisfaction relation is given, for each i ∈ |I|, Σ ∈ |Sigi|, M ∈ |Mod♯⟨i, Σ⟩|, and
e ∈ Sen♯⟨i, Σ⟩ by

M |=♯
⟨i,Σ⟩ e if and only if M |=i

Σ e.

The following shows that the above construction gives an institution indeed.

Proposition 14.4. J ♯ is an institution. Moreover, for each index i ∈ |I| there exists a
canonical institution morphism (Φi,αi,βi) : J i→ J ♯ mapping any signature Σ∈ |Sigi| to
⟨i, Σ⟩ ∈ |Sig♯| and such that the components of αi and βi are identities.

Proof. We have to prove the Satisfaction Condition of J ♯. Consider a signature morphism
⟨u, ϕ⟩ : ⟨i, Σ⟩ → ⟨i′, Σ′⟩, a ⟨i′, Σ′⟩-model M′ and a ⟨i, Σ⟩-sentence e. Then

M′ |=♯
⟨i′,Σ′⟩ (Sen♯⟨u, ϕ⟩)e = M′ |=i′

Σ′ αu
Σ′((Seni

ϕ)e) definitions of |=♯ and of Sen♯

= βu
Σ′M

′ |=i
Σ
(Seni

ϕ)e Satisfaction Condition for (Φu,αu,βu)

= (Modi
ϕ)(βu

Σ′M
′) |=i

ΦuΣ′ e Satisfaction Condition for ϕ

= (Mod♯⟨u, ϕ⟩)M′ |=♯
⟨i′,Σ′⟩ e definitions of |=♯ and of Mod♯.

□

That Grothendieck constructions are split fibrations (first part of Prop. 2.9) extends
immediately to Grothendieck institutions.
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Fact 14.5. The Grothendieck institution J ♯ of an indexed institution J : Iop → Ins is a
split fibred institution (Π : Sig♯→ I,Mod♯,Sen♯, |=♯), where Π : Sig♯→ I is the fibration
projection from the Grothendieck category Sig♯ to its index category.

The other way around (corresponding to the second conclusion of Prop. 2.9) works
also as expected. Cf. Prop. 14.3, each split fibred institution determines an indexed in-
stitution and consequently a Grothendieck institution. It is easy to see that the mappings
from Grothendieck institutions to split fibred institutions and opposite are inverse to each
other. For instance, FOL can be recovered as the Grothendieck institution fol♯.

Fact 14.6. For any category I, there exists a natural isomorphism between the category
of split fibred institutions over I (with cartesian institution morphisms as arrows) and
the category of I-indexed institutions (with natural transformation between the indexing
functors as arrows).

Recall from Sec. 3.3 that an institution morphism (Φ,α,β) is an equivalence of
institutions when

• Φ is an equivalences of categories,

• αΣ has an inverse up to semantic equivalence α′
Σ
, which is natural in Σ, and

• βΣ is an equivalence of categories, such that its inverse up to isomorphism and the
corresponding isomorphism natural transformations are natural in Σ.

Because each fibred institution is equivalent to a split fibred institution, we have the fol-
lowing corollary (its correspondent in the realm of categories is to the last conclusion of
Prop. 2.9).

Corollary 14.7. Each fibred institution is equivalent to a Grothendieck institution.

Comorphism-based Grothendieck institutions
Grothendieck institutions can be constructed using comorphisms instead of morphisms.
Comorphism-based Grothendieck institutions may be more friendly towards some model
theoretic properties than the morphism-based ones. This construction mimics the morphism-
based variant, modulo reversing some directions.

Given a category I of indices, an indexed comorphism-based institution J , in short
called indexed co-institution, is a functor J : Iop→ coIns. (Recall that coIns is the cate-
gory having institutions as objects and institution comorphisms as arrows). Its Grothendieck
institution J ♯=(Sig♯,Sen♯,Mod♯, |=♯) is defined as follows (where J i =(Sigi,Modi,Seni, |=i

) for each index i ∈ |I| and J u = (Φu,αu,βu) for u ∈ I index morphism):

1. Its category of signatures Sig♯ is ((Sig;( )op)♯)op where Sig : Iop→Cat is the indexed
category of signatures of the indexed co-institution J , ( )op : Cat→Cat is the ‘oppo-
site’ functor that reverses the directions of the arrows in a category, and (Sig;( )op)♯

is its Grothendieck category; this means that

• signatures are pairs ⟨i, Σ⟩ for i ∈ |I| index and Σ ∈ |Sigi|, and
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• signature morphisms are pairs ⟨u, ϕ⟩ : ⟨i, Σ⟩ → ⟨i′, Σ′⟩ where u ∈ I(i′, i) and ϕ ∈
Sigi′(ΦuΣ,Σ′). We get to this by the following sequence of equivalent facts:
– ⟨u, ϕ⟩ : ⟨i, Σ⟩ → ⟨i′, Σ′⟩ ∈ ((Sig;( )op)♯)op

– ⟨u, ϕ⟩ : ⟨i′, Σ′⟩ → ⟨i, Σ⟩ ∈ (Sig;( )op)♯,

– u ∈ I(i′, i), ϕ ∈ (Sigi′)op(Σ′,ΦuΣ),

– u ∈ I(i′, i), ϕ ∈ Sigi′(ΦuΣ,Σ′).

2. Its sentence functor Sen♯ : ((Sig;( )op)♯)op→ Set is given by

• Sen♯⟨i, Σ⟩= Seni
Σ for each index i ∈ |I| and signature Σ ∈ |Sigi|, and

• Sen♯⟨u, ϕ⟩= αu
Σ

; Seni′
ϕ for each ⟨u, ϕ⟩ : ⟨i′, Σ′⟩ → ⟨i, Σ⟩.

3. Its model functor Mod♯ : (Sig;( )op)♯→ Cat is given by

• Mod♯⟨i, Σ⟩= Modi
Σ for each index i ∈ |I| and signature Σ ∈ |Sigi|, and

• Mod♯⟨u, ϕ⟩= Modi′
ϕ ; βu

Σ
for each ⟨u, ϕ⟩ : ⟨i′, Σ′⟩ → ⟨i, Σ⟩.

4. M |=♯
⟨i,Σ⟩ e if and only if M |=i

Σ
e for each i ∈ |I|, Σ ∈ |Sigi|, M ∈ |Mod♯⟨i, Σ⟩|, and

e ∈ Sen♯⟨i, Σ⟩.

Routine calculations similar to those of Prop. 14.4 show that:

Proposition 14.8. The comorphism-based Grothendieck institution J ♯ is indeed an insti-
tution, i.e., the Satisfaction Condition holds.

Adjoint-indexed institutions. What si the relationship between morphism- and comorphism-
based Grothendieck institutions? When do both constructions yield the same result? In
what follows we will show that when the respective indexed institutions and co-institutions
are in an ‘adjoint duality’ situation, then the respective Grothendieck institutions are iso-
morphic.

An indexed institution J : Iop → Ins is adjoint-indexed when, for all u ∈ I, the
institution morphisms J u are adjoint morphisms (in the sense defined in Sec. 3.3). An
adjoint-indexed institution J : Iop → Ins is coherent when the adjunctions between the
categories of signatures are designated, and for each composable pair of index morphisms
u : i→ i′ and u′ : i′→ i′′, the adjunction from Sigi to Sigi′′ corresponding to u;u′ is the
composition of the adjunctions corresponding to u and u′.

For example, the Set-indexed institution fol determined by the fibred institution
FOL is adjoint-indexed. For each function u : S→ S′, let Φu : SigS → SigS′ map each
FOLS signature (F,P) to the FOLS′ signature (Fu,Pu) defined by Fu

w′→s′ =⊎u(ws)=w′s′Fw→s
and Pu

w′ = ⊎u(w)=w′Pw for each string of sort symbols w ∈ S∗ and sort symbol s ∈ S.

Fact 14.9. Φu is a left adjoint to the ‘forgetful’ functor Φu : SigS′ → SigS.
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However, fol is not coherent because the composition of left adjoints corresponding
to u and u′ is only isomorphic to the left adjoint corresponding to u;u′. In order to achieve
coherence in this example we have two solutions.

1. We either restrict the signature morphisms ϕ : (S,F,P)→ (S′,F ′,P′) to those that are
either injective on the sorts,

2. or else to those that preserve ad-hoc overloading, i.e. ϕw1→s1σ = ϕw2→s2σ for σ ∈
Fw1→s1 ∩Fw2→s2 and ϕw1π = ϕw2π for π ∈ Pw1 ∩Pw2 whenever the length of w1 and
of w2 coincide.

In both cases we can define (Fu,Pu) by Fu
w′→s′ = ∪u(ws)=w′s′Fw→s and Pu

w′ = ∪u(w)=w′Pw,
which yields the coherence. This coherence holds because of the uniqueness of ordinary
union, a property that is not enjoyed by the disjoint unions. Let us denote by foli and folp
the coherent adjoint-indexed institutions obtained by restricting fol to the injective u’s and
to the signature morphism preserving ad-hoc overloading, respectively.

Adjoint-indexed co-institutions are defined similarly to adjoint-indexed institutions.
Notice that each adjoint-indexed institution J : Iop→ Ins determines an adjoint-indexed
co-institution J : (Iop)op→ coIns such that

• for each index i ∈ I, J i
= J i, and

• for each index morphism u, J u is the comorphism adjoint to the morphism J u (as
given by Thm. 3.9).

Therefore the duality relation between institution morphisms and comorphisms deter-
mines a similar duality relation between adjoint-indexed institutions and adjoint-indexed
coinstitutions.

The Grothendieck institution construction is invariant with respect to the duality
between the concepts of institution morphism and institution comorphism:

Proposition 14.10. For each dual pair of an adjoint-indexed institution J and an adjoint-
indexed co-institution J their Grothendieck institutions J ♯ and J ♯ are isomorphic.

Proof. The isomorphism SigJ ♯ ∼= SigJ ♯

maps each SigJ ♯
-signature morphism ⟨u, ϕ⟩ :

⟨i, Σ⟩→ ⟨i′, Σ′⟩ to the SigJ ♯

-signature morphism ⟨u, ϕ⟩ : ⟨i, Σ⟩→ ⟨i′, Σ′⟩ where ϕ : Σ→
ΦuΣ′ and ϕ : Φ

u
Σ→ Σ′ are such that ϕ = ζΣ ; Φuϕ

Σ
ζΣ

//

ϕ

��

Φu(Φ
u
Σ)

Φuϕ
��

ΦuΣ′

with ζ being the unit of the adjunction between Sigi and Sigi′ .
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The conclusion of the proposition follows by the commutativity of the diagram

Set SigJ ♯SenJ ♯
oo

ModJ ♯
//

∼=
��

Catop

SigJ ♯
SenJ ♯

``

ModJ ♯

==

which is obtained by routine calculations. □

Instances of Prop. 14.10 show that the sub-institutions of FOL corresponding to
restricting the signatures morphism to those that are injective on the sorts (FOL i) or to
those that preserve ad-hoc overloading (FOL p) can be obtained both as morphism-based
Grothendieck institutions (foli♯ and folp♯, respectively) or as comorphism-based ones
(foli

♯ and folp
♯, respectively). In both cases, the morphism-based Grothendieck construc-

tion seems rather simpler and more natural than the comorphism-based one. Moreover,
FOL can be obtained only as a morphism-based Grothendieck institution, namely fol♯, as
fol lacks coherence and hence does not admit a corresponding indexed co-institution.

Exercises
14.1. (a) The Satisfaction Condition of institution morphisms is a special case of the Satisfaction
Condition of institutions. (Hint: For any institution morphism (Φ,α,β) consider the Grothendieck
institution determined by the indexed institution (• u→•)→ Ins which maps u to (Φ,α,β).)
(b) The opposite also holds, the Satisfaction Condition of institutions is a special case of the Satis-
faction Condition of institution morphisms. (Hint: Each institution is a trivially split fibred institu-
tion over its own category of signatures.)

14.2. (a) Let K be any 2-category and IK be the Grothendieck 2-category for the 2-functor
Cat((−)op,K) : Cat∗ → Cat mapping each category S to Cat(Sop,K), and each functor Φ to
(Φop;−) (which maps each I : Sop → K to Φop; I). Then the fibration ΠK : IK → Cat creates
Grothendieck constructions for each functor J : Iop→ IK .
(b) Conclude that the 2-category of institutions Ins admits Grothendieck constructions with the
Grothendieck institutions as the Grothendieck objects of Ins. (Hint: Ins = IRoom.)

14.3. The comorphism-based Grothendieck institutions are Grothendieck objects in the 2-category
coIns of institution comorphisms.

14.4. Define PfSys, RlSys, coPfSys and coRlSys as Grothendieck categories in the style of Fact
3.11. Consequently, establish the completeness properties for coPfSys and coRlSys.

14.5. The category Pf Ins of institutions with proofs is the pullback of the category Ins of institu-
tions and the category PfSys of proof systems over the Grothendieck category Cat((−)op,Setop)♯

of the functor Cat((−)op,Setop) : Catop→ Cat.

Ins // Cat((−)op,Setop)♯

Pf Ins

OO

// PfSys

OO
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14.6. The category Pf Ins of institutions with proofs admits Grothendieck objects. This gives the
construction for Grothendieck institutions with proofs; describe them directly.

14.2 Theory co-limits and model amalgamation
For the practical applications of Grothendieck institutions in computing, the issue of es-
tablishing model-theoretic properties that are crucial for the foundations of specification
and programming is a very important one. In this section we provide sufficient prag-
matic conditions for the existence of theory co-limits and of model amalgamation for
Grothendieck institutions. The main idea is to lift them from the ‘local’ level of the in-
dexed institutions to the ‘global’ level of the corresponding Grothendieck institution. For
these problems we will rely on the comorphism-based variant of the Grothendieck in-
stitutions, as in this case this is technically more convenient than the morphism-based
variant.

Theory co-limits
We know how in any institution co-limits get lifted from the categories of the signatures
to the category of the theories (Prop. 4.2). Since Grothendieck institutions are institutions,
this of course applies to Grothendieck institutions too. Hence, we have only to address the
problem of co-limits of signatures in Grothendieck institutions. This is a purely categori-
cal problem, which is already solved and the solution is well known in the context of the
Grothendieck construction for categories (see Prop. 2.10). Here we adapt this solution to
the context of comorphism-based Grothendieck institutions by expressing the conditions
and by rephrasing the construction in this context.

Supporting co-limits. For any category J we say that an indexed co-institution
J : Iop→ coIns supports J-co-limits when

• the index category I is J-complete, i.e., has J-limits,

• the indexed category of signatures Sig : Iop→Cat of J is locally J-co-complete, i.e.,
Sigi has all J-co-limits for each index i ∈ |J|, and

• for each index morphism u, the comorphism J u preserves J-co-limits of signatures
(meaning that the corresponding sentence translation functors Φu preserve J-co-limits).

Theorem 14.11. The category of theories Th♯ of a comorphism-based Grothendieck in-
stitution J ♯ has J-co-limits if the indexed co-institution J supports J-co-limits.

Proof. By the fundamental result that in any institution the forgetful functor from theo-
ries to signatures lifts co-limits (Prop. 4.2), we have only to show that the category of the
signatures of the Grothendieck institution J ♯ has J-co-limits. But the category Sig♯ of the
signatures of J ♯ is the opposite of the Grothendieck category (Sig;(−)op)♯. The conclu-
sion of the theorem now follows immediately from the general result on the existence of
limits in Grothendieck categories (Thm. 2.10, the limit part), also by noting that co-limits
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in Sigi means limits in (Sigi)op. In the following we review that construction in order to
understand the nature of aggregation of ‘local’ signatures across indexed co-institutions.

Let J be a small category and F : J → Sig♯ any functor. Let K = F ;Π where
Π : Sig♯ = ((Sig;(−)op)♯)op → Iop is the projection that maps each ⟨i, Σ⟩ to i. Let us
write F j = ⟨K j, Σ j⟩ for each j ∈ |J| and Fu = ⟨Ku, ϕu⟩ for each morphism u ∈ J.

• Any co-cone ν : K⇒ i in I op determines a functor Fν : J→ Sigi defined by Fν j =
Φν j Σ j for each j ∈ |J| and by Fνu = Φ

ν j′ϕu for each u ∈ J( j, j′).

K j
Ku

//

ν j
��

K j′

ν j′
��

SigK j ΦKu
//

Φ
ν j

!!

SigK j′

Φ
ν j′

}}

i Sigi

(14.1)

We prove that Fν is a functor indeed. For each u ∈ J( j, j′) and u′ ∈ J( j′, j′′),

Fνu ; Fνu′ = Φ
ν j′ϕu ; Φ

ν j′′ϕu′ definition of Fν

= Φ
ν j′′ (ΦKu′ϕu) ; Φ

ν j′′ϕu′ commutativity of (14.1)

= Φ
ν j′′ (ΦKu′ϕu ; ϕu′) Φ

ν j′′ functor

= Φ
ν j′′ϕu;u′ Fu ; Fu′ = F(u;u′) (F functor)

= Fν(u;u′) definition of Fν.

• The co-limit µ : F ⇒ ⟨i, Σ⟩ is defined by

– µ j = ⟨ν j, θ j⟩ : F j = ⟨K j, Σ j⟩ → ⟨i, Σ⟩ where ν : F ;Π = K⇒ i is the co-limiting
co-cone of F ;Π, and

– θ : Fν⇒ Σ is the co-limiting co-cone of Fν.
K j

Ku

��

ν j

��

Fν
j = Φν j Σ j

Fν
u =Φ

ν j′ ϕu
��

θ j

$$
K j′ ν j′

// i Fν

j′ = Φ
ν j′Σ j′

θ j′
// Σ

(14.2)

• First we show that µ is a co-cone, which, under the usual notations, amounts to showing
the commutativity of the following triangle for u ∈ J( j, j′).

F j = ⟨K j, Σ j⟩
Fu=⟨Ku,ϕu⟩

//

µ j=⟨ν j ,θ j⟩ &&

F j′ = ⟨K j′ , Σ j′⟩

µ j′=⟨ν j′ ,θ j′ ⟩xx

⟨i, Σ⟩

This goes as follows:
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⟨Ku, ϕu⟩ ; ⟨ν j′ , θ j′⟩ = ⟨Ku;ν j′ , Φ
ν j′ϕu;θ j′⟩ composition in SigJ ♯

= ⟨ν j, θ j⟩ commutativity of (14.1).

• For any co-cone µ′ : F ⇒ ⟨i′, Σ′⟩, let µ′j = ⟨ν′j, θ′j⟩ for each j ∈ |J|.

– Then ν′ : K⇒ i′ is a co-cone in Iop. Let w : i→ i′ be the unique arrow such that
ν′ = ν;w.

– Because Φw preserves J-co-limits, θΦw is a co-limit for Fν;Φw.

– Note that Fν′ = Fν;Φw. Since θ′ is a co-cone Fν′ ⇒ Σ′, let ϕ : ΦwΣ→ Σ′ be the
unique arrow such that θΦw;ϕ = θ′.

– Then ⟨w, ϕ⟩ is the unique morphism of Grothendieck signatures ⟨i, Σ⟩ → ⟨i′, Σ′⟩
such that µ ; ⟨w, ϕ⟩= µ′.

□

In the applications, the co-limits of theories in Grothendieck institutions are much
more relevant than the limits. In the comorphism-based variant, co-limits in the category
Sig♯ of the signatures amount to limits in the Grothendieck construction (Sig;(−)op)♯,
which require less stringent conditions and are simpler than the co-limits (compare the
two conclusions of Prop. 2.10). This is one of the benefits of comorphism-based over the
morphism-based Grothendieck institutions.

Model amalgamation

Model amalgamation in a Grothendieck institution can be treated in a manner similar to
theory co-limits by reducing the problem to model amalgamation properties at the ‘local’
level of the component institutions and at the level of the indexed co-institution. We treat
here only the semi-exactness property as it is simpler to understand than the more general
forms and moreover, it is the kind of model amalgamation which is most used in the
applications. The versions of model amalgamation that are weaker than semi-exactness
can be handled in a similar way.

The underlying framework of model amalgamation in Grothendieck institutions is
that which supports co-limits of theories. In the case of semi-exactness this means sup-
porting pushouts. This is expected because we know from Sec. 4.3 that in general, model
amalgamation is intimately related to co-limits of signatures / theories. So, on the basis
of the indexed co-institution supporting pushouts, we formulate a set of three conditions
that are both necessary and sufficient for semi-exactness. These three conditions paral-
lel the three conditions that define the concept of ‘supporting pushouts’ by an indexed
co-institution.
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Semi-exactness of indexed co-institutions. An indexed co-institution J : Iop→ coIns
is semi-exact if and only if for each pullback

i j1u1
oo

j2

u2

OO

k

v1

OO

v2
oo

in I and each signature Σ in I i, the commutative square

Modi
Σ Mod j1(Φu1Σ)

βu1
Σ

oo

Mod j2(Φu2Σ)

βu2
Σ

OO

Modk(Φvi(ΦuiΣ))

βv1
Φu1Σ

OO

βv2
Φu2Σ

oo

is a pullback.

Proposition 14.12. If the Grothendieck institution J ♯ of an indexed co-institution
J : Iop→ coIns which supports pushouts is semi-exact, then J is also semi-exact.

Proof. Consider (v1,v2) a pullback of (u1,u2) in the index category I. By the construc-
tion of Thm. 14.11 the square

⟨i, Σ⟩
⟨u1,1

Φu1Σ
⟩
//

⟨u2,1
Φu2Σ

⟩
��

⟨ j1, Φu1Σ⟩

⟨v1,1
Φv1(Φu1Σ)

⟩
��

⟨ j2, Φu2Σ⟩
⟨v2,1

Φv2(Φu2Σ)
⟩
// ⟨k, Φvi(ΦuiΣ)⟩

is a pushout in the category of signatures ((Sig;(−)op)♯)op of the Grothendieck institution.
Because the Grothendieck institution is semi-exact, the Grothendieck model functor Mod♯

maps this pushout square to a pullback square, which is precisely the square giving the
semi-exactness of the indexed co-institution J . □

Local semi-exactness. An indexed co-institution J : Iop→ coIns is locally (semi-)exact
if and only if the institution J i is (semi-)exact for each index i ∈ I. The following shows
that this is a necessary condition for the (semi-)exactness of the Grothendieck institution.

Proposition 14.13. Let J : Iop → coIns be an indexed co-institution which supports
pushouts. Then the semi-exactness of the Grothendieck institution J ♯ implies the local
semi-exactness of J .
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Proof. For each index i, the model functor Modi is the restriction Mod♯⟨i,−⟩ of the model
functor of the Grothendieck institution to Sigi regarded as a sub-category of
((Sig;(−)op)♯)op, the category of signatures of the Grothendieck institution.

(Sigi)op //

Modi
&&

(Sig;(−)op)♯

Mod♯

��

Cat

Because the comorphisms J u preserve the pushouts of signatures, by a simple calculation
we can establish that the canonical injection Sigi→ ((Sig;(−)op)♯)op preserves pushouts
too. Therefore we have that Modi preserves pullbacks as a composition of two preserving
pullback functors. □

Exactness of the institution comorphisms. Recall from Sec. 4.3 that an institution
comorphism (Φ,α,β) : I → I ′ is exact if for each I -signature morphism ϕ : Σ1 → Σ2
the naturality square

ModΣ1 Mod′(ΦΣ1)
βΣ1

oo

ModΣ2

Modϕ

OO

Mod′(ΦΣ2)
βΣ2

oo

Mod′(Φϕ)

OO

is a pullback.

Proposition 14.14. If the Grothendieck institution of an indexed co-institution J which
supports pushouts is semi-exact, then each institution comorphism J u = (Φu,αu,βu) is
exact.

Proof. Consider an index morphism u : i′ → i and an arbitrary signature morphism
ϕ : Σ1 → Σ2 in J i. Then, by following the construction in Thm. 14.11, the commuta-
tive square

⟨i, Σ1⟩

⟨u,1ΦuΣ1
⟩
��

⟨1i,ϕ⟩
// ⟨i, Σ2⟩

⟨u,1ΦuΣ2
⟩

��

⟨i′, ΦuΣ1⟩ ⟨1i′ ,Φ
uϕ⟩
// ⟨i′, ΦuΣ2⟩

is a pushout in the category of signatures of the Grothendieck institution. Because the
Grothendieck institution is semi-exact, this pushout is mapped by the (Grothendieck)
model functor to a pullback square, thus giving the exactness of the institution comor-
phism J u. □
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The sufficient theorem. We have seen that the semi-exactness, the local semi-exactness
of the indexed coinstitution, and the exactness of all its comorphisms are necessary condi-
tions for the semi-exactness of the corresponding Grothendieck institution. The following
establishes that these conditions are also sufficient.

Theorem 14.15. Let J : Iop→ coIns be an indexed co-institution which supports push-
outs. Then the Grothendieck institution J ♯ is semi-exact if and only if

1. the indexed co-institution J is locally semi-exact,

2. the indexed co-institution J is semi-exact, and

3. all institution comorphisms of J are exact.

Proof. The ‘necessary’ part of this theorem holds by Propositions 14.13, 14.12, and
14.14. For the ‘sufficient’ part, we consider an arbitrary pushout of signatures in the
Grothendieck institution

⟨i0, Σ0⟩
⟨u1,ϕ1⟩

//

⟨u2,ϕ2⟩
��

⟨i1, Σ1⟩

⟨v1,θ1⟩
��

⟨i2, Σ2⟩ ⟨v2,θ2⟩
// ⟨i, Σ⟩

(14.3)

The main idea behind this proof is that the pushout square (14.3) can be expressed as the
following composition of four pushout squares:

⟨i0, Σ0⟩
⟨u1,1

Φu1Σ0
⟩
//

⟨u2,1
Φu2Σ0

⟩

��

⟨i1, Φu1Σ0⟩
⟨1i1 ,ϕ1⟩

//

⟨v1,1
Φv1(Φu1Σ0)

⟩

��

⟨i1, Σ1⟩

⟨v1,1
Φv1Σ1

⟩

��

⟨i2, Φu2Σ0⟩ ⟨v2,1
Φv2(Φu2Σ0)

⟩
//

⟨1i2 ,ϕ2⟩

��

⟨i, Φvi(ΦuiΣ0)⟩
⟨1i,Φ

v1ϕ1⟩
//

⟨1i,Φ
v2ϕ2⟩

��

⟨i, Φv1Σ1⟩

⟨1i,θ1⟩

��

⟨i2, Σ2⟩ ⟨v2,1
Φv2Σ2

⟩
// ⟨i, Φv2Σ2⟩ ⟨1i,θ2⟩

// ⟨i, Σ⟩

(14.4)

Then the Grothendieck model functor

• maps the up-left pushout square to a pullback square because the indexed co-insti-
tution is semi-exact and because by the construction of co-limits of signatures in
comorphism-based Grothendieck institutions, given by Thm. 14.11, we have that

i0 i1
u1

oo

i2

u2

OO

i
v2

oo

v1

OO
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is a pullback in the index category I.

• maps the down-right pushout square to a pullback square because the indexed co-
institution is locally semi-exact, and

• maps the up-right and down-left pushout squares to pullback squares because the in-
stitution comorphisms (Φv1,αv1,βv1) and (Φv2,αv2,βv2) are exact.

Therefore, the Grothendieck model functor maps the original pushout square of signatures
in the Grothendieck institution to a pullback square obtained as the composition of the
four pullback squares resulting from mapping the four component pushout squares. □

Exercises
14.7. Establish the existence of pushouts of signatures in the subinstitutions of FOL corresponding
to foli and folp as an instance of Thm. 14.11. Apply the model amalgamation Thm. 14.15 on these
examples.

14.8. The institution comorphism FOL→ FOEQL encoding relations as operations (see Sec. 3.3)
preserves pushouts of signatures although it is not an adjoint institution comorphism.

14.9. The Grothendieck institution determined by the forgeful institution morphism POA → FOL
has small co-limits.

14.10. Give a counterexample showing that even if the index category I is J-co-complete, the
comorphism-based Grothendieck institution has J-co-limits of theories, and the institution co-
morphisms J u preserve J-co-limits, the indexed co-institution J is not necessarily locally J-co-
complete.

14.11. [62] Let J : Iop → Ins be an adjoint-indexed (morphism-based) institution such that I is
J-co-complete for a small category J, and the indexed category of signatures Sig of J is locally J-
co-complete. Then the category of theories ThJ ♯

of the (morphism-based) Grothendieck institution
J ♯ has J-co-limits.

14.12. The Grothendieck institution determined by the forgetful institution morphism from POA
to FOL is not semi-exact due only to the failure of the exactness of the embedding institution
comorphism FOL → POA .

14.13. [62, 60] Liberality in Grothendieck institutions
An indexed institution J : Iop→ Ins is locally liberal if and only if the institution J i is liberal for
each index i ∈ I. The Grothendieck institution J ♯ of an indexed institution J : Iop→ Ins is liberal
if and only if J is liberal and each institution morphism J u is liberal for each index morphism u∈ I.

14.14. [73] Grothendieck inclusion systems
The category IS of inclusion systems can be endowed with a 2-categorical structure in which the
2-cells are inclusion natural transformation (i.e., such that all their components are inclusions) be-
tween inclusive functors. An adjunction in IS is thus just an ordinary adjunction (in Cat) such that
all the components of the unit and of the counit of the adjunction are inclusions. An enriched in-
dexed inclusion system is a functor B : ⟨I , E⟩→ ISop from the opposite of the underlying category
of an inclusion system ‘of indices’ to the category of inclusions systems and inclusive functors.
An enriched indexed inclusion system is invertible when each inclusion system morphism Bu has



468 Chapter 14. Grothendieck Institutions

a IS-left-adjoint [−]u. It is E-invertible when the IS-left-adjoint to Bu exists for u ∈ E (and not
necessarily for all index morphisms u). Show that for any E-invertible enriched indexed inclusion
system B : ⟨I , E⟩ → ISop the Grothendieck category B♯ of Bop;(IS→Cat) : ⟨I , E⟩op→Cat can
be endowed with an inclusion system ⟨I ♯, E ♯⟩ such that ⟨u, ϕ⟩ : ⟨ j, Σ⟩ → ⟨ j′, Σ′⟩ is

• abstract inclusion iff both u and ϕ are abstract inclusions, and

• abstract surjection iff u is abstract surjection and Σ′ = [ϕ(Σ)]u.

Show that the strong inclusion systems of FOL-models and of theories (see Sect. 4.5) are instances
of this Grothendieck inclusion system construction. What about the strong inclusion system of the
FOL-signatures?

14.15. [73] Show that for any invertible enriched indexed inclusion system B : ⟨I , E⟩ → ISop, the
Grothendieck inclusion system ⟨I ♯, E ♯⟩ (of Ex. 14.14) has unions if

• the inclusion system of indices ⟨I , E⟩ has unions, and

• for each index j the ‘local’ inclusion system B j = ⟨I j, E j⟩ has unions.

14.16. [73] In addition to the conditions of Ex. 14.14 if the inclusion system of the indices ⟨I , E⟩
is epic, B j = ⟨I j, E j⟩ is epic for each index j, and Bu are faithful for u ∈ E , then the inclusion
system ⟨I ♯, E ♯⟩ defined in Ex. 14.14 is epic too.

14.17. [73] For any pair of functors F,G : ⟨I , E⟩ → ISop (from the underlying category of an
inclusion system ⟨I , E⟩), a IS-lax natural transformation µ : F⇒G is a lax natural transformation
such that

• for any object j of ⟨I , E⟩, the functor µ j : F j→ G j is inclusive, and

• for any u ∈ I , the natural transformation µu is abstract inclusion (for the inclusion system of the
corresponding functor category; see Ex. 4.61).

IS-lax co-cone and IS-lax colimits, respectively, are just lax co-cone and lax colimits, respectively,
which are IS-lax as natural transformations. Show that for any E-invertible IS-enriched indexed in-
clusion system B : ⟨I , E⟩→ ISop, the Grothendieck inclusion system ⟨I ♯, E ♯⟩ defined by Ex. 14.14
is the IS-lax co-limit of B.

14.18. [73] Closed inclusion systems on Grothendieck categories
Show that for any indexed category B : ⟨I , E⟩→Catop (functor from the underlying category of an
inclusion system ⟨I , E⟩ to the opposite of Cat), its Grothendieck category B♯ admits an inclusion
system such that ⟨u, ϕ⟩ : ⟨ j, Σ⟩ → ⟨ j′, Σ′⟩

• is abstract inclusion if and only if u ∈ I and ϕ is identity, and

• is abstract surjection if and only if u ∈ E .

Show that the closed inclusion systems of FOL-signatures, of FOL-models, and of theories (see
Sect. 4.5) are instances of this general construction.

14.19. [85] Inclusion systems via decomposition
Given a decomposition of a stratified institution S such that both S0 and B are endowed with
inclusion systems for their categories of models, follow the steps below for obtaining inclusion
systems for the categories of models of S .

• Find appropriate conditions for extending the respective inclusion systems from B to B̃ . (Hint:
Use the construction of Grothendieck inclusion systems of Exercise 14.14.)

• Extend this construction to B̃C.

• Aggregate the inclusion systems at the level of S0 and of B̃C.
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14.3 Interpolation
The interpolation problem for Grothendieck institutions is treated similarly to the model
amalgamation problem by isolating a set of three sufficient and necessary conditions.
These conditions are similar in flavor to those underlying the solution to the model amal-
gamation problem in Grothendieck institutions. We need the following interpolation con-
cept for indexed co-institutions.

Interpolation squares of institution comorphisms. A commuting square of institution
comorphisms

I
(Φ1,α1,β1)

//

(Φ2,α2,β2)

��

I1

(Φ′1,α
′
1,β
′
1)

��

I2
(Φ′2,α

′
2,β
′
2)
// I ′

is a Craig Interpolation square if for each I -signature Σ, for each set E1 of Φ1Σ-sentences
and for each set E2 of Φ2Σ-sentences, if (α′1)Φ1ΣE1 |=′ (α′2)Φ2ΣE2, then there exists a set
E of Σ-sentences such that E1 |=I1 (α1)ΣE and (α2)ΣE |=I2 E2.

SenΣ
(α1)Σ

//

(α2)Σ

��

Sen1(Φ1Σ)

(α′1)Φ1Σ

��

Sen2(Φ2Σ)
(α′2)Φ2Σ

// Sen′(Φ′k(ΦkΣ))

Interpolation in Grothendieck institutions
The theorem below, giving a set of necessary and sufficient conditions for interpolation in
Grothendieck institutions, involves the concept of left / right interpolation for institution
comorphisms introduced in Sec. 9.6. Its proof follows the same technique like in the
proof of the Grothendieck model amalgamation Thm. 14.15. The differences between the
two proofs are rather superficial, in the case of model amalgamation pushout squares of
signature morphisms yield pullback squares of categories of models, while in the case of
interpolation they yield interpolation squares.

Theorem 14.16. Consider an indexed co-institution J : Iop → coIns which supports
pushouts, that is enhanced with

• fixed classes of index morphisms L ,R ⊆ I containing all identities, and

• for each index i ∈ |I|, fixed classes of signature morphisms L i,R i ⊆ Sigi containing
all identities,

such that
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– L and R are stable under pullbacks,

– ΦuR i ⊆ R j for each index morphism u : j→ i in L , and

– ΦuL i ⊆ L j for each index morphism u : j→ i in R .

Let L♯ and R ♯, be the classes of signature morphisms ⟨u : j→ i, ϕ⟩ of the Grothendieck
institution such that u∈L , ϕ∈L j, and u∈R , ϕ∈R j, respectively. Then the Grothendieck
institution J ♯ has the Craig (L♯,R ♯)-interpolation property if and only if

1. for each i ∈ |I|, the institution J i has the (L i,R i)-interpolation property,

2. each pullback square in I like below

L
oo

R

OO OO

oo

determines a Craig interpolation square of institution comorphisms,

3. for each u : j→ i in L the institution comorphism J u = (Φu,αu,βu) has the Craig
R i-right interpolation property, and

4. for each u : j→ i in R the institution comorphism J u has the Craig L i-left interpo-
lation property.

Proof. Since the proof of this result follows the pattern of the proof of Thm. 14.15, we
will not do it in details, and instead we will discuss its main steps.

• We consider an arbitrary pushout square [S] of signature morphisms in the Grothendieck
institution like shown in the diagram (14.3); let us see it here also:

⟨i0, Σ0⟩
⟨u1,ϕ1⟩

//

⟨u2,ϕ2⟩
��

⟨i1, Σ1⟩

⟨v1,θ1⟩
��

⟨i2, Σ2⟩ ⟨v2,θ2⟩
// ⟨i, Σ⟩

such that u1 ∈ L , ϕ1 ∈ L i1 , and u2 ∈ R , ϕ2 ∈ R i2 .

• The we represent that pushout square as the composition of four pushout squares like
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shown in diagram (14.4); let us see it here also:

⟨i0, Σ0⟩
⟨u1,1

Φu1Σ0
⟩
//

⟨u2,1
Φu2Σ0

⟩

��

⟨i1, Φu1Σ0⟩
⟨1i1 ,ϕ1⟩

//

⟨v1,1
Φv1(Φu1Σ0)

⟩

��

⟨i1, Σ1⟩

⟨v1,1
Φv1Σ1

⟩

��

⟨i2, Φu2Σ0⟩ ⟨v2,1
Φv2(Φu2Σ0)

⟩
//

⟨1i2 ,ϕ2⟩

��

⟨i, Φvi(ΦuiΣ0)⟩
⟨1i,Φ

v1ϕ1⟩
//

⟨1i,Φ
v2ϕ2⟩

��

⟨i, Φv1Σ1⟩

⟨1i,θ1⟩

��

⟨i2, Σ2⟩ ⟨v2,1
Φv2Σ2

⟩
// ⟨i, Φv2Σ2⟩ ⟨1i,θ2⟩

// ⟨i, Σ⟩

• By using the hypotheses of the theorem we get that all four pushout square components
of (14.4) are Ci squares.

• Since Ci squares compose ‘horizontally’ and ‘vertically’ (see Ex. 9.2) we get that [S]
is a Ci square too. This argument completes the ‘sufficient’ part of the result.

• For the ‘necessary’ part of the result, we check that each of the four hypotheses of the
theorem correspond to Ci squares in J ♯, such that the respective interpolation prop-
erties express the four hypotheses. This is very similar to how the results of Proposi-
tions 14.13, 14.12, and 14.14, which combined give the ‘necessary’ part of the model
amalgamation Thm. 14.15, have been obtained. In the case interpolation, two inter-
polation properties of comorphisms J u correspond to the exactness property of J u in
Thm. 14.15 because of the left / right interpolation symmetry for comorphisms.

□

Craig-Robinson interpolation by Grothendieck interpolation
According to the result of Prop. 9.24, Craig-Robinson interpolation can be obtained from
Craig interpolation when the institution has implications and it is quasi-compact (i.e., it
is compact or has infinite conjunctions). The requirement on implications can be rather
hard as it does not allow lifting Craig interpolation to Craig-Robinson interpolation by
Prop. 9.24 in institutions such as EQL or HCL . Grothendieck interpolation provides a
general solution to this problem, in the form of the following result.

Theorem 14.17. Consider a conservative institution comorphism (Φ,α,β) : I → I ′ and
classes L i,R i of signature morphisms in I such that

1. I and I ′ have pushouts of signature morphisms and Φ preserves pushout squares,

2. (Φ,α,β) has Craig L i-left interpolation,

3. I ′ has implications and is quasi-compact, and

4. I ′ has Craig (ΦL i,ΦR i)-interpolation.
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Then the institution I has Craig-Robinson (L i,R i)-interpolation.

Proof. The key to the proof of this theorem is that the Grothendieck institution deter-
mined by the comorphism (Φ,α,β) has Craig interpolation for pushout squares of the
form

⟨I , Σ⟩
⟨1I ,ϕ1⟩

//

⟨u,Φϕ2⟩
��

⟨I , Σ1⟩

⟨u,Φθ1⟩
��

⟨I ′, ΦΣ2⟩ ⟨1I ′ ,Φθ2⟩
// ⟨I ′, ΦΣ′⟩

(14.5)

where

Σ
ϕ1
//

ϕ2

��

Σ1

θ1
��

Σ2
θ2

// Σ′

(14.6)

is a pushout of signature morphisms in I with ϕ1 ∈ L i and ϕ2 ∈ Ri.

• For this we first note that according to the construction from the proof of Thm. 14.11
the considered square of Grothendieck signature morphisms is indeed a pushout square.

• Then we apply the Grothendieck interpolation Thm. 14.16 as follows:

– We take the category of indices to consist of two objects i and i′ and one non-identity
arrow u, the class of ‘left’ index arrows (denoted by L in Thm. 14.16) as {1i,1i′}
and the class of ‘right’ index arrows (denoted by R in Thm. 14.16) as {1i,1i′ ,u}.

– We take L i′ = ΦL i and R i′ = ΦR i.

– I ′ has Craig (L i′ ,R i′)-interpolation by hypothesis and I has Craig (L i,R i)-interpo-
lation by the borrowing Prop. 9.31 by using the hypothesis that (Φ,α,β) has Craig
L i-left interpolation.

– The conditions on interpolation squares of institution comorphisms and on the right
interpolation property for the comorphism are trivially fulfilled, while the condition
on the left interpolation property for the comorphism is directly fulfilled by the
hypothesis that (Φ,α,β) has Craig L i-left interpolation.

By the conclusion of the Grothendieck interpolation Thm. 14.16 we obtain that (14.5)
is indeed a Ci square. Now we proceed with the proof of the Craig-Robinson interpo-
lation property for I .

• Consider a pushout square of signature morphisms in I as in (14.6) and E1 ⊆ SenΣ1
and E2,Γ2 ∈ Sen(Σ2) such that

1 θ1E1 ∪ θ2Γ2 |= θ2E2.
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We have to find an interpolant E ⊆ SenΣ such that E1 |= ϕ1E and ϕ2E ∪ Γ2 |= E2.
As in the proof of Prop. 9.24 we may assume without loss of generality that E2 is
a singleton, i.e., consists of only one sentence (otherwise we take E to be the union
of all interpolants obtained for the individual sentences). Then the original problem 1
translates to

2 αΣ′(θ1E1) ∪ αΣ′(θ2Γ2) |=′ αΣ′(θ2E2) 1, α preserves semantic consequence (Prop. 3.8)

3 (Φθ1)(αΣ1 E1) ∪ (Φθ2)(αΣ2Γ2) |=′ (Φθ2)(αΣ2E2) 2, naturality of α.

• Because of the assumption that E2 = {e} is singleton and by compactness or by the
existence of infinite conjunctions we may also assume that E1 and Γ2 are finite. Be-
cause I ′ has implications, let αΣ2Γ2 ⇒ αΣ2E2 denote the ΦΣ2-sentence γ1 ⇒ (. . .⇒
(γn⇒ αΣ2e)) where αΣ2Γ2 = {γ1, . . . ,γn}. Then

4 Φθ1(αΣ1E1) |=′ (Φθ2)(αΣ2Γ2⇒ αΣ2E2) 3

which is a Grothendieck interpolation problem for the square (14.5) as follows:

5 ⟨u, Φθ1⟩E1 |=♯ ⟨1i′ , Φθ2⟩(αΣ2Γ2⇒ αΣ2E2) 4.

• Let E be an interpolant for 5. This means we have that

6 E1 |=♯ ⟨1i, ϕ1⟩E and ⟨u, Φϕ2⟩E |=♯ αΣ2Γ2⇒ αΣ2E2.

• We show that E is also an interpolant for the original Craig-Robinson interpolation
problem 1. Note that E1 |= ϕ1E is just E1 |=♯ ⟨1i, ϕ1⟩E. Hence it remains to prove:

7 ϕ2E ∪ Γ2 |= E2.

This goes as follows:

8 (Φϕ2)(αΣE) |=′ αΣ2Γ2⇒ αΣ2E2 second relation in 6, definition of |=♯

9 (Φϕ2)(αΣE) = αΣ2(ϕ2E) naturality of α

10 αΣ2(ϕ2E) |=′ αΣ2Γ2⇒ αΣ2E2 8, 9

11 αΣ2(ϕ2E)∪αΣ2Γ2 |=′ αΣ2E2 10

12 ϕ2E ∪ Γ2 |= E2 11, conservative comorphism.

□
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Some concrete consequences of Thm. 14.17. A straightforward way to obtain concrete
CRi results from Thm. 14.17 is to rely on the left interpolation result of Prop. 9.35 for
comorphisms. For example, by considering comorphisms I →FOL , the table of Cor. 9.14
can be also read as a table of Craig-Robinson interpolation properties as follows.

Corollary 14.18. The following institutions have Craig-Robinson (L ,R )-interpolation.

institution L R
EQL ie ∗∗

universal FOL-atoms iei ∗∗∗
HCL ie∗ ∗∗∗

UNIV ie∗ ∗∗∗
∀∨ ie∗ ∗∗∗

The examples of the CRi properties in Cor. 14.18 tell us again that many-sorted
logics are non-trivial generalisations of their single-sorted variants. For instance, in the
single-sorted situation, the encapsulation property (designated by ‘e’ in the place of y in
(xyz)-morphisms) means that in the single-sorted version of EQL , all (ie)-morphisms
should be isomorphisms. This means that in some single-sorted logics CRi may be be-
come vacuous precisely because of the lack of many-sortedness.

One immediate consequence of the new Craig-Robinson interpolation properties
given by Cor. 14.18 is that some of the definability results obtained as instances of the
definability by axiomatizability Thm. 10.8 and given in Cor. 10.9 can also be obtained
as instances of the definability by interpolation Thm. 10.5. However, there are many im-
portant consequences of the general result of Thm. 14.17 and its concrete consequences
(such as those of Cor. 14.18), that have to do with the role played by CRi in computing.
We will come back to this in Chap. 15.

Exercises
14.20. Check the details of the proof of Thm. 14.16.

14.21. For each pushout square of sets (as in the left diagram below), if u1 and u2 are injective,
then its corresponding square of institution comorphisms (the right diagram below)

S u1
//

u2

��

S1

v1
��

FOL iS
foli

u1

//

foli
u2

��

FOL iS1

foli
v1

��

S2
v2
// S′ FOL iS2

foli
v2
// FOL iS

′

is a Ci square.

Notes. The theory of (morphism-based) Grothendieck institutions developed by [62] was pre-
ceded by ‘extra’ theory morphisms across institution morphisms of [60] with the motivation to pro-
vide semantics for heterogeneous multi-logic specification with CafeOBJ [95]. Comorphism-based
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Grothendieck institutions were defined in [185] by dualization of the morphism-based Grothendieck
institutions and have been extensively used as foundations for heterogeneous specification with
CASL extensions [188]. The ontology language DOL [189] (together with its tool Hets [182]) are
also based on Grothendieck institutions. Heterogeneity of the institution mappings involved was
also considered in [187] by a “Bi-Grothendieck” construction for an indexed structure of both insti-
tution morphisms and comorphisms. The paper [62] shows that Grothendieck institutions are just
a special case of the more general concept of Grothendieck construction in an arbitrary 2-category.
Cor. 14.7 extends Bénabou’s result in [19] to fibred institutions.

‘Globalisation’ results for Grothendieck institutions have been obtained in [62] for theory co-
limits, liberality, model amalgamation, and signature inclusions by following the same pattern of
lifting each of these properties from the ‘local’ level of the indexed institution to the ‘global’ level
of the Grothendieck institution. Although the ‘globalisation’ results can be immediately translated
into the language of fibred institutions, the framework of indexed institutions seems to be the most
appropriate for applications and for the presentations and development of these results. In the case
of theory co-limits and liberality, the sufficient part of the globalisation results was first obtained
in [60]. This paper had conjectured an ‘if and only if’ characterization of model amalgamation for
extra theory morphisms, and [62] solved it. Later on, in [185] it was shown that comorphism-based
Grothendieck institutions interact in a simpler and more natural way with model amalgamation.
The general interpolation problem in Grothendieck institutions was solved in [67].





Chapter 15

Specification

Algebraic specification is the ‘birth place’ of institution theory. Of course, institution
theory has also other several different scientific roots, such as universal algebra, model
theory, category theory, but the motivation that triggered the theory of institutions came
from algebraic specification. More precisely, it was that of an abstract uniform theory
supporting the mathematical foundations for structuring software modules in logic-based
computing languages, especially ‘specification’ languages. In some cases these can be
directly executable, thus enabling formal verifications. Moreover, this executable aspect
may allow for advanced forms of programming as-such.

Institution theory supports various methods for designing advanced modularisation
systems, and the formal specification literature based on institution theory is rather rich
and diverse. However, this was not the topic of our book, as here we developed a model
theory as-such direction within institution theory. While doing this, we included and em-
phasised also certain topics that are relevant for computing applications. In this chapter
we will show how institution-independent model theory helps with the foundations of
structuring logic-based formal specifications and verifications. We will do this in a suc-
cint way that fits the size of a book chapter. The contents of the chapter is as follows:

1. We discuss the concept of logic-based formal specification and verification.

2. We discuss the relevance for logic-based specification and programming of the model
theory that we have developed so far in this book.

3. Then, we define an institution-independent concept of ‘structured specification’ that
is based on a certain specific set of building operators. These have a quite generic na-
ture as they can express the common aggregations of specification modules, but also
of programs in certain logic-based programming languages. The structured specifica-
tions can be organised as an institution in a way similar to the institution of theories.
This similarity extends also to co-limits and model amalgamation, properties that are
crucial in the applications. We also prove a ‘normal form’ result for structured speci-
fications that provides a way to represent structured specifications as close as possible
to logical theories.
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4. In a subsequent section we address the modularity problem of logic-based formal ver-
ifications that can be aggregated by following the modular structure of the respective
specifications. The main result is a general completeness theorem, whose applica-
tions require a number of results previously developed in this book. This provides
to the theory of structured specifications a new level of flexibility and applicability.
Co-limits, model amalgamation, normal forms are studies at the new level of abstrac-
tion. Moreover, the new conceptual framework allows for a study of translations of
structured specifications across potentially different collections of structuring opera-
tors. This provides foundations for representations between different modularisation
systems.

5. Then, we climb one more abstraction level and re-consider the concept of structured
specification, this time independently of explicit collections of building operators.
This means a theory of ‘abstractly structured’ specifications which enjoys two levels
of independence, one from the base / underlying institution, and another one from
particular collections of structuring operators. Much of the concepts developed pre-
viously in the context of a particular choice of structuring operators can be recovered
at the new level of abstraction in a new appropriate form. In addition to that, due
to its two-fold independence, the theory of ‘abstractly structured’ specifications sup-
ports adequate translation concepts for structured specifications, that are applicable to
situations when both the base logical systems and the collections of the structuring
operators differ.

6. The final section of the chapter shows how ‘pre-defined types’ can be approached
abstractly. These are data types that are not constructed / defined by our specifica-
tions but they come with the respective system implementation, are ready-to-use, and
enjoy very efficient well tailored implementations. Typical examples include various
number systems, for instance the reals.

The study of this chapter requires material from Chapters 3 and 4 (excluding Sec. 4.6).
Sec. 15.3 requires also knowledge of basic concepts from Chap. 9 (Craig-Robinson inter-
polation) and Chap. 11 (proof systems, soundness, completeness).

15.1 What is logic-based formal specification?
Specification is an important phase / stage of system development, either software or
hardware.

• First, there is the requirements phase when we try to understand what we have to
develop, what kind of a system, with what kind of functionality.

• Then comes the design phase, where specification plays a big role because it repre-
sents the design written in a certain language. By this representation, the design can be
understood, communicated, and even reason upon. The specification language is often
natural language, but this is imprecise, leads to clumsy specifications, is prone to con-
fusion, and hardly supports any proper form of reasoning. A specification language
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that is based on some formalisms may solve much of these issues. A distinguished
class of formal specification languages are those based on some form of logic, and
have the following general characteristics:

– The specification [of the design and functionality of a system] comes as a logical
theory.

– The models of the specification are possible implementations of the design. In the
case of software systems these can be programs written in a common programming
language.

– The properties of the system are (semantic) consequences of the axioms in the spec-
ification. Their validity can be established if we have an adequate proof calculus.
In this case, soundness is absolutely mandatory, while the completeness is highly
desirable. A big advantage is when the underlying logical system has good com-
putational properties and the proof calculus can be modelled computationally in an
efficient way, such that the verification of the properties of the system appear as a
form of programming.

There is a multitude of logic-based specification languages with the above characteristics,
that are based on a multitude of logical systems, each of them more or less targeting
specific application domains. Some of them have a higher degree of universality, other
have a narrow applicability range. Often, the applicability power depends on developing
good methodologies for using the respective specification language. Some of them are
directly executable, thus displaying also powerful programming capabilities, others may
be logically very expressive but at the cost of losing the executability. In the case of the
latter, formal verifications are performed via dedicated computational tools. In all these
cases, there are technical aspects that can be addressed uniformly across the multitude
of logical systems at an institution-independent level, and there are technical aspects that
have to be addressed specifically at the level of particular logical systems. For instance,
the so-called ‘specification in-the-large’, meaning the programming / specification of the
aggregations of specification modules, is something that can be successfully considered
at an institution-independent level. Moreover, there are also ‘specification in-the-small’
issues – specification at the base logical level – that can be addressed abstractly. For
instance, to a large extent, initial semantics falls in this category.

Structuring specifications. Modularisation is absolutely crucial in any kind of system
development, from building construction to software engineering. Without a proper mod-
ular approach, the development of any complex system is doomed to failure. But it is not
only that. All systems, hardware or software, have a life, they need maintenance, they are
subject to evolution. At those stages, modularity appears to be even more important than
at the development stage, if we can say that.

All these general considerations apply to logic-based specifications. Specification
is about defining and communicating the meaning of a design accurately and with clarity.
Imagine how this would be possible in the case of a list of many thousands of axioms.
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This would be beyond the human capacity of understanding things. But, if a large specifi-
cation is skilfully structured from components, then we can achieve the understanding of
the whole specification from the understanding of its components. The components can
be also reused in order to avoid duplications, and any further upgrades can be localised
at the level of the relevant components. Moreover, the very structure of a specification
provides an in-depth understanding of the design and of the conceptual structure of the
respective system. All these arguments can be checked on the toy case of rings. In higher
algebra textbooks rings are hardly introduced in a flat manner, instead we first introduce
monoids, then groups, and finally rings by aggregating ‘multiplicative’ monoids with ‘ad-
ditive’ commutative groups and adding the distributivity axioms. In such a way we get a
good understanding of rings, which would not be achieved if we introduced rings with-
out relying on an apriori understanding of monoids and (commutative) groups. Moreover,
groups are often introduced on the basis of monoids; this is an example of reuse, as in
rings the concept / structure of monoid appears twice but needs to be specified only once.

On the model-theoretic support for specification and programming

A great part of the developments in this book do support the mathematical foundations
of logic-based specification and programming, even if they were not originally meant for
that purpose. Even more interesting, is that the specification / programming perspective
led to a more refined understanding of logic / model-theoretic concepts as-such. Let us
discuss in general a few of these with the aim to get a succint view on the complex
two-way relationship between model theory and specification by discussing the relevance
of some concepts and topics from institution-independent model theory to specification
theory and practice, on the one hand, and the imprint of the latter on the former, on the
other hand.

Initial semantics. When specifying a system we begin with the specification / definition
of the data types that we are going to use. The traditional way to do that is by reliance on
initial semantics, which means that the semantics of the respective data type is given by
the initial model of the specification. This is how (abstract) data types are defined, often
through specifications in some form of equational logic. But initial semantics has another
important application, that of a foundational role in logic programming (e.g. in languages
such as Prolog and variants). The semantics of logic programs is given by the so-called
‘Herbrand models’, which are just the initial models of the logical theories represented by
the respective programs. Traditionally, the underlying logic of Prolog (the classical envi-
ronment for logic programming) is Horn clause logic without equality. However, the logic
programming paradigm has been gradually extended also to other types of Horn clause
logic. On such an initial semantics base, in Chap. 16 we will develop the foundations of
logic programming in abstract institutions. The case of logic programming is emblematic
for the relationship between initial semantics and good computational properties.

The issue of the existence of initial models of logical theories is not alien to main-
stream model theory, but it is rather marginal there. By contrast, in this book we addressed
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it quite extensively, mostly at the general level by involving quasi-varieties. We showed
how initial semantics is essentially a property of Horn theories, in general not to be ex-
pected beyond that. These results involved quite a lot of institution-independent model-
theoretic machinery, including preservation and Birkhoff axiomatizability via categorical
injectivity, diagrams, etc.

Co-limits of theories. This topic, which is recurrent in our book, is alien to mainstream
model theory; we can safely say that. The aggregations of specification modules can be
modelled mathematically as co-limits in a category of specifications. Most often it is
about pushouts. For instance, the most common form of module aggregation is for two
specification modules, let us call them SP1 and SP2. Very often these share some parts,
let us call these SP0. Then the aggregation SP of SP1 and SP2 is a pushout of the form:

SP0 //

��

SP1

��

SP2 // SP

(15.1)

More sophisticated is another form of module aggregation when a module SP has a a part
P that acts as a parameter which can be instantiated in various ways for obtaining various
more concrete instances of SP. This method, called ‘parameterised specification / pro-
gramming’ is one of the most advanced specification / programming in-the-large method.
The instantiation of parameters in specifications can also be expressed as a pushout:

P //

v
��

SP

��

S // SP[v]

(15.2)

(v : P→ S represents an instance of the parameter P.) When each specification represents
a logical theory, these pushouts / co-limits represent pushouts / co-limits of theories.

Model amalgamation. This all-pervasive property of co-cones of signatures / theories,
especially co-limits (most often pushouts), of signatures / theories, is implicit and invis-
ible in conventional model theory, but explicit in institution-independent model theory.
It is all-pervasive both in model theory and computing-oriented institution-theoretic de-
velopments. The awareness about it first occurred in specification studies. Only later on
its role became apparent in model theory as-such developments. The specification theory
meaning of model amalgamation is related to the implementations-as-models idea. If we
think that the models of specifications (for the moment we think of them as models of the
theory of the specification) as possible implementations of the specifications that coincide
on their shared part, then they can be ‘amalgamated’ as an unique implementation of the
aggregation of the two specifications.
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Inclusion systems. Their story bears some similarity to that of model amalgamation.
Mathematically they are the ‘sister’ of the well-established categorical concept of factori-
sation systems. They appeared first in specification theory out of the necessity to model
imports of specification modules as morphisms SP→ SP1 that have the characteristics
of set inclusions, a crucial aspect being their uniqueness. There is at most one import
SP→ SP1 in the same way there is at most one set inclusion A ⊆ B. This is crucial in
order to consider sharing of sub-modules in a proper way. Then the modules aggregation
from diagram (15.1) should be more precisely considered as a pushout of inclusions:

SP0
⊆
//

⊆
��

SP1

⊆
��

SP2 ⊆
// SP

Moreover, a parameterised specification P→ SP should be also considered as an inclu-
sion of specifications. The result of an instantiation, such as S→ SP[v] in diagram (15.2)
should come also as an inclusion. This explains why we have considered and studied in-
clusions in the categories of theories, by following the view of specifications-as-theories.
Later on, authors of institution-independent model theory realised that whenever factori-
sation systems are necessary, the inclusion systems do the same job but in an mathe-
matically more convenient manner. Moreover, the latter also fit better with the concrete
applications. After all, the conventional concept of sub-model is not any injective homo-
morphism, it is an inclusive homomorphism.

Interpolation. It is difficult to find a case where the relationship between specification
and model theory would be more complex or more intense than with interpolation. For the
start, interpolation is a topic at the very core of logic and model theory. From the material
in Chap. 9 we see that interpolation is very difficult to obtain. In a way or another, our
interpolation theorems involved almost all developments preceding Chap. 9. One impli-
cation of this is that our involvement with interpolation in this chapter relies on all those
developments. What does that mean? That the foundations of logic-based specification
and verification are based on much in-depth model theory.

On the other hand, it is quite easy to see that it was precisely the specification theory
that liberated the concept of interpolation from the rather primitive view characteristic to
traditional concrete logic. Now we think of interpolation in terms of arbitrary signature
morphisms and sets of sentences. Reasons for both aspects were already discussed in
Chap. 9. In this chapter we will get an even better understanding of these aspects.

Institutions. The concept of institution in itself illustrates the great impact of specifi-
cation theory on model theory. All attempts from within logic as-such to develop an ax-
iomatic treatment of model theory had partially failed due to lack of enough abstraction
and relativity. It is now clear that a proper axiomatic model theory required the broader
view rooted in the practice of logic-based specification.



15.2. Structured specifications 483

The argument above belongs to the sphere of abstraction. On the concrete side,
the practice of specification brought a more refined understanding even of the common
logical systems, including first-order logic. First of all, for us, the default variant of first-
order logic is the many-sorted one and we now understand well that many-sorted first-
order logic is a non-trivial extension of traditional (single sorted) first-order logic, as
witnessed by interpolation (this relates to our next argument). Then, in this book, we also
consider signature morphisms that collapse syntactic entities, an idea completely alien to
conventional logic, but very relevant in specification logics. Moreover, the mere exercise
of properly capturing first-order logic as a mathematical object – as an institution – leads
to non-trivial re-considerations of fundamental concepts, such as variables. And to get the
math of the variables fixed we relied on ideas from the practice of algebraic specification,
actually from the practice of implementing specification languages.

15.2 Structured specifications
The aim of this section is to introduce the main concept of this chapter, namely that
of a structured specification. This includes the development of their most fundamental
properties as an extension of corresponding properties for theories (as unstructured speci-
fications, theories can be seen as a particular case of structured specifications), as follows:

• The institution of the structured specifications over an institution I supersedes the
concept of institution of theories I th.

• Co-limits of specifications can be obtained from co-limits of signatures in a way that
parallels the lifting of co-limits of signatures to co-limits of theories.

• In the same way we obtain model amalgamation for structured specifications.

• Finally, we develop a way to express structured specifications in terms of theories that
are semantically equivalent to the respective structured specification.

The intersection-union square of signatures. For the purpose of this chapter we as-
sume that the category of the signatures of the base institution I comes equipped with
an inclusion system such that the partial order of its abstract inclusions, has least up-
per bounds called unions. Given two signatures Σ1 and Σ2 in I let Σ1 ∪Σ2 denote their
union. Then their intersection Σ1∩Σ2 is defined as the unique pullback square such that
Σ1∩Σ2 ↪→ Σ1 and Σ1∩Σ2 ↪→ Σ2 are inclusions.

Σ1∩Σ2
⊆
//

⊆
��

Σ1

⊆
��

Σ2 ⊆
// Σ1∪Σ2

Assuming the existence of pullbacks of inclusions in the wider category of signatures, the
existence and the uniqueness of this pullback square can be shown quite easily (Ex. 4.57).
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Although it holds in many concrete situations of interest, it does not follow in general that
such intersection-union squares are pushouts too. Since this property is necessary in the
applications, in this chapter we assume it as an axiom:

The intersection-union squares of signatures are pushout squares.

Structured specifications. Given an institution I endowed with an inclusion system
enjoying the intersection-union axiom above, its structured specifications (or just specifi-
cations for short) are defined from the finite theories by iteration of several specification
building operators from a such fixed collection. So, the concept of structured specification
is ‘parameterised’ by the respective collection of operators. Specifications are expressions
/ terms built with these operators. The semantics of each specification SP is given by its
signature sig[SP] and its category of models Mod[SP]. We define only the class of ob-
jects for each Mod[SP], the category Mod[SP] being the corresponding full subcategory
of Mod(sig[SP]). In software system engineering, the class Mod[SP] of models of a spec-
ification SP of a system is interpreted as the class of all possible implementations of that
system. From the many collections of specification building operators, that make sense,
here we use what appears to be the most common such collection. The concepts and re-
sults developed for this collection can be transferred easily to other collections which at
least cover the effects of the former three operators below. In Sec. 15.4 we will develop
an abstract approach that deals uniformly with this situation, free from any commitment
to a certain concrete collection of specification building operators.

BASIC. Each finite theory (Σ,E) is a specification such that

sig[(Σ,E)] = Σ, and

Mod[(Σ,E)] = ModI (Σ,E).

UNION. For any specifications SP1 and SP2 we can take their union SP1∪SP2 with

sig[SP1∪SP2] = sig[SP1]∪ sig[SP2], and

|Mod[SP1∪SP2]|= {M ∈ModI (sig[SP1∪SP2]) |M↾sig[SPi] ∈Mod[SPi], i = 1,2}.

TRANS. For any specification SP and signature morphism ϕ : sig[SP]→ Σ′ we can take
its translation along ϕ denoted by SP⋆ϕ and such that

sig[SP⋆ϕ] = Σ′, and

|Mod[SP⋆ϕ]|= {M′ ∈ModI
Σ′ |M′↾ϕ ∈Mod[SP]}.

DERIV. For any specification SP′ and any signature morphism ϕ : Σ→ sig[SP′] we can
take its derivation along ϕ denoted by ϕ2SP′ and such that

sig[ϕ2SP′] = Σ, and

|Mod[ϕ2SP′]|= {M′↾ϕ |M′ ∈Mod[SP′]}.
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The significance of BASIC is that any specification structuring process starts from the
unstructured specifications. The operator UNION represents the most common way to ag-
gregate specifications. The operator TRANS does renamings of syntactic entities. This is
useful to avoid name clashes, to provide new names that are more suggestive in particular
contexts, to add new syntactic entities, and to interpret parameters. Translations need not
be surjective or injective. The operator DERIV is mostly used to ‘hide’ auxiliary syntactic
entities and involve a signature morphism which is an inclusion. It adds expressive power
to the specification process, as the following simple example illustrates. Let MON be the
EQL theory of monoids and ϕ be the inclusion of the signature containing only the bi-
nary (+) into sig[MON]. This means that ϕ just adds the neutral (zero) constant. Then
Mod[ϕ2MON] is the class of all monoids but without a syntax for denoting the zero ele-
ment. This is not axiomatizable in EQL because it is not a variety in Mod(sig[ϕ2MON])
since the empty semigroup is a sub-model of the natural numbers (with + interpreted as
addition) but is outside of Mod[ϕ2MON]. This is the situation in EQL . If we climb to a
more expressive logical system, such as FOL , we get Mod[ϕ2MON] axiomatised by the
associativity of + and by the axiom (∃x)(∀y)(x+ y = y)∧ (y+ x = y).

Equivalent specifications. Given two specifications SP1 and SP2 we let SP1 |= SP2
denote the situation when sig[SP1] = sig[SP2] and Mod[SP1] ⊆ Mod[SP2]. The specifi-
cations are equivalent, denoted SP1 |=| SP2, when SP1 |= SP2 and SP2 |= SP1. In gen-
eral, it is possible to have specifications that are different and yet equivalent, for example
SP∪SP |=| SP. When we are interested only in the semantics of specifications rather than
in the way they are constructed, it does make sense to consider specifications modulo this
equivalence relation.

The institution of the structured specifications. The structured specifications can be
organised as an institution very much in the same way of I th, based on the concept of
specification morphism. If we ignore the issue of the finiteness of the basic specifications
as theories, then the institution of the structured specifications appears as an extension of
I th. A morphism of (structured) specifications ϕ : SP1→ SP2 between specifications SP1
and SP2 is a signature morphism ϕ : sig[SP1]→ sig[SP2] such that M↾ϕ ∈Mod[SP1] for
each M ∈Mod[SP2].

Fact 15.1. For any institution I , the specifications and their morphisms under the com-
position inherited from the category of the signatures, form a category, denoted SpecI .

Note that Mod can be therefore regarded as a functor Mod : SpecI → Catop. This is a
starting point for conceiving an institution where the structured specifications play the
role of the signatures.

• An SP-sentence for a specification SP is any sig[SP]-sentence; this determines a func-
tor SpecI → Set.

• A model M ∈ Mod[SP] satisfies a SP-sentence ρ if and only if M |=sig[SP] ρ in the
original institution.
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Fact 15.2. Given an institution I , the structured specifications together with their mod-
els, sentences, and the satisfaction between them form an institution (SpecI , sig;SenI ,
Mod[ ], |=), denoted I spec. Moreover, there exists a ‘forgetful’ institution morphism
(sig,1,⊆) : I spec→ I (as illustrated by the diagram below).

SpecI

ModI spec

��
⊆

SenI spec

��

sig
��

Catop SigI
ModI
oo

SenI
// Set

The institution I will be referred to as the ‘base institution’ while I spec as the ‘institution
of the (structured) specifications’.

Co-limits of specifications. Many structuring constructs in actual specification lan-
guages rely on co-limits of specifications, especially pushouts. A typical example is that
of the instantiation of parameterized specifications. Co-limits of signatures can be lifted
to specifications in a manner similar to that of Prop. 4.2 lifting co-limits from signatures
to theories.

Proposition 15.3. In any institution I , the signature functor sig : SpecI → SigI from the
specifications to signatures lifts finite co-limits.

Proof. We prove this result for the particular case of pushouts, the same argument work-
ing as well for any finite co-limit. Consider any span of specification morphisms φ : SP→
SP′, ϕ : SP→ SP1 and take a pushout of signatures like below

sig[SP]
φ
//

ϕ

��

sig[SP′]

ϕ′

��

sig[SP1]
φ1

// Σ′1

(15.3)

• We define SP′1 = (SP′ ⋆ϕ′)∪ (SP1 ⋆φ1).

• Then ϕ′ : SP′→ SP′1 and φ1 : SP1→ SP′1 are specification morphisms. Let us see how
this works for ϕ′, for φ1 the argument being similar. Let M′1 ∈Mod[SP′1]. Then

1 M′1 ∈Mod[SP′ ⋆ϕ′] definition of SP′1, semantics of UNION

2 M′1↾ϕ′ ∈Mod[SP′] 1, semantics of TRANS.

• We prove that ϕ′,φ1 defines a pushout for φ,ϕ in SpecI . Consider θ′ : SP′→ SP′′ and
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θ1 : SP1→ SP′′ specification morphisms.

SP
φ
//

ϕ

��

SP′

ϕ′

��
θ′

��

SP1
φ1
//

θ1 ++

SP′1
γ

!!

SP′′

– By the pushout property for signatures there exists a unique signature morphism
γ : sig[SP′1]→ sig[SP′′] such that ϕ′;γ = θ′ and φ1;γ = θ1.

– It remains to show that γ is a specification morphism. Let M′′ ∈Mod[SP′′]. Then

1 M′′↾γ↾ϕ′ = M′′↾θ′ ∈Mod[SP′] ϕ′;γ = θ′, M′′ ∈Mod[SP′′], θ′ specification morphism

2 M′′↾γ↾φ1 = M′′↾θ1 ∈Mod[SP1] φ1;γ = θ1, M′′ ∈Mod[SP′′], θ1 specification morphism

3 M′′↾γ ∈Mod[SP′ ⋆ϕ′] 1, semantics of TRANS

4 M′′↾γ ∈Mod[SP1 ⋆φ1] 2, semantics of TRANS

5 M′′↾γ ∈Mod[SP′1] 3, 4, definition of SP′1, semantics of UNION.

□

Note a slight difference between Prop. 15.3 and the lifting of co-limits from signa-
tures to theories: the former lifting of co-limits is limited to the finite. The explanation
for this limitation is that the structured specifications have a finitary nature because the
basic specifications are finite theories, on the one hand, and the structured specifications
are finitary terms / expressions, on the other hand.

Model amalgamation for specifications. An immediate but important consequence of
the construction of co-limits of specifications given by Prop. 15.3 is that model amalga-
mation properties also lift from signatures to specifications. This works very similar to the
lifting of model amalgamation from signatures to theories. Prop. 15.4 can be seen as an
extension of the corresponding result for theories. Below we formulate this for ordinary
model amalgamation, but it can be replicated easily to other forms of model amalgama-
tion such as weak model amalgamation or semi-exactness.

Proposition 15.4. The institution of specifications I spec has model amalgamation when-
ever the base institution I has model amalgamation.

Proof. We do this for pushout squares of specification morphisms; as for other finite co-
limits it goes the same way. We may also recall from basic category that any finite co-limit
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can be expressed in terms of pushouts and initial objects. For any pushout of specification
morphisms like below

SP
φ
//

ϕ

��

SP′

ϕ′

��

SP1
φ1

// SP′1

and any SP′-model M′ and any SP1-model M1 such that M′↾φ = M1↾ϕ we consider their
unique amalgamation M′1 in sig[SP′1], given by the amalgamation property of the base
institution (digagram (15.3) being a pushout square). We prove that M′1 ∈Mod[SP′1].

• Based on the proof of Prop. 15.3, without any loss of generality, we consider SP′1 =
(SP′ ⋆ϕ′)∪ (SP1 ⋆φ1) (isomorphic specifications are semantic equivalent).

• Since M′1↾ϕ =M′ ∈Mod[SP′] and M′1↾φ1 =M1 ∈Mod[SP1] we have that M′1 ∈Mod[SP′⋆
ϕ′]∩Mod[SP1 ⋆φ1], hence M′1 ∈Mod[SP′1].

□

The general practical meaning of this result is that any implementation of a structured
specification SP can be obtained by iterative aggregations of implementations of the com-
ponents of SP by following its structure.

Normal forms of structured specifications
The structuring of specifications has two main purposes. The obvious one is the modu-
lar building of specifications. The other power of the structuring of specification is often
downplayed: some collections of structuring operators allow for significantly more spec-
ification power in the sense that with structured specifications we can specify classes of
models that are not axiomatizable, in other words beyond what finite theories can specify.
In what follows we study the relationship between specification in-the-large (with struc-
tured specifications) and in-the-small (by finite theories) strictly from the point of view of
their specification power, more precisely when and to what extent the latter can substitute
the former. We will do this for the collection of the four operators introduced above.

In order to keep notations simpler, and without losing the full generality of our
discussion, let us assume that the base institution I is inclusive; recall from Sec. 4.5
that in addition to the assumptions at the beginning of this section this means also that
SenΣ⊆ SenΣ′ whenever Σ⊆ Σ′ is an inclusion of signatures.

Normal forms. In general, the specifications that include also DERIV are not seman-
tically equivalent to finite theories. We have seen already an example of this situation,
when ϕ2MON could not be axiomatised in EQL . However, the following result shows
that we can get rid off all DERIV but one, which then occurs at the top of the structuring.
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Theorem 15.5. Let the base institution I have pushouts of signature morphisms and
model amalgamation. Then any specification structured by BASIC, UNION, TRANS, and
DERIV is semantically equivalent to a specification of the form φ2(Σ′,E ′).

Proof. We prove this result by induction on the structure of a specification SP.

• For each finite theory (Σ,E), (Σ,E) |=| 1Σ2(Σ,E).

• Consider SP1∪SP2 such that sig[SPk] = Σk, k = 1,2.

– By the induction hypothesis SPk |=| φk2(Σ
′
k,E
′
k), φk : Σk→ Σ′k, k = 1,2.

– Let φ′1,φ
′
2 be a pushout co-cone for i1;φ1, i2;φ2 where ik : Σ1 ∩Σ2 ↪→ Σk are the

inclusions of the intersection of the signatures.

Σ1∩Σ2
i1

//

i2
��

Σ1

��

φ1
// Σ′1

φ′1

��

Σ2 //

φ2
��

Σ1∪Σ2
φ

""

Σ′2
φ′2

// Σ

(15.4)

– By using the axiom of this chapter that the intersection-union of a square of signa-
tures is a pushout, let φ : Σ1 ∪Σ2 → Σ is the unique signature morphism making
the diagram (15.4) commute.

We prove that SP1∪SP2 |=| φ2(Σ,φ′1E ′1 ∪ φ′2E ′2).

– Obviously, sig[SP1∪SP2] = Σ1∪Σ2 = sig[φ2(Σ,φ′1E ′1 ∪ φ′2E ′2)].

– On the one hand, let M′ ∈Mod[φ2(Σ,φ′1E ′1 ∪ φ′2E ′2)]. Then

1 there exists M ∈Mod(Σ,φ′1E ′1 ∪ φ′2E ′2) s.th. M↾φ = M′ semantics of DERIV

Let M′k = M↾φ′k
, k = 1,2.

2 M′k |= E ′k, k = 1,2 1, Satisfaction Condition

3 M′↾Σk = M′k↾φk , k = 1,2 commutativity of diagram (15.4)

4 M′↾Σk ∈Mod[SPk], k = 1,2 2, 3, SPk |=| φk2(Σ′k,E
′
k)

5 M′ ∈Mod[SP1∪SP2] 4, semantics of UNION.

– On the other hand, let M′ ∈Mod[SP1∪SP2]. Then

6 ∃M′k ∈Mod(Σ′k,E
′
k), M′↾Σk = M′k↾φk , k = 1,2 SPk |=| φk2(Σ′k,E

′
k), sem. of DERIV

7 M′k↾(ik;φk) = M′↾Σ1∩Σ2 , k = 1,2 6, commutativity of (15.4)

8 M′1↾(i1;φ1) = M′2↾(i2;φ2) 7

9 there exists M ∈ |ModΣ|, M↾φ′k
= M′k, k = 1,2 8, I has model amalgamation
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10 M |= φ′1E ′1 ∪ φ′2E ′2 6, 9, Satisfaction Condition

11 M↾φ↾Σk = M↾φ′k
↾φk = M′k↾φk = M′↾Σk , k = 1,2 commutativity of (15.4), 9, 6

12 M↾φ = M′ 11, uniqueness of model amalgamation

13 M′ ∈Mod[φ2(Σ,φ′1E ′1 ∪ φ′2E ′2)] 12, 10.

• Consider SP⋆ϕ such that ϕ : Σ→ Σ′.

– By the induction hypothesis there exists φ : Σ→ Σ1 and finite theory (Σ1,E1) such
that SP |=| φ2(Σ1,E1).

– Let ϕ1,φ
′ be a pushout co-cone for ϕ,φ like in the diagram below:

Σ
φ
//

ϕ

��

Σ1

ϕ1

��

Σ′
φ′
// Σ′1

(15.5)

We prove that SP⋆ϕ |=| φ′2(Σ′1,ϕ1E1).

– We have that sig[SP⋆ϕ] = sig[φ′2(Σ′1,ϕ1E1)] = Σ′.

– On the one hand, let M′ ∈Mod[φ′2(Σ′1,ϕ1E1)]. Then

1 there exists M′1 ∈Mod(Σ′1,ϕ1E1), M′1↾φ′ = M′

2 M′1↾ϕ1 |= E1 1, Satisfaction Condition

3 M′1↾ϕ1↾φ ∈Mod[φ2(Σ1,E1)] 2, semantics of DERIV

4 M′1↾ϕ1↾φ ∈Mod[SP] 3, SP |=| φ2(Σ1,E1)

5 M′1↾φ′↾ϕ ∈Mod[SP] 4, commutativity of (15.5)

6 M′ = M′1↾φ′ ∈Mod[SP⋆ϕ] 5, semantics of TRANS.

– On the other hand, let M′ ∈Mod[SP⋆ϕ]. Then

7 M′↾ϕ ∈Mod[SP] M′ ∈Mod[SP⋆ϕ], semantics of TRANS

8 there exists M1 ∈Mod(Σ1,E1), M1↾φ = M′↾ϕ 7, SP |=| φ2(Σ1,E1), sem. of DERIV.

By the lifting of co-limits from signatures to theories 4.2, the square below is a
pushout square of theory morphisms:

Σ
φ
//

ϕ

��

(Σ1,E1)

ϕ1

��

Σ′
φ′
// (Σ′1,ϕ1E1)

It is also a model amalgamation square by the lifting of model amalgamation from
signatures to theories (cf. Thm. 4.8). Hence

9 there exists M′1 ∈Mod(Σ′1,ϕ1E1) such that M′1↾φ′ = M′, M′1↾ϕ1 = M1
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10 M′ ∈Mod[φ′2(Σ′1,ϕ1E1)] 9, semantics of DERIV.

• Consider ϕ2SP′, ϕ : Σ→ Σ′.

– By the induction hypothesis there exists φ : Σ′→ Σ′′ and finite theory (Σ′′,E ′′) such
that SP′ |=| φ2(Σ′′,E ′′).

We prove that ϕ2SP′ |=| (ϕ;φ)2(Σ′′,E ′′). We have that

Mod[ϕ2SP′] = Mod[SP′]↾ϕ semantics of DERIV

= Mod[φ2(Σ′′,E ′′)]↾ϕ SP′ |=| φ2(Σ′′,E ′′)

= Mod(Σ′′,E ′′)↾φ↾ϕ semantics of DERIV

= Mod(Σ′′,E ′′)↾(ϕ;φ) Mod is functor.

□

Given any structured specification SP, any specification of the form φ2(Σ′,E ′)
which is semantically equivalent to SP is called a normal form of SP. Note that if SP
is built only from BASIC, UNION, TRANS, then its normal forms are just theories.

Exercises
15.1. Consider the following four EQL theories:

• MON, the theory of monoids, with the neutral constant denoted 0 and the binary operation
denoted +.

• INV, whose signature extends sig[MON] with an unary operation − and has the equations
(∀x)x+−x = 0 and (∀x)(−x)+ x = 0.

• COMM, with one binary operation + and a commutativity equation for that.

• DIST, with two binary operations, · and +, and equations expressing the distributivity of · over
+, both left and right.

Specify the category of the rings by aggregating the four theories using BASIC, UNION and TRANS.

15.2. Given specifications SP1 and SP2, show that the following commutative square of specifica-
tion morphisms

(sig[SP1]∩ sig[SP2], /0)
⊆

//

⊆
��

SP1

⊆
��

SP2 ⊆
// SP1∪SP2

is a pushout square in SpecI .

15.3. The specification building operator UNION can be replaced by its particular version where
SP1 and SP2 have the same signature. The general union of specifications can be obtained from
TRANS and the union over the same signature.



492 Chapter 15. Specification

15.4. Algebraic properties of the structuring of specifications

• For any specifications SP, SP′ and SP′′

– SP∪SP′ |=| SP′∪SP,

– SP∪SP |=| SP,

– (SP∪SP′)∪SP′′ |=| SP∪ (SP′∪SP′′).

• For any specification SP and any signature morphisms ϕ : sig[SP]→ Σ′ and ϕ′ : Σ′→ Σ′′

SP⋆ (ϕ;ϕ
′) |=| (SP⋆ϕ)⋆ϕ

′.

• For any specifications SP1 and SP2 and any signature morphism ϕ : sig[SP1∪SP2]→ Σ

(SP1∪SP2)⋆ϕ |=| (SP1 ⋆ (i1;ϕ))∪ (SP2 ⋆ (i2;ϕ))

where ik is the inclusion sig[SPk] ↪→ sig[SP1∪SP2] for k ∈ {1,2}.
• For any specification SP and any signature morphisms ϕ′ : Σ′′→ Σ′ and ϕ : Σ′→ sig[SP],

(ϕ′;ϕ)2SP |=| ϕ′2ϕ2SP.

Assume the institution has model amalgamation and consider any specifications SP1 and SP2. Let
i be the signature inclusion sig[SP1]∩ sig[SP2] ↪→ sig[SP1]∪ sig[SP2], and for k = 1,2 let ik be the
signature inclusion sig[SP1]∩ sig[SP2]⊆ sig[SPk]. Then

• i2(SP1∪SP2) |=| (i12SP1)∪ (i22SP2).

15.5. Inclusions of specifications
Let SpecI /|=| be the ‘quotient’ of the category of specifications under specification equivalence |=|.
Then SpecI /|=| has two inclusion systems inheriting the inclusion system of the signatures:

• a closed one, where the abstract inclusions of specifications ϕ : SP1 → SP2 are the abstract
inclusions of I -signatures such that SP1 |=|ϕ2SP2, and the abstract surjections of specifications
are just the abstract surjections of I -signatures, and

• a strong one, where the abstract inclusions of specifications are just the abstract inclusions
of I -signatures and the abstract surjections of specifications ϕ : SP1 → SP2 are the abstract
surjections of signatures such that SP2 |=| SP1 ⋆ϕ.

Moreover, the strong inclusion system for specifications has unions where (SP1/|=|)∪ (SP2/|=|) =
(SP1∪SP2)/|=| for any specifications SP1 and SP2.

15.6. Interpolation for structured specifications
The following Craig interpolation property holds for specifications. For any weak amalgamation
square of signatures

Σ
φ
//

ϕ

��

Σ′

ϕ′

��

Σ1
φ1

// Σ′1

any Σ′-specification SP′ and any Σ1-specification SP1 such that SP′ ⋆ϕ′ |= SP1 ⋆φ1, there exists a
Σ-specification SP such that SP′ |= SP⋆φ and SP⋆ϕ |= SP1. (Hint: define SP = φ2SP′.)
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15.7. Intersection of structured specifications
Define the intersection SP1 ∩SP2 of any specifications SP1 and SP2 as a new specification build-
ing operation and use it for showing that the signature functor from specifications to signatures
sig : SpecI → SigI lifts pullbacks.

15.8. Diagrams for structured specifications
Consider an inclusive (base) institution I with diagrams ι such that for each Σ-model M, the ele-
mentary extension ιΣM : Σ→ ΣM is an inclusion. Then I spec has diagrams. (Hint: The diagram of
a model M of a specification SP is SP→ SP∪ (ΣM ,EM) where Σ = sig[SP] and Σ→ (ΣM ,EM) is
the diagram of M in I .)

15.9. Lifting comorphisms to institutions of structured specifications
Each comorphism between the base institutions (Φ,α,β) : I → I ′ such that Φ preserves unions of
signatures determines a canonical comorphism between the institutions of the structured specifica-
tions (Φspec,αspec,βspec) : I spec→ (I′)spec.

15.3 Specifications with proofs
In the case of complex specifications, a modular approach to proofs allows for efficient
formal verifications. This means that we can develop proofs at the level of the components
of the structured specifications and then aggregate them by following the structure of the
respective specifications. In this section we develop such a theory of structured proofs as
follows:

1. Given a proof system for a base institution I we extend it to a proof system for I spec,
for the four specification building operators introduced in Sec. 15.2.

2. We provide general conditions under which the soundness and the completeness carry
from I to I spec.

3. We illustrate the applicability of the general theory in a couple of concrete situations.

⟨T , D⟩-specifications. In the theory of structuring specifications, to consider all signa-
ture morphisms for TRANS and DERIV is impractical for two reasons. On the one hand, in
concrete situations, for TRANS and DERIV we use specific kinds of signature morphisms,
this being more obvious in the case of DERIV. On the other hand, some of the important
general results of this section cannot be applied unless the structuring is parameterised by
designated classes of signature morphisms for TRANS and DERIV.

Let T ,D ⊆ Sig be classes of signature morphisms in the base institution I . The
specifications thus built by BASIC, UNION, TRANS by morphisms in T , and DERIV by
morphisms in D , are called ⟨T , D⟩-specifications. Let us denote the category of ⟨T , D⟩-
specifications by SpecT ,D . The resulting institution of the ⟨T , D⟩-specifications is de-
noted I spec

T ,D .

Extending proof systems to specifications. Given an institution with proofs I = (Sig,
Sen,Mod, |=,Pf ) and classes of signature morphisms T ,D ⊆ Sig, the institution I spec

T ,D of
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⟨T , D⟩-specifications can be enhanced with a proof system by taking the initial proof
system such that

(base) for each specification SP: Γ ⊢SP E if Γ ⊢sig[SP] E

(pres) for each finite theory (Σ,E): /0 ⊢(Σ,E) E

(deriv) and such that it satisfies following the (meta-)rule, for each d ∈D with d : Σ→
sig[SP′]: dΓ ⊢SP′ dE implies Γ ⊢d2SP′ E.

The rule base says that any proof at the structured level can be considered as a proof at
the structured level. The rule pres is rather trivial but nevertheless necessary: any axiom
of an unstructured specification is considered already proved. Although expected, deriv
is more interesting: any proof in SP′ involving only sentences from the derivation d2SP′

should count as a proof in d2SP′. This can be regarded as a proof-theoretic conservativity
property imposed on d.

Proposition 15.6. There exists the initial proof system Pf T ,D for ⟨T , D⟩-specifications
satisfying base, pres and deriv defined above.

Proof. The formal construction can be done in the manner of constructions of the free
proof systems over systems of rules (Thm. 11.3) and the construction of the free proof
systems with connectives (Thm. 11.14). Instead of doing this, in order to grasp Pf T ,D ,
let us describe rather informally its construction. This can be done by the following two
steps:

1. for each theory (Σ,E) we add rules PΣ,E : /0→ E to the Σ-proofs (from I ) such that
ϕPΣ,E = PΣ′,ϕE for each signature morphism ϕ : Σ→ Σ′, and we take the free proof
system which preserves the horizontal and vertical composition of the original proofs
of I , and

2. when Γ ̸⊢d2SP′ E for some specification SP′ and (d : Σ→ sig[SP′]) ∈ D such that
dΓ ⊢SP′ dE, we add a d2SP′-proof Γ→ E and take again the free proof system which
preserves the horizontal and vertical composition of the existing proofs.

□

Soundness
Proposition 15.7. For any sound institution with proofs I , the corresponding institution
with proofs I spec

T ,D of the structured ⟨T , D⟩-specifications is also sound.

Proof. Soundness of I spec
T ,D means that there exists a comorphism of proof systems

(1,1,γ) : (SpecT ,D ,Sen,Pf T ,D)→ (SpecT ,D ,Sen, |=)

where (SpecT ,D ,Sen, |=) is the semantic proof system determined by the institution I spec
T ,D

of ⟨T , D⟩-specifications. By Prop. 15.6 it is enough to show that the semantic proof
system (SpecT ,D ,Sen, |=) satisfies properties base, pres, and deriv. Indeed these hold as
follows:
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• Property base holds for |=, where SP is any specification, because, if Γ ⊢sig[SP] E
then by the soundness of the base institution I we have that Γ |=sig[SP] E. Because
Mod[SP]⊆Mod(sig[SP]), we get that Γ |=SP E.

• Property pres for |= means that for each theory (Σ,E) we have that /0 |=(Σ,E) E, which
is trivial.

• Property deriv for |= means that dΓ |=SP′ dE implies Γ |=d2SP′ E. Consider a model
M ∈Mod[d2SP′] such that M |= Γ. Then

1 there exists M′ ∈Mod[SP′], M = M′↾d semantics of DERIV

2 M′ |= dΓ 1, M |= Γ, Satisfaction Condition

3 M′ |= dE 1, 2, dΓ |=SP′ dE

4 M = M′↾d |= E 1, 3, Satisfaction Condition.

□

Note that in the proof of the soundness Prop. 15.7 we have not used anything about
T and D , so with respect to soundness there is complete freedom about them. Also, the
proofs of the soundness of the three rules base, pres, deriv are somehow proportional in
difficulty with their degree of non-triviality. For instance, the proof of the soundness of
pres is trivial, while the proof of the soundness of deriv is the most interesting from all
three.

Completeness
The lifting of completeness from the base institution to the institution of (T ,D)-specifica-
tions, unlike the lifting of the soundness, requires some conditions. These are substantial
conditions that set the boundaries of completeness in the applications. However, all these
conditions come as a consequence of having DERIV as one of the structuring operators.

Theorem 15.8. Consider a base institution with proofs I = (Sig,Sen,Mod, |=,Pf ) and
classes of signature morphisms T and D such that

1. T and D satisfy the following properties:

• D is a subcategory of Sig,

• D ⊆ T and each signature inclusion belongs to T ,

• for each t : Σ→ Σ′ in T and d : Σ→ Σ1 in D there exists a pushout square with
d′ ∈D ,

Σ
d
//

t
��

Σ1

��

Σ′
d′
// Σ′1
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2. I is complete,

3. I has model amalgamation, and

4. I has Craig-Robinson (D,T )-interpolation.

Then the institution I spec
T ,D of ⟨T , D⟩-specifications endowed with the proof system Pf T ,D

is complete.

Proof. We prove by induction on the structure of the specification SP that Γ ⊢SP E if
Γ |=SP E. For this proof we will systematically use the existence and uniqueness of normal
forms for specifications formed with BASIC, UNION, TRANS and DERIV given by the
straightforward adaptation of Thm. 15.5 to ⟨T , D⟩-specifications that uses the conditions
on T and D from the statement of the theorem.

• The base step BASIC. We prove that for each finite theory (Σ,E1), if Γ |=(Σ,E1) E then
Γ ⊢(Σ,E1) E. So, we consider a semantic consequence Γ |=(Σ,E1) E. We have that:

1 Γ∪E1 |=Σ E Γ |=(Σ,E1) E

2 Γ∪E1 ⊢Σ E 1, completeness of I

3 Γ∪E1 ⊢(Σ,E1) E 2, base

4 ⊢(Σ,E1) E1 pres

5 Γ ⊢(Σ,E1) /0 monotonicity proof

6 Γ ⊢(Σ,E1) E1 4, 5, horizontal composition of proofs

7 Γ ⊢(Σ,E1) Γ monotonicity proof

8 Γ ⊢(Σ,E1) Γ∪E1 6, 7, vertical composition

9 Γ ⊢(Σ,E1) E 8, 3, horizontal composition.

• The induction step for TRANS. Consider a translation of specifications SP⋆t with t ∈ T
such that t : sig[SP]→ Σ′. Let us assume Γ′ |=SP⋆t E ′ and prove that Γ′ ⊢SP⋆t E ′.

– According to the proof of Thm. 15.5, there exists a normal form d′2(Σ′1, t1Γ1) for
SP ⋆ t such that d2(Σ1,Γ1) is a normal form for SP and the square below is a
pushout:

Σ
d
//

t
��

Σ1

t1
��

Σ′
d′
// Σ′1

(15.6)

– We show that d′Γ′∪ t1Γ1 |= d′E ′. Let M′1 ∈ModΣ′1 such that M′1 |= d′Γ′∪ t1Γ1. We
have that:

10 M′1↾d′ ∈Mod[SP⋆ t] SP⋆ t |=| d′2(Σ′1, t1Γ1), M′1 |= t1Γ1

11 M′1↾d′ |= Γ′ M′1 |= d′Γ′, Satisfaction Condition
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12 M′1↾d′ |= E ′ 10, 11, Γ′ |=SP⋆t E ′

13 M′1 |= d′E ′ 12, Satisfaction Condition.

– By the CRi property for the square (15.6), there exists an interpolant I ⊆ SenΣ such
that Γ1 |= dI and Γ′∪ tI |= E ′. Then:

14 dI ⊆Mod(Σ1,Γ1)
∗

Γ1 |= dI

15 I ⊆ (Mod(Σ1,Γ1)↾d)
∗ 14, Satisfaction Condition

16 Mod[SP] = Mod(Σ1,Γ1)↾d SP |=| d2(Σ1,Γ1)

17 |=SP I 15, 16

18 ⊢SP I 17, induction hypothesis

19 ⊢SP⋆t tI 18, translation along specification morphism t : SP→ SP⋆ t (Pf T ,D t)

20 Γ′ ⊢SP⋆t tI 19, monotonicity and horizontal composition of proofs

21 Γ′ ⊢SP⋆t Γ′ monotonicity

22 Γ′ ⊢SP⋆t Γ′∪ tI 20, 21, vertical composition of proofs

23 Γ′∪ tI ⊢Σ′ E ′ Γ′ ∪ tI |=Σ′ E ′, completeness of I

24 Γ′∪ tI ⊢SP⋆t E ′ 23, base

25 Γ′ ⊢SP⋆t E ′ 22, 24, horizontal composition of proofs.

• The induction step for UNION. Consider a union of specifications SP1∪SP2. Because
arbitrary union of specifications can be (denotationally) reduced to translations and
union of specifications having the same signature, and because all signature inclusions
are in T , in order to simplify our discussion and without any loss of generality we
may assume that sig[SP1] = sig[SP2] = Σ. Let us assume Γ |=SP1∪SP2 E and prove that
Γ ⊢SP1∪SP2 E.

– According to the proof of Thm. 15.5, there exists normal forms d12(Σ1,Γ1) for
SP1, d22(Σ2,Γ2) for SP2, and d2(Σ′,d′1Γ1 ∪ d′2Γ2) for SP1 ∪ SP2 for a pushout
square like below:

Σ
d1
//

d2
��

d
  

Σ1

d′1
��

Σ2
d′2

// Σ′

(15.7)

The existence of such pushout square such that d ∈ D follows from the properties
of T and D . First we get a pushout with d′1 ∈D , and then we obtain that d ∈D as
the composition d1;d′1.

– We show that dΓ∪ d′1Γ1 ∪ d′2Γ2 |= dE. Let M′ be a Σ′-model such that M′ |= dΓ∪
d′1Γ1∪d′2Γ2. Then:

26 M′↾d |= Γ M′ |= dΓ, Satisfaction Condition

27 M′↾d′k
|= Γk, k = 1,2 M′ |= d′kΓk , Satisfaction Condition
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28 M′↾d ∈Mod[SPk], k = 1,2 27, SPk |=| dk2(Σk,Γk), d = dk;d′k , k = 1,2

29 M′↾d ∈Mod[SP1∪SP2] 28, semantics of UNION

30 M′↾d |= E Γ |=SP1∪SP2 E, 26, 29

31 M′ |= dE 30, Satisfaction Condition

– Since d2 ∈ T (because D ⊆ T ), the pushout square (15.7) is a CRi square. There-
fore, there exists an interpolant I ⊆ SenΣ such that Γ1 |= d1I and d2Γ∪Γ2∪d2I |=
d2E. Then

32 ⊢SP1 I from Γ1 |= d1I, similar to the proof of 18

33 ⊢SP1∪SP2 I 32, translation along specification morphisms SP1→ SP1 ∪SP2

34 Γ∪ I ⊢SP1∪SP2 E from d2Γ∪d2I∪Γ2 |= d2E, similar to the proof of 33

35 Γ ⊢SP1∪SP2 E 33, 34, by using the general properties of entailment (like in the proof of 25).

• The induction step for DERIV. Consider a derived specification d2SP′ and assume
Γ |=d2SP′ E. We prove that Γ ⊢d2SP′ E.

– We prove that dΓ |=SP′ dE. Let M′ ∈Mod[SP′] such that M′ |= dΓ. Then:

36 M′↾d |= Γ M′ |= dΓ, Satisfaction Condition

37 M′↾d ∈Mod[d2SP′] M ∈Mod[SP′], semantics of DERIV

38 M′↾d |= E 36, 37, Γ |=d2SP′ E

39 M′ |= dE 38, Satisfaction Condition.

– Consequently,

40 dΓ ⊢SP′ dE dΓ |=SP′ dE, induction hypothesis

41 Γ ⊢d2SP′ E 40, deriv.

□

Note that the proof of the completeness Thm. 15.8 uses only that the proof system
for the structured specifications fullfils properties base, pres, and deriv, it does not re-
quire the initiality of Pf T ,D . The initiality is necessary only for the soundness of I spec

T ,D
(Prop. 15.7). Also, the model amalgamation condition, although not used in the proof of
Thm. 15.8, is necessary when involving the normal forms Thm. 15.5. Because we are
using a version of Thm. 15.5 relativised to classes T , D of signature morphisms, it is
technically sufficient to have model amalgamation for pushout squares based on ⟨T , D⟩-
spans of signature morphisms. However, in the applications this has little meaning as
model amalgamation, unlike interpolation, is in general a uniform property.

Now, we shift our discussion to examples of how Thm. 15.8 can be applied.

What happens in the absence of DERIV? Things get much simpler. In Thm. 15.8 we
get D to be the class of the identity morphisms. Then all conditions apart of the complete-
ness of I hold trivially. A special note should be made for the model amalgamation. This
is trivialised in the light of our above comment on the sufficiency of model amalgamation
for pushout squares based on ⟨T , D⟩-spans of signature morphisms.
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The FOL case. This means the base institution I is FOL . For the base proof system, the
literature on first-order logic provides several sound and complete proof systems for FOL .
The chief condition that dictates the choice of D and T is the interpolation condition. By
virtue of Cor. 9.17, a maximal choice for D and T would be the class of the signature
morphisms that are injective on the sorts, and the class of all signature morphisms, re-
spectively. Recall that in FOL , CRi is obtained from Ci, compactness, and implications.
The former two properties came as consequences of extensive developments.

The HCL case. Here the base institution I is HCL . In Sec. 11.7 (last paragraph) we
obtained a sound and complete proof system for HCL . Like in the FOL case, the CRi
condition dictates the choice of D and T . According to Cor. 14.18 we can take D to be
the class of the (ie∗)-morphisms and T to be the class of all signature morphisms. In the
HCL case the route to CRi is very different than in FOL , actually it is more difficult.
The interpolation results of Cor. 14.18 are obtained from corresponding Ci results plus
Grothendieck interpolation. And the relevant Ci result is obtained from Birkhoff axioma-
tizability. Moreover, EQL and UNIV can be treated similarly.

15.4 Abstractly structured specifications
In this section we go more abstract about the structuring in the sense of developing a
theory of structuring specifications that is independent not only from the base institution
I , but also from any collection of specification structuring operators. The second inde-
pendence resides in the possibility to apply this theory to any collection of structuring
operators. The four operators introduced in Sec. 15.2 are powerful and can express a lot
of modularisation constructs, but still there are other useful collections of structuring op-
erators. Moreover, this abstraction has also the potential to accomodate other structuring
frameworks beyond the tradition of formal specification. We do as follows:

1. We define the concept of abstractly structured specification mentioned above.

2. We extend the model amalgamation property from concretely to abstractly structured
specifications.

3. We show how concrete structuring operators can still have a presence in the context of
abstract structuring.

4. In the same way we introduce a concept of normal form for abstractly structured spec-
ifications.

5. The two independencies characteristic to the abstract structuring allow for a proper ap-
proach to translations of structured specifications. We develop the fundamental math-
ematical concepts and results for that.

Abstractly structured specifications. Recall the ‘forgetful’ institution morphism
(sig,1,⊆) : I spec→ I of Fact 15.2. The mathematical idea of abstractly structured spec-
ifications is to consider such a morphism with I spec replaced with an abstract institution
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I ′. If we do that, then I ′ can be interpreted as institutions of concretely structured specifi-
cation over I , but for various different collections of structuring operators. Thus, we say
that an institution I ′ is (I ,sig)-structured if and only if there exists an institution mor-
phism (sig,1,⊆) : I ′ → I such that for I ′-signature Σ′, each ⊆Σ′ is a full subcategory
inclusion. Let us make this definition more explicit:

• sig : Sig′→ Sig is a functor,

• Sen′ = sig ; Sen,

• for each I ′-signature Σ′ we have that Mod′[Σ′] is a full subcategory of Mod(sig[Σ′])
such that for each I ′-signature morphism ϕ′ : Σ′1→ Σ′2 the square below commutes,

Σ′1

ϕ′

��

Mod′[Σ′1]
⊆
// Mod(sig[Σ′1])

Σ′2 Mod′[Σ′2]

Mod′ϕ′

OO

⊆
// Mod(sig[Σ′2])

Mod(sigϕ′)

OO
(15.8)

and

• for each I ′-signature Σ′, each Σ′-model M′, and each sig[Σ′]-sentence ρ we have that

M′ |=′
Σ′ ρ if and only if M′ |=sig[Σ′] ρ. (15.9)

From a specification theoretic perspective, the I ′-signatures may be refereed to as (I ,sig)-
specifications.

One note on the (I ,sig)-specification morphisms. Consider the canonical mappings

Sig′(Σ′1,Σ
′
2)→{ϕ ∈ Sig(sig[Σ′1],sig[Σ′2]) | (Mod′[Σ′2])↾ϕ ⊆Mod′[Σ′1]}.

Very often in the applications, and this is also the case of I spec of Sec. 15.2, these map-
pings are bijections. When so, we say that I ′ inherits the signature morphisms.

Model amalgamation. We aim to extend the result of Prop. 15.4 lifting model amalga-
mation from a base institution I to the institution of its specifications I spec, to the more
general situation of abstractly structured specifications. For this we need the following
concept. A (I ,sig)-structured institution I ′ is compositional when for each pushout in
Sig′ like below

Σ′
ϕ′1
//

ϕ′2
��

Σ′1

θ′1
��

Σ′2
θ′2

// Ω′

for any model M′ ∈Mod(sig[Ω′]), if M′↾sig[θ1] ∈Mod′[Σ′1] and M′↾sig[θ2] ∈Mod′[Σ′2] then
M′ ∈Mod′[Ω′].
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Proposition 15.9. In any (I ,sig)-structured institution I ′ that is compositional and such
that sig preserves pushouts, if I has model amalgamation (resp. weak model amalgama-
tion, semi-exactness) then I ′ has model amalgamation (resp. weak model amalgamation,
semi-exactness).

Proof. Let us assume the model amalgamation property for I and prove it for I ′. Let the
square below be a pushout square of I ′-signature morphisms.

Σ′
ϕ′1
//

ϕ′2
��

Σ′1

θ′1
��

Σ′2
θ′2

// Ω′

Let M′k ∈Mod′[Σ′k], k = 1,2 such that M′1↾ϕ′1
= M′2↾ϕ′2

.

• By the condition on the preservation of pushouts we have that the following square is
a pushout of I -signature morphisms.

sig[Σ′]
sigϕ′1

//

sigϕ′2
��

sig[Σ′1]

sigθ′1
��

sig[Σ′2] sigθ′2

// sig[Ω′]

• By the model amalgamation property of I there exists an unique amalgamation M′ ∈
Mod(sig[Ω′]) of M′1 and M′2.

• Since M′k ∈ Mod′[Σ′k] for k = 1,2, by the compositionality condition we obtain that
M′ ∈Mod′[Ω′].

• The uniqueness of the amalgamation in I ′ follows directly from the corresponding
property in I .

• Similar arguments may be employed for establishing the weak model amalgamation
and semi-exactness properties, respectively.

□

Note how the amalgamation result of Prop. 15.4 arises as an instance of the result
of Prop. 15.9.

• The condition that sig preserves pushouts is fulfilled by the result of Prop. 15.3.

• The compositionality condition is also fulfilled immediately from the form taken by the
pushouts of structured specifications (see the last paragraph in the proof of Prop. 15.4).
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Concrete structuring operators for abstractly structured specifications. Although
one of the main points of the theory of abstractly structured specifications is the liberation
from concrete structuring operators, in some situations it is useful to talk about concrete
structuring operators in an abstract context. With this, we can eat the cake and still have
it. We can have certain concrete specification building operators, but in a semantic form
rather than in an explicit building as-such form, while still allowing for ‘specifications’
that are not necessarily expressible as terms built with a respective collection of build-
ing operators. We can still discuss about some specific specification building operators
but without committing to a specific set of such operators. Below we re-introduce the
structuring operators BASIC, UNION, TRANS, DERIV within the more general context of
abstractly structured specifications.

Let I ′ be an institution that is (I ,sig)-structured.

• We say that I ′ has semantic basic specifications when for each finite I -presentation
(Σ,E) there exists a I ′-signature SP(Σ,E) such that

– sig[SP(Σ,E)] = Σ, and

– Mod′[SP(Σ,E)] = Mod(Σ,E).

• If SigI is endowed with an inclusion system, the we say that I ′ has semantic unions
when for any I ′-signatures Σ′1 and Σ′2 there exists a designated I ′-signature, denoted
Σ′1∪Σ′2, such that

– sig[Σ′1∪Σ′2] = sig[Σ′1]∪ sig[Σ′2], and

– Mod′[Σ′1∪Σ′2] =
{

M′ ∈Mod(sig[Σ′1∪ sig[Σ′2]) |M′↾sig[Σ′k]
∈Mod′[Σ′k], k = 1,2

}
.

• For any I -signature morphism ϕ : Σ→Ω, we say that I ′ has semantic ϕ-translations
when for any I ′-signature Σ′ such that sig[Σ′] =Σ there exists a designated I ′-signature,
denoted Σ′ ⋆ϕ, such that

– sig[Σ′ ⋆ϕ] = Ω, and

– Mod′[Σ′ ⋆ϕ] =
{

M′ ∈ModΩ |M′↾ϕ ∈Mod′[Σ′]
}

.

• For any I -signature morphism ϕ : Ω→ Σ, we say that I ′ has semantic ϕ-derivations
when for any I ′-signature Σ′ such that sig[Σ′] =Σ there exists a designated I ′-signature,
denoted ϕ2Σ′, such that

– sig[ϕ2Σ′] = Ω, and

– Mod′[ϕ2Σ′] =
{

M′↾ϕ |M′ ∈Mod′[Σ′]
}

.

It is easy to see that I spec of Sec. 15.2 (and also its more refined version I spec
T ,D

of Sect. 15.3) does indeed have semantic basic specifications, unions, translations, and
derivations in the sense of the definitions above. Moreover, in actual situations, while
SP(Σ,E) = (Σ,E) is an obvious choice, there can be also other choices for SP(Σ,E) that
are not necessarily flat.
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Semantic normal forms. The concept of the normal form of a structured specification
of Sec. 15.2 can be easily reflected to the level of abstractly structured specifications but
in a semantic rather than in a syntactic form. Given a (I ,sig)-structured institution I ′, a
pair (ϕ,E) consisting of

• a signature morphism ϕ : sig[Σ′]→ Σ and

• a set of sentences E ⊆ SenΣ

is a semantic normal form for an I ′-signature Σ′ when Mod′[Σ′] = Mod(Σ,E)↾ϕ. When E
is finite we say that the normal form is finitary. We say that I ′ admits (finitary) semantic
normal forms when each I ′-signature has at least a (finitary) normal form.

The semantic normal forms contrast those of Sec. 15.2 that are syntactic in the sense
of being terms formed with specification building operators. Because Mod[ϕ2(Σ,E)] =
Mod(Σ,E)↾ϕ, it follows that the existence of syntactic normals forms imply the existence
of semantic normal forms. However as Ex. 15.18 below shows, the concept of semantic
normal form is significantly more general than its syntactic counterpart as the former may
occur even in the absence of the latter or of derivations.

Comorphisms of structured institutions. A recent important trend in formal specifi-
cation is that of heterogeneously logical environments in which translations between the
institutions underlying different specification formalisms play a crucial role. But in the
presence of specification structuring mechanisms these translations are more than logical
interpretations, they have to interpret the structured specifications in the source formalism
as structured specifications in the target formalism. Of course, such translations should
‘extend’ corresponding translations between the underlying logics. This calls for a con-
cept of comorphism between structured institutions that is ‘structured’ by a comorphism
between the base institutions.

Let I ′k be (Ik,sigk)-structured institutions, k = 1,2.
We say that a comorphism (Φ′,α′,β′) : I ′1→ I ′2 is ((Φ,α,β),sig1,sig2)-structured, when

• (Φ,α,β) : I1→ I2 is a comorphism,

• sig1 : Sig′1→ Sig1 and sig2 : Sig′2→ Sig2 are functors such that the following diagram
commutes,

Sig′1
Φ′
//

sig1

��

Sig′2

sig2

��

Sig1
Φ

// Sig2

(15.10)
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• for each I ′1-signature Σ′1, α′
Σ′1

= αsig1[Σ
′
1]

:

Sen′1Σ′1

α′
Σ′1

//

=

Sen′2(Φ
′Σ′1)

=

Sen1(sig[Σ′1]) αsig1 [Σ
′
1 ]

// Sen2(Φ(sig1[Σ
′
1])) = Sen2(sig2[Φ

′Σ′1])

• β′
Σ′1

is the restriction of βsig1[Σ
′
1]

:

Mod′2[Φ
′Σ′1]

β′
Σ′1

//

⊆
��

Mod′1[Σ
′
1]

⊆
��

Mod2(sig2[Φ
′Σ′1]) = Mod2(Φ(sig1[Σ

′
1]))

βsig1 [Σ
′
1 ]

// Mod1(sig1[Σ
′
1])

(15.11)

A simple exercise that provides some insight into the concept of structured co-
morphism, is given by the structuring with BASIC as the only building operator. Given
an institution comorphism (Φ,α,β) : I1 → I2 we consider the institutions of the the-
ories I th

1 and I th
2 as being structured by the respective forgetful functors from theo-

ries to signatures. Then (Φ,α,β) : I1 → I2 can be lifted canonically to a comorphism
(Φ′,α′,β′) : I th

1 → I th
2 defined essentially by Φ′(Σ1,E1) = (ΦΣ,αΣ1 E1). A straightfor-

ward check reveals that in this case, the Satisfaction Condition of (Φ,α,β) causes that
each β′(Σ1,E1)

exists as a restriction of βΣ1 , on the one hand, and the Satisfaction Condition
for (Φ′,α′,β′), on the other hand. As we will see from Prop. 15.10 below, from these two,
only the latter causality can be expected in general, the former being a conjunctional one
which in the general case has to be postulated.

The following shows that in general, the concept of structured comorphism can be
given with significantly fewer data.

Proposition 15.10. Given (Ik,sigk)-structured institutions I ′k, k = 1,2, and functors Φ,Φ′

such that the square (15.10) commutes, the following are equivalent:

1. There exists a comorphism (Φ′,α′,β′) : I ′1→ I ′2 that is ((Φ,α,β),sig1,sig2)-structured.

2. For each I ′1-signature Σ′1, we have that

βsig1[Σ
′
1]
(Mod′2[Φ

′
Σ
′
1]) ⊆ Mod′1[Σ

′
1]. (15.12)

Proof. The implication 1. ⇒ 2. is immediate from (15.11); we therefore focus on the
other implication. Since α′ is determined uniquely from the definition of structured co-
morphisms, it remains to define β′. By (15.12) we may indeed define each β′

Σ′1
as the
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restriction of βsig1[Σ
′
1]

. It remains to prove the naturality of β′ and the Satisfaction Condi-
tion of (Φ′,α′,β′).

• The naturality property of β′ holds by the following calculation (for each I ′-signature
morphism θ′1 : Σ′1→Ω′1 and each N′2 ∈Mod′2[Φ

′Ω′1]):

Mod′2[Φ
′Σ′1]

β′
Σ′1

// Mod′1[Σ
′
1]

Mod′2[Φ
′Ω′1]

Mod′2[Φ
′θ′1]

OO

β′
Ω′1

// Mod′1[Ω
′
1]

Mod′1θ′1

OO

β′
Σ′1
(N′2↾Φ′θ′1

) = βsig1[Σ
′
1]
(N′2↾Φ′θ′1

) definition of β′

= βsig1[Σ
′
1]
(N′2↾sig2[Φ

′θ′1]
) (15.8)

= βsig1[Σ
′
1]
(N′2↾Φ(sig1θ′1)

) (15.10)

= (βsig1[Ω
′
1]

N′2)↾sig1θ′1
naturality of β

= (β′
Ω′1

N′2)↾sig1θ′1
definition of β′

= (β′
Ω′1

N′2)↾θ′1
(15.8).

• The Satisfaction Condition for the comorphism (Φ′,α′,β′) : I ′1→ I ′2 is established by
the following sequence of equivalent satisfaction relations (for each I ′1-signature Σ′1,
each M′2 ∈Mod′2[Φ

′Σ′1] and each ρ′1 ∈ Sen′1Σ′1):

β′
Σ′1

M′2 |=
I ′1
Σ′1

ρ′1

β′
Σ′1

M′2 |=
I1
sig1[Σ

′
1]

ρ′1 (15.9)

βsig1[Σ
′
1]

M′2 |=
I1
sig1[Σ

′
1]

ρ′1 β′ restriction of β

M′2 |=
I2
Φ(sig1[Σ

′
1])

αsig1[Σ
′
1]

ρ′1 Satisfaction Condition for (Φ,α,β)

M′2 |=
I2
sig2[Φ

′Σ′1]
αsig1[Σ

′
1]

ρ′1 (15.10)

M′2 |=
I ′2
Φ′Σ′1

αsig1[Σ
′
1]

ρ′1 (15.9)

M′2 |=
I ′2
Φ′Σ′1

α′
Σ′1

ρ′1 definition of α′.

□
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The existence of translations of abstractly structured specifications. The result of
Prop. 15.11 answers this problem. It is clear that the basis for a solution is the apriori
existence of a translation at the underlying logical level, i.e. a comorphism between the
base institutions. For lifting this to the upper level representing the abstractly structured
specifications, we rely on normal forms.

Proposition 15.11. Let I ′k be (Ik,sigk)-structured institutions, k = 1,2, such that

1. I ′1 has finitary semantic normal forms (ϕ,E) with ϕ∈D for D a class of I1-signature
morphisms,

2. I ′2 inherits the signature morphisms,

3. I ′2 has basic specifications.

Then any comorphism (Φ,α,β) : I1→ I2 such that

4. any morphism in D has weak (Φ,β)-amalgamation, and

5. I ′2 has semantic Φϕ-derivations for any ϕ ∈D ,

determines a ((Φ,α,β),sig1,sig2)-structured comorphism (Φ′,α′,β′) : I ′1→ I ′2.

Proof. We rely on the characterisation of ((Φ,α,β),sig1,sig2)-structured comorphisms
given by Prop. 15.10. Then we have to do two main things: to define the functor Φ′

satisfying the commutativity property of (15.10), and then to prove the relation (15.12).

• The definition of Φ′.

– For any I ′1-signature Σ′1, Φ′Σ′1 = Φσ1 2 SP(ΦΣ1,αE1), where (σ1 : sig1[Σ
′
1]→

Σ1,E1) is a finitary semantic normal form for Σ′1.

– For any I ′1-signature morphism θ′1 : Σ′1 → Ω′1 we define Φ′1θ′1 as the lifting of
Φ(sig1θ′1) by virtue of I ′2 inheriting the signature morphisms of I2. Then the func-
toriality of Φ and sig1 imply the functoriality of Φ′. But in order to define Φ′θ′1 like
that, by inheritance, we need to prove:

1 Mod′2[Φ
′Ω′1]↾Φ(sig1θ′1)

⊆Mod′2(Φ
′Σ′1).

– With these definitions, the commutativity of the square (15.10) is straightforward.

– We complete the definition of Φ′ by proving 1. Let Φ′Ω′1 = Φω1 2 SP(ΦΩ1,αΓ1),
where (ω1 : sig1[Ω

′
1]→Ω1,Γ1) is a finitary normal form for Ω′1.

sig1[Σ
′
1]

sig1θ′1
��

Σ′1

θ′1
��

Φ′Σ′1

Φ′θ′1
��

= ΦΣ12SP(ΦΣ1,αE1)

sig1[Ω
′
1] Ω′1 Φ′Ω′1 = ΦΩ′12SP(ΦΣ1,αE1)

Then 1 means that for each M2 ∈ |Mod2(ΦΩ1,αΓ1)|

2 M2↾Φω1↾Φ(sig1[θ
′
1])
∈Mod2(ΦΣ1,αE1)↾Φσ1 .
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– So, we have to prove 2. We do as follows:

βsig1[Σ
′
1]
(M2↾Φω1↾Φ(sig1θ′1)

) = (βΩ1M2)↾ω1↾sig1θ′1
naturality of β

∈Mod1(Ω1,Γ1)↾ω1↾sig1θ′1
Satisfaction Condition of (Φ,α,β)

= Mod′1[Ω
′
1]↾sig1θ′1

(ω1,Γ1) normal form for Ω′1

⊆Mod′1[Σ
′
1] θ′1 : Σ′1→Ω′1, (15.8)

= Mod1(Σ1,E1)↾σ1 (σ1,E1) normal form for Σ′1.

Hence there exists M1 ∈Mod1(Σ1,E1) such that M1↾σ1 = βsig1[Σ
′
1]
(M2↾Φω1↾Φ(sig1θ′1)

).

– By the amalgamation property of the following naturality square

Mod2(Φ(sig1[Σ
′
1]))

βsig1 [Σ
′
1 ]

��

Mod2(ΦΣ1)
Mod2(Φσ1)
oo

βΣ1
��

Mod1(sig1[Σ
′
1]) Mod1Σ1Mod1σ1

oo

there exists N2 ∈Mod2(ΦΣ1) such that N2↾Φσ1 =M2↾Φω1↾Φ(sig1θ′1)
and βΣ1N2 =M1.

– By the Satisfaction Condition of (Φ,α,β), since M1 |=E1, it follows that N2 |=αE1.
This completes the proof of 2.

• The proof of the relation (15.12). This holds by the following calculations.

βsig1[Σ
′
1]
(Mod′2[Φ

′Σ′1]) = βsig1[Σ
′
1]
(Mod2(ΦΣ1,αE1)↾Φσ1) (σ1,E1) is a normal form for Σ′1

⊆ βΣ1(Mod2(ΦΣ1,αE1))↾σ1 naturality of β

⊆Mod1(Σ1,E1)↾σ1 Satisfaction Condition of (Φ,α,β)

= Mod′1Σ′1 (σ1,E1) is a normal form for Σ′1.

□

From the conditions of Prop. 15.11 only 1. and 5. are substantial, the rest are just
technical conditions. The third condition underlying Prop. 15.11 can be fulfilled in var-
ious ways, leading to various different translations. In actual situations that support the
BASIC building operator, the most straightforward way is SP(Σ,E) = (Σ,E), however this
corresponds to having the result of the translation always in normal form. Alternatively
SP(Σ,E) can be chosen to be a properly structured specification, for example in con-
crete situations that support such building operators, a specification structured by BASIC,
UNION, and TRANS.

Exercises
15.10. For any institutions I ,I ′,I ′′, if I ′ is (I ,sig)-structured and I ′′ is (I ′,sig′)-structured then
I ′′ is (I , sig′;sig)-structured.
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15.11. [75] Quotienting structured institutions
Let I ′ be an institution that is (I ,sig)-structured. A congruence ≡ on Sig′ is a structuring con-
gruence when for any I ′-signatures Σ′,Ω′, we have that Σ′ ≡ Ω′ implies sig[Σ′] = sig[Ω′] and
Mod′[Σ′] = Mod′[Ω′] (and similarly for I ′-signature morphisms).

1. Any structuring congruence determines a canonical quotient I ′/≡ of I ′ that is (I ,sig/≡)-
structured where sig≡ : Sig′/≡→ Sig is the canonical quotient of sig.

2. If sig is faithful and whenever Σ′1 ≡ Σ′2 we have that there exists i : Σ′1 → Σ′2 such that i/≡ =
1Σ′k/≡

, then
• sig/≡ lifts whatever co-limits are lifted by sig, and

• I ′/≡ is compositional is I ′ is compositional.

3. If I ′ has semantic basic specifications / unions / ϕ-translations / ϕ-derivations then I ′/≡ has
them too.

15.12. Derive the result on amalgamation for the institution of theories of Thm. 4.8 as an instance
of the result of Prop. 15.9. (Hint: Consider the institution I th as (I ,sig)-structured where sig is the
forgetful functor ThI → SigI .)

15.13. Extend the algebraic rules of Ex. 15.4 to the more general case of abstractly structured
specifications that have unions, translations, and derivations.

15.14. [75] Compactness for abstractly structured specifications
Let I ′ be a (I ,sig)-structured institution that admits normal forms. If I is compact then I ′ is com-
pact too.

15.15. [75] Interpolation for abstractly structured specifications
Let I ′ be a (I ,sig)-structured institution and let D , L ′ and R ′ be classes of I -signature morphisms
such that

1. sig preserves pushouts,

2. the structuring of I ′ is compositional,

3. I ′ admits semantic normal forms (ϕ,E) with ϕ ∈D ,

4. sigL ′ ; D ⊆ L and sigR ′ ; D ⊆ R .

If I has Craig-Robinson (L ,R )-interpolation then I ′ has Craig-Robinson (L ′,R ′)-interpolation
too.

15.16. [50] Let (Φ′,α′,β′) be comorphism that is ((Φ,α,β),sig1,sig2)-structured.

• If (Φ,α,β) is persistently liberal then (Φ′,α′,β′) is persistently liberal too.

• If (Φ,α,β) has (weak) model amalgamation then (Φ′,α′,β′) has (weak) model amalgamation
too.

15.17. For any institution I let I fth be the sub-institution of I th determined by the finite theories.
Define a comorphism (Φ,α,β) : (I fth)spec→ I spec such that the components of β are identities.

15.18. Let us consider a base institutions I with two designated classes of signature morphisms
D,T ⊆ SigI such that

1. I has disjunctions,

2. D⊆ SigI is a subcategory, D ⊆ T and each signature inclusion belongs to D ,
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3. for any t : Σ→ Σ′ in T and d1 : Σ→ Σ1,d2 : Σ→ Σ2 in D there are pushout squares like
below with d′1,d

′
2 ∈D

Σ
d1
//

t
��

Σ1

��

Σ
d1
//

d2

��

Σ1

d′2
��

Σ′
d′1
// Σ′1 Σ2

d′1
// Σ′′

4. each morphism in D has the model expansion property.

Let I ′ be the institution of the structured specifications over I that are constructed by BASIC,
UNION, TRANS with morphisms from T ⊆ SigI , and intersections (in the sense of Ex. 15.7). Then
I ′ has finitary semantic normal forms (ϕ,E) with ϕ ∈ D . (Note that I ′ does not have syntactic
normal forms in the sense of the definitions given in Sec. 15.2.)

15.5 Pre-defined types
In this section we touch a different specification topic. We do as follows.

1. We discuss briefly the concept of pre-defined types in general terms.

2. We illustrate the concept by an example.

3. We give an institution-theoretic semantics for pre-defined types.

This means that we limit our discussion only to the very basics, without any substantial
development. However, in Sec. 16.4 we will come back to pre-defined types for develop-
ments in the context of constraint logic programming.

What are pre-defined types?
In programming and specification, data types play a very basic role as they represent
the structure of the data we are using. There is no programming or specification without
data types. There are two kinds of data types: user-defined and pre-defined. As the names
suggest, in the former case the user has to write a specification, while in the latter case he
just imports it from a respective system library. Languages that have full user-defined data
types capabilities enjoy a high expressivity power. However, this is a rare feature that can
be found only among some logic-based languages, usually specification languages. On
the other hand, pre-defined types, although available only for a limited set of data types
(such as numbers, lists, arrays, etc.) have the obvious benefits that they save specification
effort and they may have rather efficient implementations. In principle, computations with
pre-defined types should run more efficiently than if we specified the respective data types
by ourselves. Here we have to clarify an important distinction between pre-defined data
types that are implemented in a lower-level language or even in the underlying hardware
platform, and those who are just specifications in the respective language that have been
developed previously and stored as libraries. The latter just save our specification effort, in
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substance being no different from the user-defined types. In this section we are concerned
only with the former kind, which we consider to be the proper pre-defined types. The
aspect of being implemented at a lower-level is strongly related to computations efficiency
and defines the main aspect of the mathematical semantics of pre-defined types, namely
that the respective implementation is a particular model which is present in all logical
entities, including also the presumed ‘syntactic’ ones, such as signatures and sentences.
Although conventionally this may seem to be an outrageous idea, in the context of the
pre-defined types is very natural, and the concept of institution, due to its abstract nature,
accommodates it without problems. Let us see a simple concrete exemple of how this
works.

The Euclidean plane. We consider the problem of the first-order specification of the
2-dimensional Euclidean plane R2 as a real vector space. Let us start from the following
rather standard FOL signature Σ = (S,F,P) for this problem:

• S = {Real,Vect}, where Real designates the sort of the scalars and Vect the sort of
the vectors,

• F consists of the usual ring operations for the real numbers plus F→Vect = {0},
FRealReal→Vect = {⟨ , ⟩}, FVectVect→Vect = { + }, FVect→Vect = {− },
FRealVect→Vect = { ∗ }, and Fw→s = /0 otherwise,

• P consists of empty sets. Of course, we could consider here a ‘less than or equal’
binary relation ≤, or other common relations on the reals, but they will not make a
difference for what we want to illustrate.

There are several issues about this specification that we have to address:

1. The sort Real and the ring operations on it, should always be interpreted as the
model of the real numbers or something like that. If we think of real numbers as-
such, it is impossible to specify them in FOL . Though their model can be specified
in second-order logic as a complete ordered field.

2. We should be able to use the real numbers as syntactic entities. More clearly, we
should be able to write terms such as 3.14 ∗ ⟨a, b⟩ or even π ∗ ⟨

√
2,
√

3⟩ where
π,
√

2,
√

3 represent / denote the respective real numbers. Though the latter term
would require new operations such as π and √ .

3. We should be able to use the specification of R2 to compute. From a pure specifica-
tion perspective, computation is optional, but then what we get would be just some
logical axiomatisation of R2 without any computational capabilities.

The solution to these issues involves a quite radical paradigm shift when a model becomes
a component of a signature. Conventionally, this is utter non-sense, but the concept of
institution and its associated way of thinking can take us safely beyond conventionality.
In the case of R2 we can do as follows.
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• In order to have a proper computational side for our specification we replace R by a
model called Rfloat that implements operations for manipulating floating-point num-
bers. The use of floating-point reals is common in programming and specification
whenever reals are involved. Besides the ring operations, Rfloat also implements other
operations such as constants 1,2, . . ., etc., but very notably division (which means
Rfloat is a field), but in order to stay within FOL it is better to avoid having division
as an operation. At this point it is helpful to consider that Σ contains also at least all
constants that makes the writing of floating-point reals possible.

• Rfloat is a model of the sub-signature of Σ that is determined by the sort Real. We can
get it as a model of Σ by considering its free extension R′float to Σ, which means that in
R′float the operations involving Vect are interpreted freely. Thus the elements of R′float
are terms formed with those operations plus the elements of Rfloat.

• Then the vector space R2 is obtained as the quotient of R′float by the vector space
equations E:

0 = ⟨0, 0⟩
(∀a,b,a′,b′) ⟨a, b⟩+ ⟨a′, b′⟩= ⟨a+a′, b+b′⟩
(∀k,a,b) k ∗ ⟨a, b⟩= ⟨k ∗a, k ∗b⟩
(∀a,b) −⟨a, b⟩= ⟨−a,−b⟩.

With the help of FOL diagrams, let us present this from a more institution-theoretic per-
spective.

• The signature is the pair (Σ,R′float).

• A (Σ,R′float)-model is a Σ-model M together with an interpretation of the floating-
point reals into M, which means a model homomorphism h : R′float →M. Because
of the universal property of R′float, this is the same with the (Σ|Real,Rfloat)-model
h↾Σ|Real , where Σ|Real is the sub-signature of Σ for the real numbers.

Rfloat

∀ f
��

=
// R′float↾Σ|Real

f ′↾Σ|Real||

R′float

∃! f ′
��

M↾Σ|Real M

• A (Σ,R′float)-sentence is just a ΣR′float
-sentence, where Σ ↪→ ΣR′float

is the elementary
extension of Σ via R′float. The (Σ,R′float)-terms are thus formed from the floating-point
reals and the vector space operations. Strictly speaking, a term such as ⟨1, 2⟩ carries
a level ambiguity because, on the one hand, it can be regarded as an element of R′float,
and on the other hand, it can be thought as a term formed from the operation ⟨ , ⟩
and the constants 1 and 2. But this ambiguity is vacuous because both ways yield
the same interpretation in the models M as their equality belongs to the diagram of
R′float.
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• The satisfaction relation (h : R′float→M) |= ρ is defined as Mh |= ρ, where Mh is the
expansion of M that interprets the floating-point reals according to h.

Note that there are many models of the pre-defined theory ((Σ,R′float),E), for exam-
ple the model R+ interpreting Vect as the set of real numbers and ⟨ , ⟩ as addition of
real numbers. The ‘intended’ model of this theory, the Euclidean plane R2, is in fact the
initial model of the theory.

The institution of pre-defined types
The ideas of the specification R2 presented above can be formalised as an institution-
independent construction. We consider a base institution with diagrams
I = (Sig,Sen,Mod, |=, ι) and define an institution I ≀ = (Sig≀,Sen≀,Mod≀, |=≀), called the
institution of pre-defined types as follows.

• Sig≀ is the Grothendieck category Mod♯.

• For each I ≀-signature (Σ,A), Sen≀(Σ,A) = Sen(ΣA). For each I ≀-signature morphism
(ϕ,h), Sen≀(ϕ,h) = Sen ιϕh.

• For each I ≀-signature (Σ,A), Mod≀(Σ,A) = Mod(ΣA,EA). For each I ≀-signature mor-
phism (ϕ,h), Mod≀(ϕ,h) = Mod ιϕh.

• for each I ≀-signature (Σ,A), M′ |=≀(Σ,A) ρ if and only if M′ |=ΣA ρ.

Because of the natural isomorphism Mod(Σa,EA)∼= A/ModΣ we can have an alternative
equivalent definition for Mod≀ as Mod≀(Σ,A) = A/ModΣ. In the example of R2 we have
discussed the models in this style. Depending on how we involve the models of I ≀ we can
use the most convenient variant.

Proposition 15.12. I ≀ = (Sig≀,Sen≀,Mod≀, |=≀) is an institution indeed.

Proof. The functoriality of Sen≀ and Mod≀ follows directly from the general categorical
properties of institution-theoretic diagrams. For the proof of the Satisfaction Condition
for I ≀, we consider a I ≀-signature morphism (ϕ,h) : (Σ,A)→ (Σ′,A′), a (Σ′,A′)-model
M′, and a (Σ,A)-sentence ρ. We have that:

M ↾(ϕ,h) |=≀ ρ = M′↾ιϕh |= ρ definitions of Mod≀ and |=≀

= M′ |= (ιϕh)ρ Satisfaction Condition in I

= M′ |=≀ (ϕ,h)ρ definitions of Sen≀ and |=≀.

□

Exercises
15.19. For any base institution (Sig,Sen,Mod, |=, ι) with diagrams:

• define a canonical institution morphism (Sig≀,Sen≀,Mod≀, |=≀)→ (Sig,Sen,Mod, |=) from the
institution of pre-defined types to the base institution; moreover this is an adjoint institution
morphism whenever the categories of models have initial models, and
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• define an institution comorphism (Sig≀,Sen≀,Mod≀, |=≀)→ (Th,Senth,Modth, |=th) from the in-
stitution of pre-defined types to the institution of theories over the base institution. (Hint: Each
signature of pre-defined types (Σ,A) gets mapped to the diagram (ΣA,EA).)

15.20. Sound / complete proof system for predefined types
Let (Sig,Sen,Mod, |=,⊢, ι) be an institution with entailments and with diagrams ι.

1. The institution with pre-defined types (Sig≀,Sen≀,Mod≀, |=≀,⊢≀) admits an entailment system
defined by Γ ⊢≀

(Σ,A) E if and only if Γ∪EA ⊢ΣA E (where ιΣA : Σ→ (ΣA,EA) is the diagram
of A).

2. I ≀ is sound / complete, whenever the base institution I is sound / complete.

3. The entailment system of I ≀ is precisely the free entailment system generated by the entail-
ments of I plus the rules /0 ⊢ΣA EA for each Σ-model A.

15.21. Model amalgamation for pre-defined types
For any base institution with diagrams (Sig,Sen,Mod, |=, ι) such that

• its category of signatures Sig has pushouts, and

• it is semi-exact,

• all its signature morphisms are liberal,

• for each signature Σ ∈ |Sig|, the category ModΣ of Σ-models has pushouts,

the corresponding institution of pre-defined types (Sig≀,Sen≀,Mod≀, |=≀) has pushouts of signature
morphisms and is semi-exact.

15.22. Diagrams for pre-defined types
Each institution of pre-defined types has ‘empty’ diagrams. (Hint: For any signature with predefined
type (Σ,A) and any (Σ,A)-model with pre-defined types M′, the elementary extension (Σ,A)→
(Σ,A)M′ is defined as (1Σ, iΣ,AM′) : (Σ,A)→ (Σ,M′↾ιΣA).)

15.23. Initial semantics for pre-defined types
An institution of pre-defined types is liberal whenever its base institution is liberal.

15.24. I ≀ as a Grothendieck institution
Present any institution I ≀ of pre-defined types as a (morphism-based) Grothendieck institution of
an indexed institution Sigop→ Ins, where Sig is the category of the signature of the base institution
I .

15.25. [77] Interpolation in I ≀
Let I = (Sig,Sen,Mod, |=, ι) be an institution with diagrams such that:

– Sig has pushouts,

– it has model amalgmation, and

– all its signature morphisms are liberal,

– for each signature Σ ∈ Sig, the category ModΣ of Σ-models has pushouts.

For any class S ⊆ Sig of signature morphisms, let S ≀ = {(ϕ,h) ∈ Sig≀ | ιϕh ∈ S}. If I has Craig-
Robinson ⟨L , R ⟩-interpolation then I ≀ has Craig-Robinson ⟨L ≀, R ≀⟩-interpolation. (Hint: Translate
the interpolation problem from I ≀ to I th by the comorphism of Ex. 15.19. The resulting square
of theory morphisms has model amalgamation by the model amalgamation property of I ≀ (see
Ex. 15.21). The pushout of the first two morphisms of this square is CRi square by Ex. 9.13. By
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model amalgamation, the unique mediating morphism between these two squares has the model
expansion property, which allows for the transfer of the CRi property from the inner pushout square
to the original outer square.)

15.26. Basic sentences in I ≀
In any institution I ≀ of pre-defined types, a (Σ,A)-sentence ρ is (epic) basic when it is (epic) basic
as a sentence of the base institution I . (Hint: Use the combined results of Exercises 15.19, 5.31 and
5.32.)

Notes. The material of this chapter belongs to the area known as ‘algebraic specification’. Origi-
nally, that was concerned only with specifications based on some forms of universal algebra, which
explains the name of the area. Over time, many new specification logics began to lack algebraic
characteristics, hence the terminology ‘logic-based specification’. However, at a higher level, the
general role played by category theory (itself an algebraic structure), brings another meaning to the
concept of ‘algebra specification’. Algebraic specification is a vast scientific area where theory and
practice complement and support each other. Here we gave only a very theoretical taste of this area.
Books such as [219, 193, 46, 94] are a good source of practical examples of algebra specification
‘in action’.

The kernel language for structuring specifications presented here has been introduced in [218]
but with the union restricted to the situation when the specifications have the same signature; it con-
stitutes the most common set of specification building operators in the literature. This is a special
case of our more general union when we consider the trivial inclusion system for the signatures
with inclusions being the identities. Modern algebraic specification languages provide more so-
phisticated structuring constructs, however it is possible to translate many them, but not all, to this
kernel language (see [184] for CASL). To fill this gap other specification building operators have
been considered (see [219, 92], etc.). A very important operator that we did not include in our
discussion is the free construction / initial semantics operator. The normal forms for specifications
formed only with unions, translations and derivations are well known from [104, 20, 33]. The im-
portance of normal forms is that it allows us to replace any specification by its appropriate normal
form, for which some basic properties are more easily available.

The extension of the entailment from a base institution to the institution of its specifications
was originally defined in [218]. The idea of (T ,D)-specifications was introduced in [33], which
under assumptions similar to the conditions of Thm. 15.8 proved the lifting of entailment complete-
ness from the base institution to specifications. However the completeness result of [33] is obtained
in a framework assuming implications, conjunctions, and Craig interpolation for the base institu-
tion which is significantly narrower in terms of applications than our framework which assumes just
Craig-Robinson interpolation. For example, the completeness results of [33] cannot be used in im-
portant computing logics such as EQL or HCL , which, on the other hand, support the applications
of Thm. 15.8.

The theory of abstractly structured specifications has been introduced in [75], the concept of
comorphism for structured institutions in [50], and the existence of translations between abstractly
structured specifications has been studied in [80]. Specification building operators for abstractly
structured specifications have been introduced in [93]. The theory of abstractly structured spec-
ifications constitutes the underlying theoretical framework for a series of works on specification
structuring including [75, 236, 93, 52].

The institutions of pre-defined types were first introduced in [61] under the name of ‘con-
straint institutions’ in a slightly different form and in the context of the so-called ‘category-based
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equational logic’. In their current form they were introduced [77].





Chapter 16

Logic Programming

In this chapter we discuss institution-independent foundations for what is probably the
most eccentric major existing programming paradigm, namely logic programming. This
programming paradigm is related to traditional algebraic specification, though this rela-
tionship is best understood at the foundational level. The institution-independent approach
to logic programming liberates it from its traditional context and thus provides the oppor-
tunity to develop it easily and uniformly over various different structures. Consequently,
we can enhance logic programming with other computing paradigms, such combinations
having the potential of new powerful domain specific programming paradigms. The con-
tents of this chapter is as follows.

1. We explain logic programming briefly, from the traditional perspective. This means
that engagement with this chapter does not require any previous familiarity with logic
programming.

2. We develop the fundamental concepts of logic programming in an institution-inde-
pendent framework. They include programs, queries, solutions, and solution forms.
Herbrand theorems do constitute the model-theoretic foundations of logic program-
ming. We prove two institution-independent versions of a Herbrand theorem. These
represent two gradual steps that bridge the model-theoretic to the computational se-
mantics of logic programming.

3. Then we touch the topic of modularisation for logic programs. Much of that is shared
with specification structuring. This means that, on the one hand, we can rely on con-
cepts and results from Chap. 15. On the other hand, we will address modularisation
issues that are specific to logic programming.

4. In another section we extend the logic programming paradigm to ‘constraint’ logic
programming, an extension of great practical importance. The institution-independent
view on logic programming allows us to regard constraint logic programming just as
ordinary logic programming over institutions with pre-defined types. Consequently,
we obtain for free general versions of Herbrand theorems for constraint logic pro-
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gramming just as instances of the general institution-independent Herbrand theorems
for ordinary logic programming.

5. In our discussion we do not include the full standard operational / computational se-
mantics of logic programming (i.e. how logic programs are executed), such as the
so-called ‘resolution’ algorithm and variants (paramodulation, narrowing, etc.). But
we dedicate the final section to unification, which lies at the core of this operational
semantics. At the abstract level, unification can be regarded as a co-limit construction
problem. This allows for a category-theoretic analysis of unification which includes
also the development of a generic categorical unification algorithm applicable to var-
ious institutions.

The study of this chapter requires familiarity with material from the first part of the book
(until Chap. 5 included) and from Chap. 15.

16.1 What is logic programming?

The logic programming paradigm emerged from an understanding that some important
fragment of FOL , with good computational properties, can be turned into a programming
paradigm. In essence, this fragment is HCL . Thus, a logic program is a finite theory in
HCL , and its model-theoretic semantics is its initial model, called ‘Herbrand model’ in
the specific logic programming terminology. The initial semantics is the point of con-
vergence with traditional algebraic specification of abstract data types, both paradigms
being limited to Horn theories. However, in the traditional contexts this is also the point
from where the two paradigms begin to diverge. While traditional algebraic specification
is based on the many-sorted equational version of HCL (i.e. CEQL), logic programming
is traditionally based on the Horn clause sub-institution of REL1, this being the single-
sorted equation-free variant of HCL . From a broader perspective, both paradigms can be
supported by HCL in its full form.

Logic programming programs. Logic programming is a declarative programming
paradigm, which means that, in principle, a program is a specification. Let us introduce a
very simple example. First, let us consider a CEQL specification of the natural numbers
with succesor and addition operations. The signature consists of one sort, a constant 0, an
unary operation s for the succesor, and a binary operation + . Then the initial model of
the theory formed by the following two equations

(∀x) x+0 = x, (∀x,y) x+ sy = s(x+ y) (16.1)

is the model of the natural numbers with addition. This is the equational approach to the
problem. We can have a REL1 (relational) alternative to this by introducing a ternary
relation symbol add where add(x,y,z) encodes x+ y = z:

(∀x) add(x,0,x), (∀x,y,z) add(x,y,z)⇒ add(x,sy,sz). (16.2)
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This is a Horn clause theory in REL1. This encoding cannot be explained as a comor-
phism, because we cannot specify by relations the equality of elements. There is no way
to do this due to the very nature of equality. This explains why first-order logic with equal-
ity is more than first-order logic without equality. However, both (16.1) and (16.2) yield
essentially the same initial models, i.e. the models of the natural numbers with addition.
Since logic programming semantics is confined essentially to initial models of programs,
we can always simulate safely equations in the manner of (16.2).

Running programs. The main difference between logic programming and traditional
specification of abstract data types resides in what it computes rather than in what it spec-
ifies. For instance, in equational logic programming, a program is hardly different from
an algebraic specification, but these two have different purposes. While the aim of spec-
ification is to define axiomatically classes of models, the purpose of logic programming
is a computational one. From a logical viewpoint, given a logic programming program P,
the aim of logic programming computations is to prove that

P |= (∃Y )q (16.3)

where q is an atomic formula. From a computation viewpoint, the aim is to prove (16.3)
constructively, which means to actually find its solutions. In logic programming termi-
nology, a consequence problem like (16.3) is called query. The foundations guarantee
(we will see how later on in the chapter) that this is a achieved by finding valuations
θ : Y → 0Σ (where Σ is the signature of P and 0Σ is its term model) such that (0P)

θ |= q,
where (0P)

θ is the expansion of 0P, the initial model of P, given by θ. When P is clear
from the context we may call just (∃Y )q a query.

A simple example. Let us consider the program P to be the theory (16.1) and try to
solve (∃a) a+1 = 3. Of course, here 1 abbreviates s0 and 3 abbreviates sss0. To do this
in the most traditional form, we rewrite P in the relational form (16.2) and so we do
with the query, which gets encoded as (∃a) add(a,s0,sss0). The computation follows the
so-called resolution algorithm, which means that:

• We set the initial ‘goal’ to add(a,s0,sss0).

• At each step we generate another set of goals by ‘unifying’ one of the goals in the
list with the conclusion of a Horn clause from the program P. Unification means that
we find a substitution of the variables such that the respective goal and the conclusion
become equal; this is called a ‘unifier’. If fact we have to find a ‘minimal’ unifier,
usually called ‘most general’. Then we add to the list of goals the hypothesis of the
Horn clause, instantiated by the unifier.

• We stop when the list of the goals gets empty. The result is obtained by composing all
substitutions obtained in the process.

It can be proved that this general algorithm produces all possible solutions. It has a non-
deterministic nature because, in principle, it is possible that in some moments of running
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it, we can have different several choice about what Horn clause from the program to use.
In the case of our current problem, it just happens that the execution of this algorithm is
deterministic and consists of the following two steps. In order to avoid clashes of names
of variables, at each step we use fresh variables in the clauses.

1 add(a,s0,sss0) the initial goal is set

2 add(x1,0,ss0) second clause of (16.2), substitution: a 7→ x1, y1 7→ 0, z1 7→ ss0

3 /0 first clause of (16.2), substitution: x1 7→ x2, x2 7→ ss0.

The list of goals is now empty, so we get the result by composing the substitutions:

(a 7→ x1) ; (x1 7→ x2) ; (x2 7→ ss0) = (a 7→ ss0).

This resolution process corresponds to the following sequence of logical conse-
quences, read in reverse order.

4 P |= add(ss0,0,ss0) monotonicity, Substitutivity (x 7→ ss0)

5 P |= add(ss0,s0,sss0) 4, Substitutivity (x 7→ ss0, y 7→ 0, z 7→ ss0), Modus Ponens

6 there exists θ substitution such that P |= θ add(a,s0,sss0) 5, θa = ss0

7 P |= (∃a) add(a,s0,sss0).

Resolution is a typical example of the proof-as-computation paradigm that is based on
‘proof goals’. In this case, in order to establish 7, we had to establish 6, then 5, and finally
4. The step from 6 to 7 is a general one, but the rest corresponds to the resolution steps 1,
2, 3.

Resolution is the standard operational semantics for logic programming based on re-
lations, in equational logics the corresponding operational semantics is called ‘paramod-
ulation’. In the context of the encoding of relations as operations from Sec. 3.3, it is
possible to simulate resolution by paramodulation. Here, we gave only a glimpse of the
operational semantics of logic programming, other fundamental issues about resolution
and paramodulation being their general / abstract definitions and their soundness and
completeness properties. In this chapter we will not do all these. From the operational
semantics, here we will study only unification, which represents the core of the logic
programming operational semantics.

Exercises
16.1. Run the program P above for the query (∃a,b) a+b = ss0. Do this in two ways, first by hand
and then install a Prolog system on your computer and run this problem with the system.

16.2 Herbrand theorems
A full understanding of logic programming requires both an understanding of its model-
theoretic meaning and its computational / operational side, and also of the bridge between
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them. Logic programming means the aggregation of all these three aspects. The model-
theoretic semantics and the bridge to the operational semantics can be done nicely at an
abstract institution-independent level. The operational semantics can be also approached
to a certain extent at that level of abstraction but in a more complicated way. The bridge
consists of two ‘Herbrand theorems’ representing the two stages of the move from model-
theoretic to operational semantics. In this section we do as follows:

1. We define logic programming in the most general model-theoretic terms.

2. We prove an institution-independent first Herbrand theorem that gives logic program-
ming its initial semantics meaning.

3. We prove an institution-independent second Herbrand theorem, that builds on the
first one, and that reformulates logic programming in a way that makes it ready for
the operational semantics.

The definition of logic programming in abstract institutions

Let I be an arbitrary institution with a designated class D of quasi-representable signature

morphisms. Then a D-query is a question of the form E
?
|=Σ (∃χ)q, where (Σ,E) is a finite

theory that admits an initial model (Σ,E), and (∃χ)q is any existential D-quantification
of a basic sentence q. In this context, (Σ,E) is called a program. When the program is
fixed then we may call (∃χ)q the query.

Now, a couple of reflections on these definitions. concrete traditional logic program-
ming:

• At the concrete level, the quasi-representable quantifications are near first-order ex-
tensions of signatures. We will see that full representability is required by the Second
Herbrand Theorem, so we can say that the concrete scope of the Herbrand Theorems
requires first-order quantifications.

• Basic sentences represent only a loose abstraction of the atomic sentences. This is
another reason why abstract logic programming has the potential of a wider scope
than traditional logic programming.

• The D-queries (∃χ)q need not represent actual sentences in the institution I , their
satisfaction can be considered outside of the satisfaction relation |=I . This means that
E |= (∃χ)q is an abbreviation for “for each model M such that M |= E there exists a
χ-expansion M′ of M such that M′ |= q”.

• Our definition of programs as theories correspond to unstructured programs. In Sec. 16.3
we will study structured programs, which, like structured specifications, are not the-
ories anymore. However, in logic programming, each structured program admit theo-
ries as normal forms, so the development in this section apply to the structured level
as well.
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First Herbrand theorem
The condition that a logic programming program admits an initial model defines to a
great extent the scope of logic programming. In the logic programming culture, 0Σ,E is
called a ‘Herbrand model’ of (Σ,E), and it serves as the universe for the computation by
resolution or by paramodulation. What this means is that the initial semantics allows for
the computational side. The initial semantics also tells us much about what to expect in
terms of the sentences used in the programs. Results from Sections 8.3 and 8.4 show that
initial semantics is caused by quasi-varieties (Thm. 8.14), which are axiomatizable by
Horn sentences (Thm. 8.18). This means that in any concrete institution, a logic program
(Σ,E) appears as some kind of Horn (clause) theory.

The First Herbrand Theorem reduces the problem of checking the satisfaction of a
query by a program / theory P from all possible models, to the initial model of P only.
Moreover, this is an equivalence.

Theorem 16.1 (Herbrand theorem I). In any institution consider a theory (Σ,E) which
has an initial model 0Σ,E . Then, for each query E |= (∃χ)q,

E |= (∃χ)q if and only if 0Σ,E |= (∃χ)q.

Proof. The implication from left to right is trivial, hence we focus on the other impli-
cation. Let χ : Σ→ Σ′. Assume that 0Σ,E |= (∃χ)q and consider a Σ-model M such that
M |= E. We have to prove that M |= (∃χ)q. Let Mq be a basic model for q.

1 Mq↾χ basic model for (∃χ)q Mq basic model for q, Fact 5.22

2 there exists homomorphism Mq↾χ→ 0Σ,E 1, 0Σ,E |= (∃χ)q

3 there exists homomorphism 0Σ,E →M M |= E

4 there exists homomorphism Mq↾χ→M 2, 3

5 M |= (∃χ)q 4, 1.

□

Solutions. In the proof of Thm. 16.1, each χ-expansion N′ of 0Σ,E such that N′ |= q is
called a solution for the query E |= (∃χ)q. Because in concrete situations χ is often a sig-
nature extension with first-order variables, in these cases N′ is represented by a valuation
of the variables by terms. For instance, in the context of the example about addition of
natural numbers, the query (∃a) add(a,s0,sss0) has one solution given by N′a = ss0.

Second Herbrand theorem
Solution forms. In the same simple context of the addition of the natural numbers,
the query (∃a,b) add(a,ss0,sb) has an infinite number of solutions, {N′k | k ∈ ω} where
(N′k)a = k and (N′k)b = k+ 1. (Here 1 abbreviates s0, 2 abbreviates ss0, etc.) Obviously,
we cannot get all these solutions by computing them, as the result of a computation pro-
cess is always finite. However, they can be presented in a generic form by the substitution
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θ : {a,b}→ {a} defined by θa = a and θb = sa. Any valuation for a in the initial model
0Σ,E , which means any χ-expansion N of 0Σ,E , provides a solution (Modθ)N for the query.
Moreover, all solutions can be obtained like this. The substitution θ is called a solution
form for the query. Commonly, solution forms rather than solutions are the results of logic
programming computations. Solution forms are computationally more friendly than solu-
tions, not only because they are fewer (sometimes this means finite rather than infinite),
but also because for the former we have better algorithms to compute. This is the sense in
which the result of Thm. 16.2 below represents a decisive step towards the computational
semantics of logic programming.

The institution-independent concept of solution form is as follows. For any theory
(Σ,E), a solution form for a D-query (∃χ1)q is any D-substitution θ : χ1→ χ2 such that
E |= (∀χ2)θq.

Theorem 16.2 (Herbrand Theorem II). Consider an institution with representable D-
substitutions for a class D of representable signature morphisms such that for each theory
(Σ,E) with initial models

• the signature Σ also admits an initial model 0Σ, and

• each signature morphism (χ : Σ→ Σ′) ∈D has its representation Mχ projective with
respect to the ‘quotient’ homomorphism pΣ,E : 0Σ→ 0Σ,E .

Then, for each theory (Σ,E) having an initial model, and for any D-query E |= (∃χ1)q,
the following are equivalent:

1. E |= (∃χ1)q.

2. There exists a solution form θ : χ1→ χ2 such that χ2 has the model expansion prop-
erty.

Proof. • 1. implies 2. Assume E |=(∃χ1)q and let χ1 : Σ→ Σ1. The signature morphism
χ2 will be just the identity morphism 1Σ. We have to find the substitution θ : χ1→ 1Σ.

– Since 0Σ,E |= E |= (∃χ1)q, there exists a χ1-expansion M1 of 0Σ,E such that M1 |= q.

– By the projectivity of Mχ1 , there exists a homomorphism h such that the following
diagram commutes:

0Σ

pΣ,E
// 0Σ,E

Mχ1

h

``

iχ1 M1

==
(16.4)

– χ1 is represented by Mχ1 , and 1Σ by 0Σ. Thus, let θ=Ψh : χ1→ 1Σ be the substitution
represented by h. We have to show that E |= θq. This follows from the First Herbrand
Theorem 16.1 if we can show that 0Σ,E |= θq and that θq is basic.

– Let us prove the first thing, that 0Σ,E |= θq:

1 (Modθ)(M1↾χ1) = M1 semantic property of substitution θ : χ1→ 1Σ
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2 (Modθ)(M1↾χ1) |= q 1, M1 |= q

3 0Σ,E |= θq 2, Satisfaction Condition for θ, 0Σ,E = M1↾χ1 .

– Finally, we show that θq is basic. We prove that Mq↾χ1 is a basic model for θq when
Mq is a basic model for q. This is achieved by the following sequence of equivalent
facts, where N is any Σ-model:

4 N |= θq
5 (Modθ)N |= q Satisfaction Condition for θ

6 there exists a homomorphism Mq→ (Modθ)N Mq basic model for q

7 there exists a homomorphism Mq↾χ1 → N.

The equivalence between 6 and 7 requires justification. On the one hand, for any
homomorphism Mq→ (Modθ)N we have that:

8 there exists homomorphism Mq↾χ1 → ((Modθ)N)↾χ1 application of Modχ1

9 N = ((Modθ)N)↾χ1 θ : χ1→ χ2 substitution

10 there exists homomorphism Mq↾χ1 → N 8, 10.

On the other hand, for any homomorphism Mq↾χ1 → N:

11 there exists homomorphism (Modθ)(Mq↾χ1)→ (Modθ)N application of Modθ

12 Mq |= q Mq basic model for q

13 χ1(θq) = q θ : χ1→ 1Σ substitution, syntactic property of substitutions

14 (Modθ)(Mq↾χ1) |= q 12, 13

15 there exists homomorphism Mq→ (Modθ)(Mq↾χ1) 14, Mq basic model for q

16 there exists homomorphism Mq→ (Modθ)N 11, 15.

• 2. implies 1. Let χk : Σ→ Σk, k = 1,2. Then

1 there exists a χ2-expansion M2 of 0Σ,E χ2 has the model expansion property

2 M2↾χ2 |= E 1, 0Σ,E |= E, Satisfaction Condition for χ2

3 M2↾χ2 |= (∀χ2)θq 2, E |= (∀χ2)θq

4 M2 |= θq 3

5 (Modθ)M2 |= q 4, Satisfaction Condition for θ

6 ((Modθ)M2)↾χ1 = M2↾χ2 = 0Σ,E semantic property of θ, definition of M2

7 0Σ,E |= (∃χ1)q 5, 6

8 E |= (∃χ1)q 7, First Herbrand Theorem.

□

The following remarks, that emerge from a close examination of both the result
and the proof of the Second Herbrand Theorem, help towards a deeper mathematical
understanding of logic programming.
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• On the one hand, the proof that 1. implies 2. shows that each solution (M1) of a query
is an instance of a solution form (θ) of that query. This is one of the meanings of
diagram (16.4) (with M1 being represented by iχ1M1 and θ by h). This has the flavour
of a completeness property. On the other hand, the proof that 2. implies 1. can be
interpreted in a reverse way, that any solution form (θ) provides solutions ((Modθ)M2)
of the query. Each particular choice of M2 yields a solution. This has the flavour of a
soundness property.

• The ‘Herbrand model’ (aka initial model) 0Σ,E lies at the heart of the Second Herbrand
Theorem through the involvement of the First, which is bi-directional in the sense that
it is involved in both implications of the former theorem.

• The representability premise is used only in the first implication of the Second Her-
brand Theorem. Apparently, the second implication does not require any additional
properties for χ1 and χ2. However, the involvement of the First Herbrand Theorem
does require the quasi-representability property for χ1.

• The Second Herbrand Theorem requires premises that are technically stronger than
those of the First, but in most applications, the premises of both theorems lead to
identical concrete frameworks. These applications include the common frameworks
for logic programming. The actual meaning of the premises of the Second Herbrand
Theorem have already been discussed at several places in this book, so we are familiar
with this. In relation to this, instances of both Herbrand Theorems are straightforward
to formulate in HCL . However, in the applications, the model expansion condition on
χ2 makes a notable difference between the two Herbrand theorems. In the context of
HCL , according to Fact 5.6, the non-empty sorts condition on Σ gets involved (i.e. that
0Σ does not have empty sorts).

Exercises
16.2. Consider the theory of the addition of the natural numbers of (16.1) and the query
(∃a,b,c) a+ ssb = sc.

1. Find a solution form for this query.

2. Consider the same problem in the relational form of (16.2). Then the corresponding query is
(∃a,b,c) add(a,ssb,sc). What about its solution forms?

By comparing the answers to the questions above draw a conclusion about the difference between
relational and equational logic programming.

16.3. Formulate valid instances of both Herbrand Theorems in PA (the institution of partial alge-
bras).

16.3 Modularization
In practice, the structuring of logic programming programs can be done by using the
specification building operators BASIC, TRANS, and UNION. Other building operators can
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be involved as long as each program has a normal form which is a theory; this assumption
underlies the developments in this section, so we can just represent programs by their
normal forms. For instance, DERIV breaks this assumption, but in the context of logic
programming DERIV does not have meaning. The components of a structured program are
inter-connected by morphisms, which can be assimilated to theory morphisms between
corresponding normal forms. For instance UNION and TRANS lead to such morphisms.
The most fundamental logic programming modularisation issue is the interaction between
morphisms and queries and their solutions. The main idea is the solutions of queries
should not be affected by translations along morphisms. We do as follows:

1. We define the mathematical framework for structured logic programs.

2. We clarify how queries and their solutions translate along morphisms.

3. We show the soundness of translation of queries and their solutions. This means that
a translated solution remains a solution.

4. We give sufficient conditions for the completeness of translations of queries and of
their solutions. This means that a translated query should not have solutions besides
those of the original query. The main condition for this is that the morphisms ‘protect’
the Herbrand models of the source theory.

5. Then we show how this condition is fulfilled by two kinds of pushouts of program
morphisms. One of them covers the union of programs, and the other one instantia-
tions of program parameters (in the context of generic / parameterised programming).

Abstractly structured logic programs. The concept of (I ,sig)-structured institution
of Sec. 15.4 can be employed for defining axiomatically an abstract concept of structured
programs in logic programming that does not commit to any particular set of structuring
operators. This axiomatisation goes as follows. Let I be a (base) institution and I ′ be a
(I,sig)-structured institution such that

• sig : Sig′→ Sig preserves pushouts.

• I ′ inherits the signature morphisms.

• I ′ has semantic basic specifications.

Each I ′-signature P that has a designated normal form (1sig[P],EP) such that the theory
(sig[P],EP) admits initial models, denoted 0P, is called a (structured) logic program. The
initial models 0P are called Herbrand models of P. The following expected result, which
will be technically useful, interprets pushouts of program morphisms as pushouts of cor-
responding normal forms.

Proposition 16.3. For any pushout of program morphisms like in the left-hand side
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square below, we have that the the right-hand square below is a pushout in I th.

P
ϕ1
//

ϕ2

��

P1

θ1
��

(sig[P],EP)
sigϕ1

//

sigϕ2

��

(sig[P1],EP1)

sigθ1
��

P2
θ2

// P′ (sig[P1],EP1) sigθ2

// (sig[P′],EP′)

(16.5)

Proof. Directly from the definition of the (I ,sig)-structured institutions, we have that
the left-hand side square of (16.5) is indeed a commutative square of morphisms in I th.
We prove it has the pushout property. Let ψk : (sig[Pk],EPk)→ (Σ′′,E ′′), k = 1,2, be
I th-morphisms such that sigϕ1 ; ψ1 = sigϕ2 ; ψ2.

• For k = 1,2, we consider morphisms ψk : Pk→ SP(Σ′′,E ′′) such that sigψk = ψk.

• It follows that ϕ1 ; ψ1 = ϕ2 ; ψ2. Let ψ : P′→ SP(Σ′′,E ′′) be the unique morphism
such that θk;ψ = ψk, k = 1,2.

P
ϕ1
//

ϕ2

��

P1

θ1
�� ψ1

��

(sig[P],EP)
sigϕ1

//

sigϕ2

��

(sig[P1],EP1)

sigθ1
��

ψ1

��

P2
θ2

//

ψ2 --

P′

ψ

$$

(sig[P2],EP2) sigθ2

//

ψ2 //

(sig[P′],EP′)

sigψ

&&

SP(Σ′′,E ′′) (Σ′′,E ′′)

• Then sigψ : (sig[P′],EP′)→ (Σ′′,E ′′) is the unique mediating morphism in I th making
the right-hand side diagram above commute.

□

Translations

Now we establish the concepts of translations of queries and of their solutions along
program morphisms. Then we prove that a soundness-like property, that by translating
solutions we obtain solutions of the translated query.

Translation of queries along morphisms. Consider that the base institution I comes
with a designated class D of quasi-representable signature morphisms. Let ϕ : P→ P′

be a program morphism. A translation of a D-query EP |= (∃χ)q along ϕ is any D-query
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EP′ |= (∃χ′)ϕ1q where

sig[P]
χ
//

sigϕ

��

Σ1

ϕ1

��

sig[P′]
χ′
// Σ′1

(16.6)

is a pushout square of signature morphisms. Query translations are not unique, but are
unique up to semantic equivalence because pushout squares are unique up to isomor-
phisms.

Proposition 16.4. If D is stable under pushouts then any D-query admits translations
along morphisms ϕ that are liberal as signature morphisms.

Proof. Let (∃χ)q be a D-query. We consider any pushout square of signature morphisms
like (16.6). Then any ‘sentence’ (∃χ′)ϕ1q is a query because ϕ1q is basic since the trans-
lations of basic sentences along liberal signature morphisms are still basic (cf. Ex. 5.28).

□

The liberality condition on the signature morphisms is mild in the applications, as
can be noticed for example in the case of FOL , where each signature morphism is liberal
(see Ex. 4.78).

Translations of solutions along morphisms. Consider a program morphism ϕ : P→
P′. Let M1 be a solution for a D-query EP |= (∃χ)q. A translation of M1 along ϕ is any
χ′-expansion M′1 of 0P′ , for any pushout square like (16.6) such that there exists a Σ1-
homomorphism h1 : M1→M′1↾ϕ1 . Let us try to understand this abstract concept through
a concrete situation.

• Let χ : sig[P]→ sig[P]+X , χ′ : sig[P′]→ sig[P′]+Xϕ be FOL signature extensions
with blocks of first-order variables, such that Xϕ represents a ‘re-sorting’ of X accord-
ing to ϕ, like we did when we defined the translations of the quantified sentences in
FOL (Sec. 3.1).

• Then M1 means a valuation X → 0P while M′1 means a valuation Xϕ→ 0P′ . Keep in
the mind that X and Xϕ are essentially the same, only the sorts of the variables are
renamed according to ϕ.

• The homomorphism h1 provides the crucial link between M1 and M′1, which allows
us to speak of M′1 as a translation of M1. Its reduct is a homomorphism 0P→ 0P′↾ϕ.
Since EP′ |= ϕEP, we have that 0P′↾ϕ |= E, hence by the initiality of 0P there exists
exactly one such homomorphism. By the quasi-representability of χ, there exists only
a χ-expansion of the homomorphism 0P→ 0P′↾ϕ to a homomorphism M1→ N1. This
means that either a homomorphism M1→M′1↾ϕ1 does not exist, or else there is only
one.
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• Then, for each variable x in X , h1 maps each interpretation (M1)x to (M′1)x. In other
words, the valuation Xϕ → 0P′ (that represents M′1) is the mere translation of the
valuation X → 0P (that represents M1) according to the unique homomorphism 0P→
0P′↾ϕ.

X
M1

//

��

0P

��

Xϕ

M′1

// 0P′↾ϕ

It is important to establish two things:

1. The existence of the translations of solutions of queries.

2. The translation of a solution of a query is a solution for any translation of the respec-
tive query.

The former fact is established as follows, under a very mild condition.

Proposition 16.5. If the base institution I has weak model amalgamation then any solu-
tion of a D-query for P has a translation along any program morphism ϕ : P→ P′.

Proof. Let M1 be a solution for a D-query EP |= (∃χ)q.

• We consider any pushout square like (16.6).

• We consider the unique model homomorphism 0P→ 0P′↾ϕ, which, by using the quasi-
representability of χ, we χ-expand to a Σ1-homomorphism h1 : M1→ N1.

• By the weak amalgamation property there exists a Σ′1-model M′1 which is the amalga-
mation of N1 and 0P′ .

□

The latter fact is established as follows under the same condition of Prop. 16.5.

Proposition 16.6. If the base institution I has weak model amalgamation, then for any
program morphism ϕ : P→ P′ we consider a

• a D-query EP |= (∃χ)q and one of its translations EP′ |= (∃χ′) ϕ1q along ϕ, and

• a solution M1 for the former query and one of its translations M′1 along ϕ.

Then M′1 is a solution for the translated query EP′ |= (∃χ′) ϕ1q.

Proof. We have to prove that M′1 |= ϕ1q. We consider the Σ1-homomorphism h1 : M1→
M′1↾ϕ1 . Then

1 there exists a basic model Mq for q q basic

2 there exists a homomorphism Mq→M1 1, M1 |= q (M1 solution)
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3 there exists a homomorphism Mq→M′1↾ϕ1 2, h1 : M1→M′1↾ϕ1

4 M′1↾ϕ1 |= q 3, q basic

5 M′1 |= ϕ1q 4, Satisfaction Condition

Hence M′1 is a solution for the translation EP′ |= (∃χ′)ϕ1q. □

Protections
Now we develop a completeness-like result for the translations of queries and solutions
along program morphisms. We also show how the main condition for this result gets
fulfilled in general for two of the most relevant modularisation situations.

Protecting solutions. Consider a translation of a query along a theory morphism ϕ like
above. Think of ϕ as representing a module import P→ P′ of logic programs. What we
definitely do not want is that EP |= (∃χ)q acquires some new solutions in P′, in other
words that EP′ |= (∃χ′) ϕ1q has some solutions M′1 that are not translations of some so-
lutions M1 of EP |= (∃χ)q. The most fundamental principle of program structuring is that
the structuring should not affect the components. For instance, an import of a module
should not affect in any way the imported module. In the case of logic programming, one
way to express this is that queries at the level of the imported module do not get new
solutions at the level of the importing module. We will prove that this property is caused
by the ‘protection’ of the Herbrand / initial model of the imported module. So, given
a morphism ϕ : P→ P′, we say that it is protecting [the Herbrand model of P] when
0P′↾ϕ = 0P.

Proposition 16.7. For any protecting morphism ϕ : P→ P′, each solution for the query
EP′ |= (∃χ′) ϕ1q is a translation along ϕ of a solution of the original query EP |= (∃χ)q.

Proof. Let M′1 be a solution for EP′ |= (∃χ′) ϕ1q, the context being a pushout square of
signature morphisms like (16.6).

• We show that M′1↾ϕ1 is a solution for EP |= (∃χ)q. We have that

M′1↾ϕ1↾χ = M′1↾χ′↾ϕ χ;ϕ1 = ϕ;χ′, functoriality of Mod

= 0P′↾ϕ M′1↾χ′ = 0P′ (M′1 solution)

= 0P ϕ protects the Herbrand model.

It remains to prove that M′1↾ϕ1 |= q. But this follows from M′1 |=ϕ1q by the Satisfaction
Condition.

• That M′1 is translation of M′1↾ϕ1 along ϕ is obvious as M′1↾χ′ = 0P′ , while the homo-
morphism h1 is the identity Σ1-homomorphism on M′1↾ϕ1 .

□
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Protecting Herbrand models. The condition on the program morphism that it protects
the Herbrand model of the source program, which is the basis for protecting solutions, is
apparently quite stringent. However, this should be a methodological norm when devel-
oping logic programming software, and, in fact, we almost always follow it by common
sense. Take the following example. We want to enhance the equational logic program
(16.1) with a multiplication operation on the naturals (denoted ∗ ). The obvious way to
do this is to add the equations that define the multiplication by recursion, very much how
we defined the addition.

(∀x) x∗0 = 0, (∀x,y) x∗ sy = (x∗ y)+ x. (16.7)

Let P be the program represented by (16.1) and P′ the program represented by both (16.1)
and (16.7). The inclusive program morphism ϕ : P→P′ does protect the Herbrand model
of P, which simply means that P′ does not produce ‘new’ natural numbers, it does not
collapse natural numbers, and it does not change the succesor and the addition operations.
These preservations are not optional, as any such change would be a disaster.

The following result shows how, in logic programming, the protection of Herbrand
models is preserved by pushouts of morphisms of programs.

Proposition 16.8. Assume that the (I ,sig)-structured institution I ′ is semi-exact. Then
for any pushout of program morphisms like below

P
ϕ1
//

ϕ2

��

P1

θ1
��

P2
θ2

// P′

(16.8)

if some initial models of Pk, k = 1,2, share their ϕk-reducts as an initial model of P, then
the morphisms θk, k = 1,2, protect the initial models.

Proof. By the semi-exactness assumption, the square below is a pullback in Cat:

Mod′P Mod′P1
Mod′ϕ1
oo

Mod′P2

Mod′ϕ2

OO

Mod′P′
Mod′θ2

oo

Mod′θ1

OO

• Let 0Pk , k = 1,2, be initial models of Pk, k = 1,2, whose reducts are shared to an initial
model for P, i.e. 0P1↾ϕ1 = 0P2↾ϕ2 = 0P.

• Let M′ be the unique model amalgamation of 0P1 and 0P2 . We prove that this is an
initial model of P′.

• For any P′-model N′, for k = 1,2, let Nk be its θk-reduct.

– For k = 1,2, let hk : 0Pk → Nk be the unique Pk-homomorphism.
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– By the initiality of 0P, we have that h1↾ϕ1 = h2↾ϕ2 : 0P→ N′↾θk↾ϕk . This means we
can amalgamate h1 and h2 to a P′-homomorphism h′ : M′→ N′.

– By the uniquenesses of hk, k = 1,2 (from the initiality of 0Pk ) and by the uniqueness
of model amalgamation, we obtain the uniqueness of h′.

□

Some remarks on the conditions and on the applicability of this result:

• The normal forms of programs help also with the semi-exactness condition, which can
be obtained easily from the semi-exactness of the base institution I via Prop. 15.9 by
and Prop. 16.5.

• The most obvious application of Prop. 16.8 is when the square (16.8) corresponds to a
union of programs, where all morphisms are inclusive and P′ = P1∪P2. For instance,
imagine that P is a program for natural numbers with addition, ϕ1 extends P with
multiplication, while P2 is a program for lists of natural numbers with addition. Then
P1∪P2 is a program for lists of natural numbers with addition and multiplication. You
can check what it means that the Herbrand models are protected by the union P1∪P2
in this case.

• Note that our proof of Prop. 16.8 does not use that P′ has a Herbrand model, it actu-
ally proves it. This means that this result can be reformulated by assuming Herbrand
models only for P, P1 and P2, but this slightly higher generality does not have much
practical meaning since if we are doing things in the realm of logic programming then
that all programs have Herbrand models is always there.

The case of parameterised / generic programming. Pushout squares of logic pro-
grams such as (16.8) appear also in the context of parameterised / generic programming,
where ϕ1 is a parameterised program with P as parameter. Then ϕ2 is an instantiation of
the parameter, and θ2 is the result of this instantiation for the respective program. The
following is a simple example. Let P consist of one sort Elt and let P1 have two sorts
Elt and List, an operation . : Elt List→ List that constructs lists, a nil constant
for the empty lists, a relation car : List Elt giving the head of the list, specified by
(∀X ,L) car(X .L, X), and a relation cdr : List List giving the tail of a list, specified
by (∀X ,L) cdr(X .L, L). Then ϕ1 is just the inclusion P→ P1. Let P2 be a program about
natural numbers, and ϕ2 mapping Elt to the sort Nat of the natural numbers. Then P′ is
a program for lists of natural numbers. If we desire a program for lists of something else
the, in the pushout square, we just change ϕ2. We make the following important point. θ2
protects the [Herbrand model of the] natural numbers, but this cannot be obtained from
Prop. 16.8 because the sharing hypothesis fails. The ϕ1-reduct of the Herbrand model
of P1 is empty while the ϕ2-reduct of the Herbrand model of P2 is the set of the natural
numbers. The following general result covers such instantiations of parameters.
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Proposition 16.9. Under the same semi-exactness condition like in Prop. 16.8, consider
a pushout of program morphisms like below

P
φ
//

ψ

��

T

ψ′

��

P′
φ′
// T ′

such that φ is persistently liberal, i.e. it has a left-inverse left-adjoint. Then φ′ protects the
initial models of P′.

Proof. Let 0P′ be an initial model of P′, and let (0P′↾ψ)
φ be the free expansion of 0P′↾ψ

along φ (according to the persistently liberal property of φ).

• Since (0P′↾ψ)
φ↾φ = 0P′↾ψ, let M′ be the unique amalgamation of (0P′↾ψ)

φ and 0P′ in
I ′. We prove that M′ is an initial model of T ′.

• Consider any model N′ of T ′.

– Let h′ : 0P′ → N′↾φ′ be the unique P′-homomorphism.

– Let f : (0P′↾ψ)
φ→ N′↾ψ′ be the unique T -homomorphism given by the persistent

adjunction between Mod′P and Mod′T as shown in the diagram below:
0P′↾ψ

=
//

h↾ψ
$$

(0P′↾ψ)
φ↾φ

f↾φ
yy

(0P′↾ψ)
φ

∃! f
��

N′↾φ′↾ψ = N′↾ψ′↾φ N′↾ψ′

• Then the amalgamation of h and f gives a homomorphism M′ → N′. Moreover, the
homomorphism M′→ N′ is unique by the uniqueness of h and f and of the homomor-
phism amalgamation (by the semi-exactness assumption).

□

Like with Prop. 16.8, the Herbrand model of T ′ need not be assumed, its existence
is actually proved through the proof itself. The condition on φ is fundamental for the
concept of parameter, being stronger than the protection of the Herbrand model of P.

Exercises
16.4. Relational multiplication program
Develop a relational correspondent to the equational multiplication program given by (16.1) and
(16.7). Does the multiplication program P′ protects the Herbrand model of the relational addition
program P given by (16.1)? Run Prolog to solve the query P′ |= (∃a,b) a∗b = 6.

16.5. Translating solution forms
Consider an institution with representable D-substitutions. For any liberal signature morphism
ϕ : Σ→Σ′ let (−)ϕ : ModΣ→ModΣ′ be the left adjoint to the model reduct functor Modϕ : ModΣ′→
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ModΣ. For any theory morphism ϕ : (Σ,E)→ (Σ′,E ′) if θ is a solution form for a D-query in (Σ,E)
then any D-substitution ψ determined by (Mθ)

ϕ is a solution form for any translation of the respec-
tive query in (Σ′,E ′).

16.4 Constraints

Pure symbolic logic programming may be sometimes impractical. In the context of the
examples about natural numbers, think of situations when bigger numbers are involved.
How would it be to write something like 11,537 as ss . . .s0? And there is the issue of
arithmetic calculations, at the purely symbolic level they are inefficient. Whenever num-
ber systems are involved, it is realistic to involve them as pre-defined types, which also
means involvement of specific efficient computational tools for them. Not only number
systems, but also other common data types can be involved in a pre-defined built-in form.
When we do this in the context of logic programming, we speak of constraint logic pro-
gramming, and two levels require our attention:

1. The denotational semantics, or the model theory level. Here, our abstract approach to
logic programming pays off, we can just instantiate it to an institution of pre-defined
types. We can do that even at a general level, and everything carries on smoothly, in-
cluding the basic logic programming concepts and the Herbrand theorems. The scope
of this section is to show in some detail how this happens.

2. The operational semantics is just another story, being not only institution-dependent
but also type-dependent. In very general terms, the computation in constraint logic
programming integrates execution of built-in packages with general symbolic compu-
tations based on resolution, or paramodulation, or something else. We will not touch
this matter.

The theory of institution-independent constraint logic programming is based on a hier-
archy of three abstract institutions. There is a base institution I with diagrams for the
underlying logic, for the unstructured programming an institution of pre-defined types
I ≀ like in Sec. 15.5, and for the structured programming an (I≀,sig)-structured institu-
tion I ′. The latter level is obtained just by applying the theory Sec. 16.3 to I ≀, which
is a straightforward enterprise. Also, because of this, in this section we focus on show-
ing how the institution-independent semantics of unstructured logic programming gets
interpreted in I ≀ to obtain an institution-independent semantics for constraint logic pro-
gramming. In this context, the key concepts that require more clarification effort are those
of constraint query and constraint substitution. Programs, solutions, and solution forms
are more straightforward.

Linear inequations with real numbers. Before defining constraint queries at the gen-
eral level, let us look into a concrete situation. Let us recall the Euclidean plane example
R2 given in Sec. 15.5. In R we may consider also a ‘less than of equal’ relation ≤. This



16.4. Constraints 535

extends to R′float and further on to R2. The system of inequalities{
3.14∗ x+

√
2∗ y≤ 2,

5.79∗ x+7.13∗ y≤−1.65

can be regarded as a ‘constraint query’ in the Euclidean plane R2:

(∃{x,y}) x∗ ⟨3.14, 5.79⟩+ y∗ ⟨
√

2, 7.13⟩ ≤ ⟨2,−1.65⟩. (16.9)

We note the following aspects:

• The variables x,y are just FOL variables.

• The terms of (16.9) are obtained from the elements of R′float and the FOL variables.

Constraint queries in general. How can we express the two remarks above about the
nature of constraint queries in R2 at the general level? We consider an I ≀-signature (Σ,A)
(an example being (Σ,R′float)). Then

• The ‘variables’ are I -signature morphisms χ : Σ→ Σ′ from a designated class D .

• The sentences in the role of q are considered from Sen≀(Σ,A+Mχ) = Sen(ΣA+Mχ
),

where Mχ represents χ and A+Mχ is a co-product in ModΣ. This also means we
assume that D contains only representable signature morphisms. What the co-product
does in concrete situations is that is provide the ‘constraint terms’ formed from the
elements of A and the variables provided by χ.

We can write such a constraint query as (∃χ)q, which matches (16.9) well. But, techni-
cally this does not yet correspond to a query in I ≀ because χ is not I ≀-signature morphism.
The solution is to consider (1Σ, jA) where jA is the component of the co-product co-cone
as shown below:

A
jA
// A+Mχ Mχ.

jχ
oo

Thus, given D , we can define D ≀ to be the class of the I ≀-signature morphisms of the form
(1Σ, jA), when χ ∈D . Then (∃χ)q would be an abbreviation for (∃(1Σ, jA))q.

Properties of D ≀. In order to apply the general theory of abstract logic programming to
the constraint framework of I ≀ we have to take care that D ≀ enjoys the following proper-
ties:

• It contains only representable signature morphisms; necessary for the Herbrand The-
orems.

• It is stable under pushouts; necessary for translating queries.

Both properties can be transferred from D .

Proposition 16.10. (1Σ, jA) is representable. Moreover, in the comma-category variant
of Mod≀, M(1Σ, jA) = jA.
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Proof. The conclusion follows by the following commutative square of natural isomor-
phisms:

Mod≀(Σ,A+Mχ)
∼=
//

∼=
��

jA/Mod≀(Σ,A)

∼=
��

(A+Mχ)/ModΣ ∼=
// jA/(A/ModΣ)

□

The stability of D ≀ under pushouts can be established by intricate but rather canon-
ical constructions. We exile this problem to the exercises part of this section.

First Herbrand theorem for constraint logic programming. By instantiating Her-
brand Theorem 16.1 to I ≀ we obtain the following Herbrand theorem for constraint logic
programming over arbitrary institutions.

Theorem 16.11 (First Herbrand theorem for constraint logic programming). Let I be an
institution with diagrams and with binary co-products of models. Let ((Σ,A),E) be an
I ≀-theory such that (ΣA,EA ∪E) has initial models. Then ((Σ,A),E) has initial models
and for each constraint (Σ,A)-D ≀-query E |=≀ (∃χ)q,

E |=≀ (∃χ)q if and only if 0(Σ,A),E |=≀ (∃χ)q.

Often, the sentences E of a constraint logic program do not involve the elements of
the pre-defined model A, which means they are Σ-sentences rather than ΣA-sentences. For
instance, this happens in the Euclidean plane R2 example, when only the queries involve
elements of Rfloat. In this case, the Herbrand model 0(Σ,A),E is just the ‘quotient’ of A by
E as shown by the following fact.

Fact 16.12. For any set E of Σ-sentences such that the forgetful functor Mod(Σ,E)→
ModΣ admits a left-adjoint, the initial model of ((Σ,A),(ιΣA)E) is qE : A→ AE , the
universal ‘quotient’ model homomorphism from A to the free (Σ,E)-model over A.

The left-adjoint condition is widely satisfied in the concrete applications; for this
we can refer to general results from Sec. 4.6 showing that this is just a consequence of
ordinary initial semantics (Prop. 4.29). Anyway, initial semantics is a pre-condition for
any form of logic programming. Concerning the example of the Euclidean plane, Fact
16.12 explains at the general level how R2 arises as the initial model of the vector space
specification of Sec. 15.5.

Constraint substitutions and solution forms. For the Second Herbrand Theorem for
constraint logic programming we have to clarify the concept of ‘constraint substitution’.
In the (base) institution I , given representable signature morphisms in D , χ1 : Σ→ Σ1
and χ2 : Σ→ Σ2, for any Σ-model A, we consider the D ≀-morphisms (1Σ, j1

A) and (1Σ, j2
A).

Then any homomorphism h : Mχ1 → A+Mχ2 can be regarded as a ‘substitution’ of the
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‘variables’ χ1 with ‘(Σ,A+Mχ2)-terms’. By considering the tuple hA = ⟨ j2
A, h⟩ given by

the co-product property of A+Mχ1 , we get a homomorphism in Mod≀(Σ,A) between the
representations of (1Σ, j1

A) and (1Σ, j2
A), hA : j1

A→ j2
A.

A
j1A
//

j2A ##

A+Mχ1

hA

��

Mχ1

jχ1
oo

h
zz

A+Mχ2

Fact 16.13. ΨhA : (1Σ, j1
A)→ (1Σ, j2

A) is a D ≀-substitution (in I ≀) defined by Sen≀ΨhA =

Sen(ιΣhA) and Mod≀ΨhA = Mod(ιΣhA).

ΣA+Mχ1

ιΣhA
// ΣA+Mχ2

Σ

ιΣ(A+Mχ1 )

bb

ιΣ(A+Mχ2 )

<<

Then ΨhA is called a constraint (Σ,A)-D ≀-substitution χ1→ χ2. A constraint (Σ,A)-
D ≀-solution form for a D ≀-query (∃χ1)q is any (Σ,A)-D ≀-substitution θ : χ1 → χ2 such
that E |= (∀χ1) θq.

Second Herbrand theorem for constraint logic programming. We can now instanti-
ate Herbrand Theorem 16.2 to the institution I ≀ of pre-defined types.

Theorem 16.14 (Second Herbrand theorem for constraint logic programming). In the
context of Thm. 16.11 we further assume that

• each representation Mχ of any χ : Σ→Σ′ in D is projective with respect to 0(Σ,A),E : A→
AE , the initial ((Σ,A),E)-model.

Then for any D ≀-query E |= (∃χ1)q, the following are equivalent:

1. E |= (∃χ1)q.

2. There exists a constraint (Σ,A)-D ≀-solution form θ : χ1 → χ2 such that χ2 has the
model expansion property.

Similarly to the applications of Thm. 16.2, the projectivity condition of Thm. 16.14
can be established easily in the actual examples, since the initial models 0((Σ,A),E) : A→
AE are ‘quotients’ of the pre-defined model A (see Fact 16.12), and hence they are surjec-
tive.

Exercises
16.6. Representable signature morphisms in I ≀
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1. Any signature morphism (χ, f ) : (Σ,A)→ (Σ′,A′) is representable in the institution I ≀ of pre-
defined types if χ : Σ→ Σ′ is quasi-representable in the base institution I .

2. If the base institution I has binary co-products of models and a signature morphism χ : Σ→ Σ′

is represented by Mχ (in I ), then (χ, jA) : (Σ,A)→ (Σ′, i−1
χ ( jχ)) is represented by jA : A→

A+Mχ (in I ≀).

16.7. In any semi-exact institution with diagrams the co-product Mχ+A can be obtained as 0Σ′(A),χ′EA
↾Σ

when the square below is a pushout square of signature morphisms.

Σ
ιΣA
//

χ

��

ΣA

χ′

��

Σ′
ι′
// Σ′(A)

16.8. Stability of D ≀ under pushouts
Based on the stability of D under pushouts, develop a result establishing the stability of D ≀ under
pushouts.

16.5 Unification
The operational / computational semantics of concrete forms of logic programming is an
interplay of several algorithms, with the unification algorithm at its core. In this section
we develop a general category-theoretic approach to unification as concept, and at the
same level of abstraction, an analysis of the unification algorithm.

What is unification?
We have already seen a bit of what this means when we discussed the resolution procedure
on the simple example of addition of natural numbers. The short answer to this question is
“the endeavour to find a substitution that equalizes a pair of terms”. But we can do better
than this in some ways. First of all, it is useful to liberate this concept from its traditional
context and to formulate it abstractly in order to achieve a higher understanding and make
it available in an uniform way to a multitude of various concrete frameworks. In order to
do this, we start with looking at the traditional concept of unification, and then we project
a categorical perspective.

Unification of FOL terms. Let Σ be a FOL signature, X a block of variables for Σ,
and t, t ′ be two (Σ+X)-terms of the same sort. A unifier for t and t ′ is any substitution
θ : X → Y (i.e., a function X → 0Σ+Y ) such that θt = θt ′. For instance, when X = {x,y}
and Y = /0, θx = b, θy = a define a unifier for (x ∗ a,b ∗ y). Moroever, this is the only
unifier for this problem.

We can present unifiers in a conceptually uniform way in terms of substitutions
only. For this we regard terms as substitutions. For each term t ∈ 0Σ+X by t we denote the
Σ-substitution {∗}→ X defined by t(∗) = t.
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Fact 16.15. A unifier θ for t and t ′ is precisely a co-cone for the parallel pair of substitu-
tions (t, t ′),

{∗}
t
//

t ′
// X

θ
// Y.

Unifiers may exist or not. For instance, when x,y are variables, x ∗a and b∗ y have
unifiers, but x ∗ a and (x ∗ a) ∗ a do not. Also, x ∗ a and b ◦ y do not, but for a different
reason, even more obvious than in the previous example.

Categorical unification. The view of terms-as-substitutions, as put forward by Fact
16.15, allows for a fully abstract categorical view on unification. A (categorical) unifier θ

for a parallel pair of arrows t, t ′ is just a co-cone for t, t ′, i.e. t;θ = t ′;θ. Now, let us assume
an epi inclusion system (I ,E) for the category. A E-unifier is any unifier that belongs to
to E . A most general unifier (abbreviated mgu) for a parallel pair of arrows t, t ′ is any
unifier θ that is not a proper instance of any E-unifier, i.e. for any E-unifier θ′ for t, t ′

such that θ = θ′;γ we have that γ is isomorphism. Note that any mgu is an E-unifier.
In the classical context of unification, that of FOL terms, the category is that of

first-order substitutions. The inclusion system is similar to the standard inclusion system
in Set. A substitution θ : X → Y is an abstract inclusion if it is a set inclusion, and is
an abstract surjection when for many y ∈ Y there exists x ∈ X such that y occurs in the
term θx. Later on in this section we will establish that in FOL , the mgu’s are unique up
to isomorphisms, which in categorical terms means a co-equaliser.

In general, for any pair of parallel arrows (t, t ′) in a category, let us denote by
coeq(t, t ′) the class of its co-equalisers, and by mgu(t, t ′) the class of its mgu’s. We have
the following simple relationship between co-equalisers and mgu’s.

Proposition 16.16. If coeq(t, t ′) ̸= /0 then coeq(t, t ′) = mgu(t, t ′).

Proof. We assume coeq(t, t ′) ̸= /0.

• Consider θ ∈ coeq(t, t ′). Suppose there exists an E-unifier θ′ and an arrow γ such that
θ = θ′;γ. We prove that γ is isomorphism.

– Since θ is co-equaliser and θ′ is unifier, there exists f such that θ; f = θ′. Then
θ ∈ E as co-equaliser (in general, any co-equaliser is an abstract surjection). Since
θ′ ∈ E too, it follows that f ∈ E .

X
t
//

t ′
// Y θ

//

θ′ ��

Z

f
��

Z′

γ

OO

– On the one hand, θ; f ;γ= θ′;γ= θ. Since θ is co-equalizer, it is epi, hence f ;γ= 1Z .

– On the other hand, f ;γ = 1Z implies f ;γ; f = f . By the epi property of f (epi
inclusion system, f ∈ E), it follows that γ; f = 1Z′ .
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• Now, consider θ ∈mgu(t, t ′). Let θ′ ∈ coeq(t, t ′). Hence there exists γ such that θ′;γ =
θ. Since θ′ ∈E (as co-equaliser) and θ is mgu, by definition it follows that γ is isomor-
phism. This means θ is co-equaliser too.

□

There are many different unification contexts that fit general categorical unification.
In some of them mgu’s are not necessarily co-equalisers. Here is one such example. A
practically important kind of unification is that of unification modulo some equational
theory, where the substitutions map variables to equivalence classes of terms modulo that
theory. For instance, consider the signature of the natural numbers with addition, with the
usual operations 0, s , + . We consider terms modulo the associativity of + . Then
mgu(x+0,0+ x) = {θk : {x}→ /0 | k ∈ ω} where θkx = 0+ . . .+0︸ ︷︷ ︸

×(k+1)

.

Unification in institutions. The category-theoretic view of unification can be inter-
preted in the institution theory setting by considering categories of substitutions. For any
signature Σ in an arbitrary institution with a designated class D of signature morphisms, a
D-unifier for any Σ-D-substitutions ψ1,ψ2 : χ→ χ′ is any Σ-D-substitution θ : χ′→ χ′′

such that ψ1;θ and ψ2;θ are equivalent (i.e., Mod(ψ1;θ) = Mod(ψ2;θ)).

χ

ψ1
//

ψ2
// χ
′ θ

// χ′′

About this definition, we note several things.

• In the case of first order substitutions in FOL , two substitutions are equivalent if and
only if they are equal. This means that this institution-independent definition covers
precisely the standard traditional FOL concept of unifier.

• In FOL , χ can be interpreted as any block of variables, which means that the concept
of unifier applies also to sets of pairs of terms, not only to single pairs.

• The definition does not commit to any particular type of substitutions, such as rep-
resentable ones. One of the consequences of this generality is that this allows for
higher-order unification also.

A categorical unification algorithm
In the context of categorical unification, now we develop an unification algorithm that
generalises the FOL classical algorithm. As one of the main characteristics of FOL uni-
fication is the equality coeq(t, t ′) = mgu(t, t ′), our categorical unification algorithm will
be about computing co-equalisers. This algorithm can be applied as-such to other unifi-
cation contexts, and sometimes it can be applied under some modifications. An algorithm
finding co-equalisers consists essentially of repeatedly reducing the original problem to
‘simpler’ problems, until we end up with trivial problems. By ‘simpler’ we mean ‘less
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symbols’. For instance, in the case of the unification of the pair (x ∗ a, b ∗ y), we do as
follows:

1. We eliminate the topmost symbol ∗, that is shared by both terms. Then, we get two
pairs of terms to be unified, (x,b),(a,y). If the topmost symbols were different oper-
ation symbols, then the unification algorithm fails in the sense that there is no unifier
to be found.

2. We solve each of the above problems separately and then compose the results. What
exactly ‘compose’ means will be clarified later on in this section.

3. Both (x,b) and (a,y) constitute irreducible cases as we cannot eliminate symbols or
split problems anymore. We get the unifiers x 7→ b and y 7→ a, which by composition
yield the unifier for (x∗a, b∗ y).

Both reduction steps and the irreducible states of unification can be expressed at the ab-
stract categorical level. We do this in what follows.

Reducing the ‘operation symbols’. The elimination of a shared topmost symbol in
the unification process is explained in category-theoretic terms by the following general
proposition. We omit its straightforward proof.

Proposition 16.17. In any category, if e : X ′→X is epi and t, t ′ : X→Y , then coeq(t, t ′)=
coeq(e; t, e; t ′).

X ′ e
// X

t
//

t ′
// Y θ

//

∀θ′ ��

Z

∃! f
��

Z′

It may not be immediately clear how Prop. 16.17 covers the elimination of ∗ in
the example above. The following FOL instance of Prop. 16.17 provides the general
elimination of a shared topmost operation symbol.

Corollary 16.18. For any operation symbol σ, the pair of terms (σ(t1, . . . , tn),σ(t ′1, . . . , t
′
n))

has the same set of most general unifiers as the set of pairs of terms {(t1, t ′1), . . . ,(tn, t ′n)}.

Proof. The conclusion is achieved by interpreting the entities of Prop. 16.17 in the fol-
lowing way:

X ′ = {∗}
e(∗)=σ(x1,...,xn)

// X = {x1, . . . ,xn}
txi=ti

//

t ′xi=t ′i

// Y

□
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Splitting unification. By applying the result of Cor. 16.18 that reduces the total number
of symbols by eliminating the symbol σ, we transform the original problem, formulated
for a single pair of terms, with a problem for a set of pairs of terms. Then we can split
the new unification problem into smaller parts that can be solved sequentially and their
results can be composed in order to obtain the result for the big problem. The general
result of Prop. 16.19 just does this in category-theoretic terms.

Proposition 16.19. In any category, consider the commutative diagram below

X1

��

t ′1
��

t1
��

V ′

X1 +X2
⟨t1, t2⟩

//

⟨t ′1, t
′
2⟩

// Y θ
//

u
22

Z
γ
//

∃! f1

<<

V

f

OO

X2

^^

t2

OO

t ′2

OO DD
DD

(16.10)

where X1 + X2 is the co-product of X1 and X2, and ⟨t1, t2⟩,⟨t ′1, t ′2⟩ : X1 + X2 → Y are
the tuplings of t1 with t2 and of t ′1 with t ′2, respectively, given by the co-product property.
If (θ : Y → Z) ∈ coeq(t1, t ′1) and (γ : Z → V ) ∈ coeq(t2;θ, t ′2;θ) then
θ;γ ∈ coeq(⟨t1, t2⟩, ⟨t ′1, t ′2⟩).

The proof of Prop. 16.19 can be ‘seen’ easily by inspecting diagram (16.10), where
u is a co-cone for ⟨t1, t2⟩,⟨t ′1, t ′2⟩. We can also understand that the choice of the splitting
is immaterial. The following FOL interpretation of Prop. 16.19 shows how the splitting
step works in the case of the FOL unification algorithm.

Corollary 16.20. When it exists, the most general unifier for {(t1, t ′1), . . . ,(tn, t ′n)}, a set
of pairs of Σ-terms with variables Y , can be obtained as the substitution θn, where θ0 =
1Y , and for k = 1,n, θk = θk−1;γk and γk is the most general unifier of (θk−1tk, θk−1t ′k).

Proof. Follows immediately from Prop. 16.19 by noting that for any FOL signature,
the disjoint union of blocks of variables is a co-product in the category of first order
substitutions. □

The irreducible cases. The unification algorithms consist of alternations (which can
be non-deterministic) of the reduction step given by Prop. 16.17 and of the splitting step
given by Prop. 16.19. This process leads eventually to a finite number of irreducible uni-
fication problems. In the case of FOL unification, these can be of the following three
kinds:

1. (σ(t1, . . . , tn), σ′(t ′1, . . . , t
′
n′)) where σ and σ′ are different operation symbols,

2. (x, t) where x is a variable occurring in t, and

3. (x, t) where x is a variable not occurring in t.
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While in the former two situations there are no unifiers, the latter case has the substitu-
tion θx = t as a most general unifier. In what follows we will express these irreducible
situations in general category-theoretic terms.

Different topmost operation symbols. This situation can be simply expressed by the
negation of the premise of Prop. 16.17. Thus, a parallel pair arrows t0, t ′0 : X ′→Y is epi-
irreducible when there is no proper epi e and arrows t, t ′ such that t0 = e; t and t ′0 = e; t ′.

Terms that are variables. In order to express occurence / non-occurence of variables
in terms at a general categorical level, we need to capture categorically the situation of
a term consisting only of a variable. Within the terms-as-substitutions view, a variables-
as-substitutions view means a component of a co-product co-cone. This goes for any
category. If we have a co-product like below

X v
// X +X ′ X ′v′

oo

then v,v′ can be thought as ‘variables’. If we apply this to institutions, in any institution
with a designated class D of signature morphisms, a D-substitution v : χ→ ϕ is a D-
variable when ϕ is a co-product χ+χ′ and v is the component of the co-product co-cone
corresponding to χ. For example, in the category of FOL D-substitutions (with D being
the class of the injective signature extensions with a finite number of constants), we may
note immediately that the D-variables are just injections between sets (of FOL constants),
co-products of FOL D-substitutions being disjoint unions.

Occurrence of variables in terms. Next, we express at the level of abstract categories
that a variable v does not occur in a term t. The idea is that t can be expressed as a term
t ′ whose variables belong to the complement of v. In any category, given a ‘variable’
v : X →Y and an arrow t : X →Y we say that v does not occur in t when t = t ′;v′ where
v,v′ represent a co-product co-cone.

X
t
//

v
//

t ′

$$

Y X ′
v′

oo

This can be interpreted immediately to categories of D-substitutions in institutions.
The simple categorical proposition below expresses the fact that the co-equaliser

(the unique mgu) of x and t, where x is a variable that does not occur in t, is given by the
substitution mapping x to t.

Proposition 16.21. In any category, for any ‘variable’ v : X → X + X ′ and for any
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t ′ : X → X ′ we have that ⟨t ′, 1X ′⟩ ∈ coeq(v, t ′;v′).

X
t
//

v
//

t ′

&&

t ′ --

X +X ′

⟨t ′,1X ′ ⟩
��

X ′
v′
oo

1X ′ppX ′

Proof. We leave some of the details as exercise. First, note that ⟨t ′, 1X ′⟩ is a (split) epi.
Then, for any u such that t;u = v;u, we can prove that ⟨t ′, 1X ′⟩;(v′;u) = u. □

Termination of the unification algorithm. This issue has to be dealt with at the level
of particular situations. For the first order substitution in FOL , the algorithm determined
by Prop.s 16.17, 16.19, and 16.21 terminates because the preorder on sets of pairs of
terms defined by the following three criteria (in the order of their priority)

1. the number of variables in the set of pairs of terms,

2. the number of occurrences of operation symbols, and

3. the number of pairs of terms,

is well founded (i.e., does not have infinite strictly decreasing sequences) and that each
application of each step given by Propositions 16.17, 16.19, and 16.21 represents a move
downwards in this preorder.

We can thus formulate the following FOL consequence of our study of the unifica-
tion algorithm.

Corollary 16.22. In FOL , any parallel pair of finitary first order substitutions has a co-
equaliser if and only if it has a unifier. Moreover, this can be computed by alternating
the reduction steps given by Cor. 16.18 and the splitting step given by Cor. 16.20 and by
applying the unification of a variable with a term.

Exercises
16.9. In general, can we prove that any unifier is an instance of an mgu? What does it take to have
this?

16.10. Develop all details of the proofs of Propositions 16.17, 16.19, and 16.21.

16.11. Prove a more general variant of Prop. 16.19, namely that θ∈ coeq(t1, t ′1) and γ∈mgu(t2;θ, t ′2;θ)
implies that θ;γ ∈ mgu(⟨t1, t2⟩, ⟨t ′1, t ′2⟩). How useful is this in the applications?

16.12. [162]
Let u, v, x, y, w, z be first-order variables in FOL . For the following pairs of terms, determine
whether most general unifiers exist or not and find them when they exist.

1. p( f y,w,gz), p(u,u,v).

2. p( f y,w,gz), p(v,u,v).
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3. p(a,x, f (gy)), p(z,h(z,w), f w).

16.13. [56] Unification of infinite terms
Consider the institution CA of contraction algebras of Ex. 3.3. From there we know that for each
CA signature Σ, there exists an initial Σ-model 0Σ. The underlying (many-sorted) set of 0Σ is the
(many-sorted) set infinite terms, T ω

Σ
. For each signature Σ define a category of Σ-substitutions with

infinite terms. Prove that for any parallel pair of such substitutions, if it has an unique unifier then
it has an mgu (aka co-equaliser). (Hint: Adapt the FOL unification algorithm by considering the
coeq(x, t) where x is a variable and t is a term, even when x occurs in t.)

16.14. Unification with constraints

1. Let (Σ,E) be a theory for R-modules, where R is the ring of the real numbers. Let R′ be
the free extension of R to Σ. Show that systems of linear equations are just parallel pairs
of constraint ((Σ,R′),E)-substitutions, and solutions of systems of linear equations are just
((Σ,R′),E)-unifiers.

2. By applying Propositions 16.19 and 16.21 show that any system having solutions has a ‘most
general’ solution. Can you recognise this as a classic result from linear algebra?

Notes. Logic programming began in the early 1970s as a direct outgrowth of earlier work in au-
tomatic theorem proving and artificial intelligence. The theory of clausal-form [first order] logic,
and an important theorem by the logician Jacques Herbrand constituted the foundation for most
activity in theorem proving in the early 1960s. The discovery of resolution — a major step in the
mechanization of clausal-form theorem proving — was due to J. Alan Robinson [210]. In 1972,
Robert Kowalski and Alain Colmerauer were led to the crucial idea that logic could be used as a
programming language [239]. A year later the first Prolog system was implemented; now there are
several quite advanced Prolog systems available. A good reference for foundations of conventional
logic programming is [162]. The equational logic programming paradigm unifies logic program-
ming based on Horn clause logic and functional programming based on equational logic. One of
the earliest contributions to this field was [198]. Later Goguen and Meseguer provided a definition
of equational logic programming as logic programming over classical conventional specification
based on (order sorted) equational logic [128, 129]. Diaconescu generalized it to logic program-
ming over ‘category-based equational logic’ in [57], and Goguen and Kemp extended it to logic
programming over behavioral logic in [126]. In [57] it was shown how resolution can be simulated
by paramodulation in the context of the encoding of relations as equations presented in Sec. 3.3.

The conventional Herbrand Theorem from [162] has been extended to many-sorted first-order
logic with equality in [129] and generalized to category-based equational logic in [57, 58]. The non-
empty sorts condition in the many-sorted version of the Second Herbrand Theorem poped-up for
the first time in [129]. The latter included as its instance a Herbrand theorem for ‘category-based’
constraint logic [61].

Our approach to the institution-independent foundations of logic programming based on
(quasi-)representable signature morphisms was developed in [65] which also introduced the concept
of institution-independent substitution. This approach was further developed in [237, 51].

The earliest algorithm for computing most general unifiers in first-order logic was given by
Herbrand [146], and later in [210] it was applied to automated inference. Following the observation
of Goguen that most general unifiers are just co-equalizers in categories of substitutions [120],
Rydeheard and Burstall developed a generic categorical approach to unification algorithms in [215].
A 2-categorical approach on unification modulo equational theories has been investigated by [216].
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Our basic result on modularization for logic programming was first developed in [57] and
[59] within the context of category-based equational logic programming. The results of Propositions
16.8 and 16.9 were first proved in [96].
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Table of Notations

Sets
ω the set of the natural numbers (non-negative integers)
S∗ the set of the strings with elements from S
R the set of the real numbers
∗R the set of the hyperreal numbers
P A the set of the subsets of A
PωA the set of the finite subsets of A
A\B the difference between sets A and B, {x ∈ A | x ̸∈ B}
A⊎B A∪B when A∩B = /0

card A the cardinality of the set A
λ+ the last cardinal strictly greater than the ordinal λ

F |J the reduction of the filter F over I to a subset J ∈ F

Categories

Set the category of sets as objects and functions as arrows
Class the ‘category’ of classes
Cat the ‘category’ of categories as objects and functors as arrows
CCat the ‘category’ of concrete categories
Grp the category of groups
|C| the class of objects of the category C
C(A,B) the set of arrows between objects A and B
dom( f ) the domain (source) of the arrow f
cod( f ) the codomain (target) of the arrow f
f ;g the composition of arrows f and g
Cop the opposite of the category C
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C∗ the 2-opposite of a 2-category C
A∼= B the objects A and B are isomorphic
A×B a direct product of objects A and B
∏i∈I Ai / AI a direct product of the family of objects (Ai)i∈I
AF the F-product of a family (Ai)i∈I of objects in a category
A+B the co-product (direct sum) of the objects A and B
0C the initial object of the category C
Lim(D) vertex of the limiting cone for the diagram D
Colim(D) vertex of the co-limiting co-cone for the diagram D
A/U comma category
( f ,B) object of comma category A/U where f : A→UB
B♯ the Grothendieck category of the indexed category B

Institutions and proof systems

SigI the category of the signatures of institution I
SenI the sentence functor of institution I
ModI the model functor of institution I
M |=I

Σ
ρ the Σ-model M satisfies the Σ-sentence ρ in the institution I

E∗ the class of models satisfying the set of sentences E
M∗ the set of sentences satisfied by the class of models M
M≡M′ M and M′ are elementarily equivalent classes of models (i.e. M∗ =M′∗)
Γ |= E semantic consequence (i.e. E∗ ⊆ Γ∗)
E |=| E ′ E |= E ′ and E ′ |= E
Γ ⊢ E entailment (i.e., there exists a proof) from Γ to E
E ⊢⊣ E ′ E ⊢ E ′ and E ′ ⊢ E
ThI the category of theories of institution I
I th the institution of the theories of the institution I
Modth the model functor ModI th

of I th

E• the closure of the theory
CThI the category of closed theories of institution I
Pf I the proof functor of proof system I
RlI the proof rule functor of system-of-proof rules I
hI hypotheses of proof rules in a system of proof rules I
cI conclusions of proof rules in a system of proof rules I
0Σ / 0Σ,E the initial [Σ / (Σ,E)]-model
ιΣM the elementary extension of the signature Σ via the model M
(ΣM,EM) the diagram of the Σ-model M
iΣ,M the natural isomorphism determined by the diagram of the Σ-model M
MM the initial model 0ΣM ,EM of the diagram of a model M
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Nh i−1
Σ,Mh for h : M→ N model homomorphism

E(I ) the elementary sub-institution of I
I ♯ the institution of the ‘local’ satisfaction for a stratified institution I
I ∗ the institution of the ‘global’ satisfaction for a stratified institution I
K (S) ‘modalisation’ of a stratified institution S
I ♯ the binary flattening of an L-institution I

Categories of institutions / proof systems

(co)Ins the category of institution (co)morphisms
(co)Pf Ins the category of institution with proofs (co)morphisms
(co)SIns the category of stratified institution (co)morphisms
(co)RlSys the category of system-of-proof rules (co)morphisms
(co)PfSys the category of proof system (co)morphisms
EDIns the category of institutions with diagrams

In concrete institutions

ϕst the mapping on sort symbols of ϕ, a morphism of FOL signatures
ϕop the mapping on operation symbols of ϕ, a morphism of FOL signatures
ϕrl the mapping on relation symbols of ϕ, a morphism of FOL signatures
|M| the set of the elements of the carriers of the model M
(x : s) the constant/variable x has sort s
−→
S the set of all (higher-order) types constructed from the sorts S
= f the kernel of homomorphism f
=Γ the least Γ-congruence
TΣ the set of Σ-terms
t e
= t ′ existence equation in PA

Sw class of (plain) injective model homomorphisms in FOL and PA
Sc class of closed injective model homomorphisms in FOL and PA
S f class of full subalgebras in PA
Hr class of surjective model homomorphisms in FOL and PA
Hs class of strong surjective homomorphisms in FOL
Hc class of closed surjective homomorphisms in FOL

Internal logic



550 Appendix A. Table of Notations

ρ1∧ρ2 the conjunction of ρ1 and ρ2
ρ1∨ρ2 the disjunction of ρ1 and ρ2
ρ1⇒ ρ2 the implication of ρ2 by ρ1
ρ1⇔ ρ2 the equivalence between ρ1 and ρ2∧

E the conjunction of the set of sentences E
¬ρ the negation of ρ

¬E {¬ρ | ρ ∈ E}
(∀χ)ρ universal quantification of Σ′-sentence ρ for χ : Σ→ Σ′ signature morphism
(∃χ)ρ existential quantification of Σ′-sentence ρ for χ : Σ→ Σ′ sign. morphism
Mχ the model representing the signature morphism χ

iχ the natural isomorphism defining a representable signature morphism χ

Modψ the model reduct translation part of the substitution ψ

Senψ the sentence translation part of the substitution ψ

ME the model defining a basic set of sentences E
M |=inj h M is injective with respect to h
In j(H) the class of objects / models injective with respect to all h ∈ H

Other notations

FX U the set of the fixed points of the semantic operator U
Up M the class of all ultraproducts of models of M
Ur the ultraradical relation on models
UnivΣ the set of universal Σ-sentences in FOL
ExistΣ the set of existential Σ-sentences in FOL
M[Sen0]N M∗∩Sen0

Σ ⊆ N∗∩Sen0
Σ

M Sen0
−→ N there exists a Σ-model homomorphism h : M→ N such that MM[Sen0]Nh

J ♯ the Grothendieck institution of the indexed (co)institution J
sig[SP] the signature of the specification SP
Mod[SP] the class of the models of the specification SP
SP |= SP′ sig[SP] = sig[SP′] and Mod[SP]⊆Mod[SP′]
SP |=| SP′ equivalence of specifications, i.e. SP |= SP′ and SP′ |= SP
SP∪SP′ union of specifications
SP⋆ϕ renaming of specification SP
ϕ2SP hiding of specification SP
SpecI the category of structured specifications of institution I
SpecT ,D the category of ⟨T , D⟩-specifications
I spec the institution of structured specifications over I
I spec
⟨T ,D⟩ the institution of ⟨T , D⟩-specifications over I
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[49] Traian Şerbănuţă. Institutional concepts in first-order logic, parameterized specifi-
cation, and logic programming. Master’s thesis, University of Bucharest, 2004.
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[69] Răzvan Diaconescu. Institutions, Madhyamaka and universal model theory. In
Jean-Yves Béziau and Alexandre Costa-Leite, editors, Perspectives on Universal
Logic, pages 41–65. Polimetrica, 2007.
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[74] Răzvan Diaconescu. On quasi-varieties of multiple valued logic models. Mathe-
matical Logic Quarterly, 57(2):194–203, 2011.



556 Bibliography
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[82] Răzvan Diaconescu. Implicit Kripke semantics and ultraproducts in stratified in-
stitutions. Journal of Logic and Computation, 27(5):1577–1606, 2017.
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[94] Răzvan Diaconescu and Kokichi Futatsugi. CafeOBJ Report: The Language, Proof
Techniques, and Methodologies for Object-Oriented Algebraic Specification, vol-
ume 6 of AMAST Series in Computing. World Scientific, 1998.
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[135] Daniel Găină. Private communications.



560 Bibliography
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Birkhäuser, 2005.

[162] John Lloyd. Foundations of Logic Programming. Springer, Berlin, 1988. Second,
Extended edition.
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What is a logic? In Jean-Yves Béziau, editor, Logica Universalis, pages 113–133.
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[204] Marius Petria and Răzvan Diaconescu. Abstract Beth definability in institutions.
Journal of Symbolic Logic, 71(3):1002–1028, 2006.
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(D,Sen0)-substitution, 337
=Γ, the least Γ-congruence, 99
F-power of models, in institution, 149
F-product of models, in FOL , 147
F-product of models, in institution, 148
Cat, ‘hyper-category’ of categories, 14
F -finitely presented object, 20
Ins, category of institution morphisms,

49
L-closure system, 407
L-comorphism, 442
L-entailment, 404
L-institution, 399
Set, category of sets, 12
fol, 455
foli, 459
folp, 459
ι-finite model, 166
κ-basic sentence, 416
κ-compact, consequence-theoretic, 411
κ-consistent theory, 410
κ-m-compact L-institution, 410
Σ11 sentence, 162
⟨T , D⟩-specification, 493
¬¬-elimination, 324
coIns, category of institution comorphisms,

50
Łoś institution, 160
Łoś sentence, 160
0-cell, 23
1-cell, 23
2-category, 23
2-cell, 23
2-co-cone, 24
2-co-limit, 24

2-cone, 24
2-dimensional opposite category, 25
2-functor, 24
2-limit, 24
2-natural transformation, 24

abstract inclusion, 90
abstract surjection, 90
accessible sentence, 116
adjoint comorphism of institutions, 52
adjoint morphism of institutions, 52
adjoint-indexed institution, 458
adjoint-indexed institution, coherent, 458
adjunction, 21
adjunction, 2-categorical, 24
algebra, 28
algebraic signature, 28
amalgamation of models, 73
amalgamation square, 73
amalgamation square, weak, 73
amalgamation, (Φ,β), 284
anti-morphism of theories, 240
approximation equation, 46
arity of operation symbol, 27
arity of relation symbol, 28
arrow above an arrow, 25
arrow is (λ,D)-chain, 177
automaton, 45

basic sentence, in L-institution, 416
basic model, 129
basic sentence, 129
basic sentence, in L-institution, 417
basic set of sentences, 129
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basic specifications in abstractly struc-
tured institutions, 502

binary frame extraction, 367
Birkhoff institution, 236
Birkhoff institution, symmetric, 279
Birkhoff proof system, 347
Boolean algebra, 41
Boolean complete institution, 110
broad subcategory, 14

cardinal, 176
cardinality of sets, 176
carrier set, 28
cartesian arrow, 25
cartesian closed category, 22
cartesian functor, 26
cartesian lifting, 25
cartesian morphism of institutions, 454
categorical diagrams, 17
category, 11

concrete, 14
category of substitutions, 119
category of signatures, 34
chain in category ((λ,D)-chain), 177
chain in category (λ-chain), 177
charter, 48
closed homomorphism of FOL models,

81, 91
closed inclusion system, 92, 94, 95
closed morphism of theories, 95
closed morphism of theories, in entail-

ment system, 333
closed theory in institution, 62
closure under isomorphisms, 35
closure operator, semantic, 248
closure system, many-valued, 407
co-complete category, 18
co-cone, 16
co-equalizer, 18
co-limit, 16
co-product, 17
co-unit, of adjunction, 21
co-well powered inclusion system, 213
co-well-powered category, 16

coherent adjoint-indexed institution, 458
comma category, 16
comorphism

structured, 503
comorphism of institutions, 50

AUT → F OL1, 55
FOEQL →HN K , 55
FOL → (F OL1)th, 63
FOL → FOEQL , 53
FOL →HN K , 55
FOL → REL th, 64
LA → FOEQL th, 69
MBA → FOL , 55
MPL∗→ REL1, 53
PA → FOL th, operational, 65
PA → FOL th, relational, 66
PA →MA th, 69
POA → FOL th, 67
WPL → PL th, 69

comorphism of proof systems, 312
comorphism of systems of rules, 313
comorphism, many-valued, 442
compact L-institution, 410
compact element, 398
compact institution, 162
compact poset, 398
compact proof system, 318
complete category, 18
complete institution with proofs, 316
complete inventing of filtered products

by functor, 151
completely distributive lattice, 397
completely join-prime element, 398
compositional structured institution, 500
conclusion of interpolation, 241
concrete category, 14
cone, 17
congruence, 92

of structuring, 508
congruence (Γ-congruence), 105
congruence in POA , 97
conjunction in institutions, 110
conjunction in stratified institutions, 366
conjunction, residual, 397
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conjunction, in stratified institution, 366
conjunction, proof-theoretic, 324
conjunction, semantic, 109
connected category, 12
consequence

semantic, 35
conservative comorphism, 51
conservative homomorphism of models,

134
conservative signature morphism, 35
consistent set of sentences, 162
consistent set of sentences, in L-institution,

410
consistent set of sentences, proof theo-

retically, 329
consistent theory (κ), in L-institution, 410
consistent theory, in L-institution, 410
constant (operation symbol), 27
constraint substitution, 537
contra-additive function, 195
contra-monotonic function, 195
contraction algebra, 46
countably incomplete ultrafilter, 195
Craig interpolation square, proof-theoretic,

329
Craig (L ,R )-interpolation, 245
Craig interpolation square, 242
Craig interpolation square of comorphisms,

469
Craig-Robinson interpolation square, 273
creation of F-products by functor, 150
creation of (co-)limits, 19

Deduction Theorem, 325
dense morphism of signatures, 167
derivation, of specification, 484
diagonal functor, 16
diagram, in FOL , 80
diagram, in institution, 82
diagrams, 17
directed co-limit, 18
directed model amalgamation, 75
directed-exact institution, 75
disjunction in institution, 110

disjunction in stratified institution, 366
disjunction, in stratified institution, 366
disjunction, semantic, 109
distinguished cartesian morphism, 25
dual category, 15

elementarily equivalent models, 62
elementary sub-institution, 142
elementary (D) homomorphism of mod-

els, 138
elementary (ι) homomorphism of mod-

els, 83
elementary (ι) institution, 84
elementary amalgamation square, 272
elementary class of models, 62
elementary embedding in FOL , 81
elementary extension, 82
empty sort, 33
enriched indexed inclusion system, 467
entailment, 309
entailment institution, 331
entailment relation, 309
entailment system, 309
entailment system of presentations, 334
entailment system, graded, 404
entailment-theoretic equivalence, 309
epi, 12
epi basic model, 129
epi basic sentence, 129
epi basic set of sentences, 129
epic inclusion system, 91
epimorphic family of arrows, 12
equalizer, 18
equation, 29
equivalence in institution, 110
equivalence in stratified institution, 366
equivalence of specifications, 485
equivalence of categories, 22
equivalence of institutions, 52, 457
equivalence of substitutions, 120
equivalence relation, S-sorted, 92
equivalence, proof-theoretic, 309
equivalence, entailment-theoretic, 309
equivalence, semantic, 110
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equivalent sentences, semantically, 62
exact comorphism of institutions, 77, 465
exact institution, 75
exact institution, weakly, 75
exact morphism of institutions, 77
exact morphism of signatures, ∆, 393
existential quantification in institution, 112
existential quantification, proof-theoretic,

325
existential quantification, in stratified in-

stitution, 366
existential sentence in FOL , 202
expansion of models in institution, 34
expansions of FOL models, 31
explicitly defined morphism of signatures,

proof theoretically, 330
explicitly defined morphism of signatures,

291
extension, Sen0, 203

faithful functor, 14
false, semantic, 110
fibration, 25
fibre category, 25
fibre of institution, 454
fibred category, 25
fibred institution, 454
filter, 146
final functor, 19
final object, 16
finitary basic set of sentences, 130
finitary Horn sentence, 132
finitary morphism of signatures, 115
finitary proof, 317
finitary quasi-representable signature mor-

phism, 124
finitary rule, 317
finitary sentence, 72, 189
finite model, 117
finitely elementary class of models, 209
finitely presented object, 20
first order quantification, 121
fixed point for semantic operator, 249
frame extraction, binary, 367

frame extraction, general, 368
free extension along theory morphims,

101
free object, 21
full functor, 14
function

join-continuous, 398
meet-continuous, 398

functor, 13
functor category, 15
fuzzy theory morphism, 436
fuzzy theory, Galois closure, 409

Galois connection, 22
Generalized Continuum Hypothesis, 176
global satisfaction, 363
graded entailment, 404
graded semantic consequence, 403
Grothendieck construction, 25
Grothendieck construction in 2-categories,

25
Grothendieck institution, 456
Grothendieck object, 25
group, 12

Heyting algebra, 41
higher order model, 43
homomorphism of preordered algebras,

42
homomorphism of FOL models, 28
homomorphism of HOL models, 43
homomorphism of contraction algebras,

46
homomorphism of Kripke models, 39
homomorphism of models in institution,

34
homomorphism of partial algebras, 38
homomorphism, of residuated lattices, 398
homomorphisms of multialgebras, 42
Horn clause in FOL , 99
Horn institution, 347
Horn sentence in FOL , 37
Horn sentence in institution, 132
Horn sentence, extended, 425
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hyperreals, 147

image of arrow, 90
implication in institution, 110
implication in stratified institution, 366
implication, residual, 397
implication, in stratified institution, 366
implication, proof-theoretic, 325
implication, semantic, 110
implicitly defined morphism of signatures,

291
implicitly defined morphism of signatures,

proof theoretically, 329
inclusion system, 90
inclusive functor, 91
inclusive institution, 94
indexed category, 24
indexed comorphism-based institution, 457
indexed institution, 455
inductive co-limit, 18
inductive model amalgamation, 75
inductive-exact institution, 75
infinitary proof system, 309
initial object, 16
injective object, 13
injective signature extension, 112
institution, 34

(I ,sig)-structured, 500
(Π∪Σ)0

n, 37
CatEQL (categorical equational logic),

47
Cat+EQL (categorical equational logic

with binary co-products), 88
QE(PA), 38
QE1(PA), 38
QE2(PA), 38
AFOL (first-order logic atoms), 86
BPL (Boolean propositional logic),

50
FOL+ (positive first-order logic),

37
FOLS (S-sorted first-order logic), 56
FOL∞,ω, FOLα,ω (infinitary logics),

37

HCL∞,ω, HCLα,β, 38
HN K λ (HN K with λ-abstraction),

47
HOLλ (HOL with λ-abstraction),

46
L-, 399
MFOL∗ (first order modal logic, global),

40
MFOL♯ (first order modal logic, lo-

cal), 40
SOL (second-order logic), 37
SOL∞,ω, 277
AUT (automata), 45
CA (contraction algebras), 46
CEQL (conditional equational logic),

37
EQL (unconditional equational logic),

37
FMA (L-institution), 402
FOEQL (first-order equational logic),

37
FOL (first order logic), 27
HCL (Horn clause logic), 37
HOL (higher order logic), 43
HPOA (Horn preorder algebra), 42
IPL (intuitionistic propositional logic),

41
LA (linear algebra), 46
MA (multialgebras), 42
MBA (membership algebra), 42
MVL (L-institution), 400
MVL (multiple valued logic), 44
PA (partial algebra), 38
PL (propositional logic), 36
POA (preordered algebra), 42
REL (relational logic), 37
TL (L-institution), 401
∀∨ (universal disjunction of atoms),

237
F OL1 (single-sorted first-order logic),

36
UNIV (universal sentences), 37
REL1 (single-sorted REL), 53
of pre-defined types, 512
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institution having finitary sentences, 189
institution having saturated models, 180
institution of global satisfaction, 363
institution of local satisfaction, 362
institution of substitutions, 121
institution of theories, 63
institution with proof rules, 316
institution with proofs, 315
institution with representable substitutions,

127
institutional seed, 79
interpolant, 241
interpolant, semantic, 247
interpolation problem, 241
interpolation, left, 279
interpolation, right, 279
interpretation of term in FOL model, 32
intersection of signatures, 483
inventing filtered products by functor, 150
inverse image functor, 26
invertible enriched indexed inclusion sys-

tem, 467
isomorphism, 12
isomorphism classes, 12

join-continuous function, 398

Keisler-Shelah institution, 200
kernel of POA homomorphism, 98
kernel of arrow, 18
kernel of model homomorphism, 93
Kripke frame, 39
Kripke model in MFOL , 39
Kripke model, ∆-rigid, 377
Kripke model, pointed, 39

lattice, completely distributive, 397
lattice, residuated, 44, 397
lax co-cone, 24
lax co-limit, 24
lax cone, 24
lax limit, 24
lax natural transformation, 24
left adjoint functor, 21

left interpolation, 279
liberal institution, 101
liberal institution comorphism, 104
liberal institution morphism, 104
liberal theory morphism, 101
lifting of (co-)limits, 19
lifting of F-products by functor, 150
lifting of isomorphisms by spans, 265
lifting of relation by signature morphism,

weakly, 298
lifting of relation by signature morphisms,

253
limit, 17
limit ordinal, 176
local satisfaction, 362
locally (semi-)exact indexed coinstitution,

464
locally co-complete indexed category, 461
locally liberal indexed institution, 467
locally presentable category, 20
logical kernel of signature morphism, 275

m-compact L-institution, 410
m-compact institution, 162
maximally consistent set of sentences,

166
meet-continuous function, 398
modal logic

global, 40
local, 40

model
D-model, 75
ι-finite, 166
basic, 129
epi basic, 129

model amalgamation, stratified, 363
model of a diagram, 75
model amalgamation for comorphisms,

77
model amalgamation for comorphisms,

weak, 77
model amalgamation for institution, 73
model amalgamation, directed, 75
model compact institution, 162



Index 573

model expansion for signature morphisms,
78

model expansion property for comorphisms,
51

model expansion property for signature
morphisms, 115

model functor, 34
model in FOL , 28
model in institution, 34
model modification, 49
model of specification, 484
model realizes finitely set of sentences,

179
model realizes set of sentences, 179
model transformation, 49
models

of fuzzy theory, 407
modification between institution morphisms,

49
modularization square, 333
Modus Ponens for Sen0, for proof sys-

tems, 347
mono, 12
monoid, 12
monomorphic family of arrows, 12
morphism

of fuzzy theories, 436
morphism of specifications, 485
morphism of CA signatures, 46
morphism of FOL signatures, 30
morphism of HOL signatures, 43
morphism of charters, 56
morphism of institutions, 49

FOL → EQL , 48
FOL →MA , 55
FOL → REL , 54
MBA → FOL , 55
PA → FOL , 54

morphism of institutions with diagrams,
84

morphism of proof systems, 313
morphism of rooms, 57
morphism of signatures

with the model expansion property,
78

morphism of signatures, (∗e∗), 245
morphism of signatures, (b∗∗), 245
morphism of signatures, (i∗∗), 245
morphism of signatures, (ie∗), 245
morphism of signatures, (iei), 245
morphism of signatures, (ii′i), 245
morphism of signatures, (iii), 245
morphism of signatures, (s∗∗), 245
morphism of systems of rules, 313
morphism of theories, 63
morphism of theories, in proof system,

333
most general unifier, 538
MV-comorphism, 442

name of variable, 29
natural transformation, 15
necessity, in stratified institution, 368
negation in institutions, 110
negation in stratified institutions, 366
negation, in stratified institution, 366
negation, proof-theoretic, 324
negation, semantic, 109
nominal, 40
nominals extraction, 369
non-empty sort, 33
normal diagram, 139
normal form of structured specification,

491

object above an object, 25
object in category, 11
opposite category, 15
ordinal, 176
overloading of symbols, 28

partial algebra, 38
persistent adjunction, 22
persistently free object, 22
persistently liberal institution comorphism,

104
persistently liberal institution morphism,

104
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pointed model in stratified institution, 361
possibility, in stratified institution, 368
pre-institution, 47
precise comorphism, 292
precise morphism of signatures, 292
premise of interpolation, 241
preorder atoms, 42
preordered algebra, 42
presentation, 63
preservation of F-products by functor,

150
preservation of (co-)limits, 19
preservation of sentence by ultrafactor,

151
preservation of sentence by ultraproduct,

420
preservation of sentence by F-factor, 151,

420
preservation of sentence by F-factor, in

stratified institution, 385
preservation of sentence by F-product,

151, 420
preservation of sentence by F-product,

in stratified institution, 385
preservation of sentence by a limit of mod-

els, 136
preservation of sentence by directed co-

limits of elementary homomor-
phisms, 172

preservation of sentence by model ex-
tensions, 204

preservation of sentence by submodels,
204

preservation of sentence by ultrafactor,
420

preservation of sentence by ultraproduct,
151

product, 17
projective object, 13
projectively representable morphism of

signatures, 158
proof rules, 312
proof system, 308
proof system, compact, 318

proof system, quasi-finitary, 318
proof, quasi-finitary, 318
proof-theoretic equivalence, 309
pullback, 17
pushout, 18

quantification in institution (D-quantification),
112

quantification system, 114
quasi-compact institution, 263
quasi-existence equation in PA , 38
quasi-finitary proof, 318
quasi-finitary proof system, 318
quasi-representable morphism of signa-

tures, 121
quasi-variety, 214
query, 521
quotient homomorphism, 93
quotient of model, 93
quotient of object, 213

reachable object, 213
reduct of FOL model homomorphisms,

31
reduct of FOL models, 31
reduct of models in institution, 34
reduction of filter, 149
reflection of (co-)limits, 19
reflection of sentence by directed co-limits

of elementary homomorphisms,
172

regular element in Heyting algebra, 51
relational atom, 29
representable morphism of signatures, 125
representation of institutions, 105
representation of signature morphism, 125
residual conjunction, 397
residual implication, 397
residuated lattice, 44, 397
retract, 13
right adjoint functor, 21
right interpolation, 279
rigid Kripke model, 377
Robinson consistency square, 263
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room, 57

Satisfaction Condition for institution co-
morphisms, 50

Satisfaction Condition for institution mor-
phisms, 49

Satisfaction Condition for institutions, 34
satisfaction relation in institution, 34
satisfaction relation in FOL , 32
saturated model, 179
seed, institutional, 79
semantic consequence, graded, 403
semantic consequence, 35
semantic closure operator, 248
semantic entailment system, 309
semantic normal form, 503
semantic operator, 248
semantic proof system, 309
semantic topology, 67
semantically equivalent sentences, in L-

institutions, 400
semi-exact indexed coinstitution, 464
semi-exact institution, 75
sentence

κ-basic, 416
basic, finitary, 416
basic, in L-institution, 416

sentence functor, 34
sentence in FOL , 29
sentence transformation, 49
signature functor, 49
signature in CA , 46
signature in FOL , 27
signature in HOL , 43
signature in MBA , 42
signature in PA , 38
signature morphism, conservative, 35
signature of specification, 484
signature transformation, 49
simple diagrams, 189
size of model, 189
small co-limit, 18
small limit, 18
small morphism of signatures, 178

solution form, 523
solution for query, 522
solution form, 522
sort of operation symbol, 27
sort of variable, 29
sort, non-empty, 33
sort, empty, 33
sound institution with proof rules, 316
sound institution with proofs, 316
span, 18
specification, 484
split fibration, 26
split fibred institution, 454
stability under isomorphisms, weak, 21
stability under pushouts, 20
stability under isomorphisms, 21
stability under pullbacks, 20
stability under pullbacks, weak, 20
stability under pushouts, weak, 20
stable sentence functor, 195
stratified institution, 356

H 2PL (double modalisation of PL),
382

M 2PL (double modalisation of PL),
382

MFOL (first order modal logic), 358
MFOL (first order modal logic), 358
MOFOL (modal open first-order logic),

382
OFOL (open first order logic), 358

stratified model amalgamation, 363
strong FOL homomorphism, 87
strong homomorphism of FOL models,

91
strong inclusion system, 92, 94, 95
strong inventing of filtered products by

functor, 151
strong morphism of theories, 66, 95
strong morphism of theories, in entail-

ment system, 333
strongly persistent adjunction, 22
strongly persistently free object, 22
structured comorphism, 503
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structured institution inherits signature
morphisms, 500

structuring congruence, 508
sub-institution, 36
subcategory, 14
submodel, 91
submodel generated by set, 97
submodel, Sen0, 203
subobject, 213
substitution in institution (Σ-substitution),

119
substitution in institution (D-substitution),

120
substitution system, 120
substitution, first order, 118
successor ordinal, 176
supporting co-limits by indexed co-institutions,

461
surjective stratification, 363

theory
fuzzy, 407

theory in institution, 62
closed, 62

theory morphism, in proof system, 333
theory, Goguen closed, 408
tight morphism of signatures, 294
translation of FOL sentences, 31
translation of specification, 484
translations in abstractly structured in-

stitutions, 502
triangular equations, 21
triangular equations, 2-categorical, 24
true, semantic, 110
type in HOL , 43

ultrafilter, 146
ultrapower of models, in institution, 149
ultraproduct of models, in institution, 149
ultraradical, 210
ultraradical relation, 233
unconstrained Kripke model in institu-

tion, 376
unifier, 540

unifier, categorical, 538
unifier, most general, 538
union of signatures, 483
union of specifications, 484
unions in abstractly structured institutions,

502
unions in inclusion system, 91
unit of adjunction, 21
universal arrow, 16
universal institution, 336
universal proof system, 337
universal quantification in institution, 112
universal quantification in stratified in-

stitutions, 366
universal quantification, in stratified in-

stitution, 366
universal quantification, proof-theoretic,

325
universal sentence in FOL , 37, 202

variable, 29
variable for a signature, 29
variety, 214
vertical arrow, 25
vertical composition, 15

weak amalgamation square, 73
weak model amalgamation for comor-

phisms, 77
weak stability under isomorphisms, 21
weak stability under pullbacks, 20
weak stability under pushouts, 20
weakly exact institution, 75
weakly lifting of relation by signature

morphisms, 298
well-powered category, 16
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